This was the provisional title given to me by the organizers:

FUTURE WIMPS

Joseph Bramante

MI Meeting 2023

Thankfully I had training for this at a recent MI astro & particle theory workshop The hat game

Particle physics term

Non-abelian Ultrarelativistic Weakly interacting Fluffy Warm Scintillating

One example: "Non-abelian" + "asteroids" \rightarrow DM with a non-abelian confining gauge interaction could form 'dark-quark-ball dm' macroscopic objects, which may have sufficient EM interaction to be visible and be mistaken for asteroids

Play it loose, this is a game. Perhaps some of it will be fun & eye-opening & perhaps even possible?

Astro term

Galactic magnetic fields Asteroids Saturn's hexagon Lyman alpha forest Active galactic nuclei

BACK TO THE FUTURE WIMPS

Joseph Bramante

MI Meeting 2023

BACK TO THE FUTURE DM

-Most DM models were written down in the 80s.

-The simplest DM are well studied, and may be discovered soon.

(Simple in formulation, complicated in dynamics)

-Less simple heavy DM is less studied, and may be discovered soon. Heavy DM is easier to look for, for now.

What do we know about dark matter?

mass in GeV

The WIMP Miracle

Observed DM relic abundance achieved for annihilation cross-section matching weak scale mass / couplings.

Some symmetry arguments imply interactions at dark matter experiments.

As the universe cools, dark matter falls out of thermal equilibrium, some portion annihilates to SM particles

Diluted WIMP Dark Matter: heavier

Overabundant freeze-out

$$\frac{dini}{dini} = n_x$$
 dilution

Motivation

- -Matter dominated epoch
- -Decay of asymmetry field (Affleck-Dine)
- -Decay of inflaton
- -Decay of modulus / gravitino
- -Field associated with ~PeV dark sector

see also e.g. Affleck Dine '85 Allahverdi Dutta Sinha '11 Kane Shao Watson '11 Davoudiasl Hooper McDermott '15 Berlin Hooper Krnjaic '16

HIGH MASS ASYMMETRY, DILUTION, AND COMPOSITE DM

Consider a simple model of fermionic DM coupled by a scalar field

$$\mathcal{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2$$

Diluted dark matter has a freeze-out abundance that scales with ζ^{-1}

This overabundance of dark matter leads to very large $\varphi - X$ composites

Composite mass ranging from milligrams to thousands of tons

- $+ g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

- see also e.g. Witten '84 Wise Zhang '14 Krnjaic Sigurdson '14 Hardy Lasenby March-Russell '14 Gresham Lou Zurek '17

Acevedo JB Goodman 2012.10998

$$27 \left(\frac{g_{ca}^*}{10^2}\right)^{3/5} \left(\frac{T_{ca}}{10^5 \,\text{GeV}}\right)^{9/5} \left(\frac{5 \,\text{GeV}}{\bar{m}_X}\right)^{21/5} \left(\frac{10^{-6}}{\zeta}\right)^{6/5}$$

How was dark matter made?

de Sitter fluctuation (wimpzilla)

classic freezeout (wimp)

freezeout variant (wimpish)

production temperature ($\rho^{1/4}$) in GeV

	11
- L	U

Heavy Mediator

m_x (GeV)

Neutron star infrared astr.

Tyagi et al., in progress

ion [cm²]

Matter-

Dark

Δ relative to last generation

HEAVY DARK MATTER

What kind of dark matter is over here

HIGH MASS ASYMMETRY, DILUTION, AND COMPOSITE DM

Consider a simple model of fermionic DM coupled by a scalar field

$$\mathcal{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2$$

Diluted dark matter has a freeze-out abundance that scales with ζ^{-1}

This overabundance of dark matter leads to very large $\varphi - X$ composites

Composite mass ranging from milligrams to thousands of tons

- $+ g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

- see also e.g. Witten '84 Wise Zhang '14 Krnjaic Sigurdson '14 Hardy Lasenby March-Russell '14 Gresham Lou Zurek '17

Acevedo JB Goodman 2012.10998

$$27 \left(\frac{g_{ca}^*}{10^2}\right)^{3/5} \left(\frac{T_{ca}}{10^5 \,\text{GeV}}\right)^{9/5} \left(\frac{5 \,\text{GeV}}{\bar{m}_X}\right)^{21/5} \left(\frac{10^{-6}}{\zeta}\right)^{6/5}$$

DM Models Vis-a-vis heavy composite DM

Nice to have a model:

- Dissipative dark sector - Q ball - Fermion stars - Dark BBN
- Early matter domination - Boson stars

On the other hand: What is the Lagrangian / cosmology for planets?

 $-\mathscr{L} = \frac{1}{2}(\partial\varphi)^2 + \bar{X}(i\gamma^{\mu}\partial_{\mu} - m_X)X + g_X\bar{X}\varphi X - \frac{1}{2}m_{\varphi}^2\varphi^2 + g_n\bar{n}\varphi n + \mathscr{L}_{SM},$

- Planet formation still has open questions (e.g. pebble accretion).
- Naive to ask heavy composites to have simple dynamics like singlefield DM models, often selected for convenience.

$$\sum_{X} \sum_{X} \sum_{X$$

$$\begin{pmatrix} 2 & g' v_u / \sqrt{2} \\ \overline{2} & -g v_u / \sqrt{2} \\ & -\mu \\ & 0 \end{pmatrix}$$

(also restricted M1, M2 values to make Higgsino tree-level inelastic)

DM Models

- 1. Heavy asymmetric, 10⁵-10¹⁰ GeV
- 2. Higgsinos, 10²-10⁷ GeV
- 3. Light dark matter, 10⁻⁵-1 GeV
- 4. Heavy composite, 10¹⁹-10²⁴ GeV
- 5. Axions, 10⁻¹⁰-10⁻⁵ eV
- 6. ...your favorite DM

Alien Game Show Win spaceships!

my rough prior

≳6%

≲4%

DM Models

- 1. Heavy asymmetric, 10⁵-10¹⁰ GeV
- 2. Higgsinos, 10²-10⁷ GeV
- 3. Light dark matter, 10⁻⁵-1 GeV
- 4. Heavy composite, 10¹⁹-10²⁴ GeV
- 5. Axions, 10⁻¹⁰-10⁻⁵ eV
- 6. ...your favorite DM

But if I was told, "hey for heavy composites, you can have 10 orders of magnitude"

1. Heavy composite 10¹⁹-10²⁹ GeV

2 Heavy asymmetric 105-1010 GeV

SOME COMPOSITE INTERACTIONS

nuclear interactions with DM composite internal potential

Acevedo, JB, Goodman 2012.10998

Acevedo, JB, Goodman 2108.10899

 $\mathscr{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2 + g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

scattering with constituents

$$\langle \varphi \rangle > m_N$$

Acevedo, Boukhtouchen, JB, Cappiello, Mohlabeng, Sheahan, Tyagi, in progress

BREM/NUCLEAR INTERACTIONS

nuclear interactions with DM composite internal potential

 $\langle \varphi \rangle \lesssim m_N, g_n > 0$

Acevedo, JB, Goodman 2012.10998

 $\mathscr{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2 + g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

BREM/NUCLEAR FUSION IN COMPOSIT

$$f^{2} = \frac{1}{2} (\partial \varphi)^{2} + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_{X}) X + g_{X} \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^{2} \varphi^{2} + g_{n} \bar{n} \varphi n + \mathcal{D}$$
TES

BREM/NUCLEAR FUSION IN COMPOSIT

$$f^{2} = \frac{1}{2} (\partial \varphi)^{2} + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_{X}) X + g_{X} \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^{2} \varphi^{2} + g_{n} \bar{n} \varphi n + \mathcal{D}$$
TES

Acevedo, JB, Goodman 2012.10998

LOW E RECOIL INTERACTIONS

nuclear interactions with DM composite internal potential

Acevedo, JB, Goodman 2108.10899

 $\mathscr{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2 + g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

Composite masses/radii determined by m_x, cosmology with $\alpha_X = 0.3$

$$\mathscr{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2 + g_n \bar{n} \varphi n + \mathscr{L}_{SM},$$

Acevedo, JB, Goodman, 2108.10889

MIMP INTERACTIONS

nuclear interactions with DM composite internal potential

 $\mathscr{L} = \frac{1}{2} (\partial \varphi)^2 + \bar{X} (i \gamma^{\mu} \partial_{\mu} - m_X) X + g_X \bar{X} \varphi X - \frac{1}{2} m_{\varphi}^2 \varphi^2 + g_n \bar{n} \varphi n + \mathscr{L}_{SM},$

 $\langle \varphi \rangle > m_N$

(MIMPs)

Acevedo, JB, Goodman 2108.10899

Multiscatter: models of dark matter interact many times in detectors.

+ +

+

New searches for multiply interacting dark matter (MIMPs)

 $E_{th} \sim \mu_{nx}^2 v^2 / m_n$

cross-section for DM to hit detector particle

mass of dark matter

• If particles have velocity v (~0.001c), then sensitivity of detector sets a minimum energy threshold for detection

cross-section for DM to hit detector particle

mass of dark matter

• Detector is composed of N_a atoms, observes for time t

• As DM mass increases, DM flux decreases, sensitivity decreases as 1/m_x

DM number density ρ_x / m_x

mass of dark matter

Overburden Attenuation

 DM particles can be slowed through scattering with atmosphere, earth, aluminum space station wall.

Length of overburden $E_{thresh} \lesssim E_i (1 - m_a/m_x)^{n_a \sigma_{ax} L_{ob}}$

cross-section for DM to hit detector particle

mass of dark matter

• Attenuation cross-section increases linearly with DM kinetic energy ~m_x v_x²

EXPERIMENT LOOKING FOR FLUX OF NEW PARTICLES

mass of dark matter

Special point — requires all passing particles to hit once in detector

MULTISCATTER DARK MATTER DETECTION

mass of dark matter

- $\tau = n_a \sigma_{ax} L = 1$

JB, Broerman, Kumar, Lang, Pospelov, Raj 1812.09325

JB, Broerman, Lang, Raj 1803.08044 1910.05380 38

HEAVY DM IN GAS CLOUD, NUCLEAR INTERACTIONS

Fixed cross-section for scattering off all nuclei

Bhoonah, JB, Schon, Song 2010.07240

Gas Cloud 357.8-4.7-55

Δv from 21cm emission gives T<137 K G357.8-4.7-55

M = 237 M⊙

 $r_{gc} = 12.9 \text{ pc}$

 $n_n = 0.4 \text{ cm}^{-3}$

Tg < 137 K

 $r_{\rm los} \sim 800 \ {\rm pc}$

 $v_{g} = -54 \text{ km/s}$

6

(assume spherical cloud)

HEAVY DM IN GAS CLOUD, NUCLEAR INTERACTIONS

Fixed cross-section for scattering off all nuclei

Bhoonah, JB, Schon, Song 2010.07240

Recast CDMS-I limit using multi scatter (Muon veto rejects very strong interactions)

ETCHING PLASTIC SEARCHES FOR DARK MATTER

► Two searches in 1978 and 1990 for cosmic rays and monopoles using acid-etched plastic track detectors

> Still have best sensitivity for some high mass dark matter, for different reasons

Skylab

16		
	Skylab	Ohya
Area A	$1.17 m^2$	$2442 m^2$
Duration t	0.70 yr	2.1 yr
Zenith cutoff angle	$\theta_D = 60^{\circ}$	$\theta_D = 18.4^{\circ}$
Detector material	$0.25 \text{ mm thick Lexan} \times 32 \text{ sheets}$	$1.59 \text{ mm thick CR-}39 \times 4 \text{ sheets}$
Detector density	$1.2~{ m g~cm^{-3}}$ Lexan	$1.3~{ m g~cm^{-3}~CR}$ -39
Detector length at θ_D	$1.6~\mathrm{cm}$	$0.66~\mathrm{cm}$
Overburden density	$2.7~{ m g~cm^{-3}}$ Aluminum	$2.7~{ m g~cm^{-3}~Rock}$
Over burden length at θ_D	$0.74~\mathrm{cm}$	39 m

Bhoonah, JB, Courtman, Song 2012.13406

Ohya Quarry

(see also Starkman, Gould, Esmailzadeh Dimopoulos 1990)

ETCHING PLASTIC SEARCHES FOR DARK MATTER

> Use realistic dark matter density and velocity distribution, solve for overburden+etching sensitivity

$$\frac{dE}{dx}\Big|_{th} = \frac{2E_i}{m_{\chi}} \left(\sum_{A \subset O} \frac{\mu_{\chi A}^2}{m_A} n_A \sigma_{\chi A} \right) \exp\left[\frac{-2}{m_{\chi}} \left(x_O \sum_{A \subset O} n_A \frac{\mu_{\chi A}^2}{m_A} \sigma_{\chi A} + x_D \sum_{A \subset D} n_A \frac{\mu_{\chi A}^2}{m_A} \sigma_{\chi A} \right) \right]$$

ANCIENT MICA SEARCH FOR DARK MATTER

Also a mineral DM detection collaboration at Queen's Balogh, Boukhtouchen, JB, Fung, Leybourne, Lucas, Mkhonto, Vincent 2301.07118

Recast using crust and mica MC

HEAVY DM RESULTS FROM DEAP-3600, XENON1T

2108.09405, PRL

2304.10931, PRL

FUTURE HEAVY DM: QPALEO, CR-39, SNO+, AND BEYOND

Q Paleo (Q Rocks? – name suggestions welcome) 2301.07118 Boukhtouchen, JB, Balogh, Fung, Leybourne, Lucas, Mkhonto, Vincent

Future CR-39 experiment or similar

Snowmass Ultraheavy particle dark matter 2203.06508

BACK TO THE FUTURE DM

-Most DM models were written down in the 80s.

-The simplest DM are well studied, and may be discovered soon.

(Simple in formulation, complicated in dynamics)

-Less simple heavy DM is less studied, and may be discovered soon. Heavy DM is easier to look for, for now.

Delorean

BACK TO THE FUTURE BACKUP SLIDES

GAS CLOUDS

The earth and atmosphere block detection of strongly-interacting dark matter

2010.07240 1812.10919 1806.06857 dark matter kinetic energy < recoil threshold

HEAVY DM IN GAS CLOUD, NUCLEAR INTERACTIONS

Gas Cloud 357.8-4.7-55

Δv from 21cm emission gives T<137 K <u>G357.8-4.7-55</u>

M = 237 M⊙

 $r_{gc} = 12.9 \text{ pc}$

 $n_n = 0.4 \text{ cm}^{-3}$

Tg ?< 137 K

 $r_{\rm los} \sim 800 \ {\rm pc}$

 $v_{g} = -54 \text{ km/s}$

(assume spherical cloud)

GAS CLOUD BOUNDS

Conservative: assume all heating by DM

In reality:

radiative cooling

cosmic rays

(DM +)

Xray/UV background

photoelectric heating via dust grains

There are known ubiquitous heating sources, like cosmic UV background, cosmic rays, dust grain heating.

HEAVY DM IN GAS CLOUD, NUCLEAR INTERACTIONS

Fixed cross-section for scattering off all nuclei

Bhoonah, JB, Schon, Song 2010.07240

Gas Cloud 357.8-4.7-55

Δv from 21cm emission gives T<137 K G357.8-4.7-55

M = 237 M⊙

 $r_{gc} = 12.9 \text{ pc}$

 $n_n = 0.4 \text{ cm}^{-3}$

Tg < 137 K

 $r_{\rm los} \sim 800 \ {\rm pc}$

 $v_{g} = -54 \text{ km/s}$

6

(assume spherical cloud)

51

HEAVY DM IN GAS CLOUD, NUCLEAR INTERACTIONS

2010.07240

.

er

52

HEAVY COMPOSITE DM IN GAS CLOUD, LONG-RANGE INTERACTIONS

Vector Portal Dark Matter

Mediator with a mass, can be applied to millicharged in the nearly massless limit.

2010.07240

 $M_X({
m GeV})$

 $M_X({
m GeV})$

Weakly interacting dark matter "miracle"

The final relic abundance depend on the annihilation cross-section but only logarithmically on m_x

$$\Omega_x h^2 \sim 0.1 \left(\frac{m_{\rm v}}{100 \text{ GeV}}\right)^2 \left(\frac{0.03}{\alpha_w}\right)^2$$

As the universe cools, dark matter falls out of thermal equilibrium, some portion annihilates to SM particles

ds
n,
$$\Omega_x h^2 \propto rac{x_{FO}}{\sigma_0} \mid x_{FO} \propto \ln[m_x]$$

The thermal relic annihilation cross-section
 ² matches the couplings and mass
 of the weak force, "wimp miracle"

DM Mass Unitarity Limit

- 1. Assume freeze-out abundance set with annihilation
 - $\sigma_0 \sim \text{picobarn}$
- 2. Require the annihilation cross-section not exceed a perturbative bound
 - $\sigma_0 \lesssim 4\pi/m_{\rm DM}^2$
- 3. Then because this cross-section is a picobarn for thermal freeze-out, the suggestion for frozen out dark matter mass is

Griest, Kamionkowski, '87

$$n = 10^{-36} \text{ cm}^2$$

 $m_{\rm DM} \lesssim 100 {
m TeV}$

Unitarity mass limit caveat: Entropy changes in the early universe

AD Boryog 1. Baryo-charged scalar gets vev during inflation $V_{AO} = m_{e}^{2} |Q|^{2} - M^{2} |Q|^{2} + \frac{\Phi^{6}}{M^{2}} + \int P$

AD Boryog
1. Baryo-charged scalar
yets vev during inflation

$$V_{AO} = m_{e}^{2} |Q|^{2} - H^{2} |Q|^{2} + \frac{\Phi^{6}}{M^{2}} + 5P$$

 $\frac{1}{H^{2}Q^{2}} \qquad \Phi_{M^{2}}^{6}$
3. $O_{0}gs!$ too many bary
Main point: $M_{b} \sim 1-10^{6}$

Why too many baryons ! 9(1) CP violating decays la ~ lu 'K sector & sector thermal bath P. 3/4 P. 4

N5~[10⁻⁵-1] for my 15 sectors with O(1) couplings

FOR BIG ENOUGH COMPOSITES

Nuclear fusion and bremsstrahlung inside large dark matter composites

Javier Acevedo, JB, Alan Goodman 2012.10998

Nuclear coupling

Consider an interaction term with SM nucleons

nucleons $\mathscr{L} = \mathscr{L}_0 + g_n \bar{n} \phi n$

Nuclei will accelerate across the DM composite's boundary layer, because of the attractive potential, like gravity but stronger and shielded:

$$p_1^2 + m_N^2 = p_2^2 + (m_N - Ag_n \langle \phi \rangle)^2$$

$$Ag_n\langle\phi\rangle \equiv V_n = \frac{p_2^2 - p_1^2}{2m_N}$$

$\langle \phi \rangle \propto m_X \sim \text{TeV} - \text{EeV} \longrightarrow \text{acceleration is substantial even for } g_n \ll 1$

Ionization (Migdal, collisions) Thermal bremsstrahlung Thermonuclear fusion

Potential signatures of this effect?

- Direct detection

Exceleration timescale:

$$ccel \simeq (m_{\phi}v_X)^{-1} \left(1 + \frac{2V_n}{m_N v_X^2}\right)^{-\frac{1}{2}} \lesssim 10^{-18} \text{ s} \left(\frac{10 \text{ ke}^2}{m_{\phi}}\right)^{-\frac{1}{2}}$$

electrons are unbound w/ prob $f_e \gtrsim 10^{-2}$

- ionization from e- impacts: $n_e \sim 10^{23} {\rm ~cm^{-3}}$ $\sigma_i \gtrsim 10^{-17} \text{ cm}^2$ $\left(f_e n_e v_N \sigma_i\right)^{-1} \lesssim 10^{-15} \text{ s}$
- $T \gtrsim 100 \text{ eV}$ ionized composite interior

radiated energy rate for plasma:

$$\dot{E}_{brem} = \int j_{\omega}(T) \, d\omega dV \simeq$$

$$0^{10} \text{ GeV s}^{-1} \left(\frac{m_X}{\text{TeV}}\right)^{\frac{3}{2}} \left(\frac{R_X}{\text{nm}}\right)^3 \left(\frac{g_{\phi}}{1}\right)^{-\frac{1}{2}} \left(\frac{g_n}{10^{-10}}\right)^{\frac{3}{2}} \left(\frac{g_n}{10^{-10}}$$

can also compute stopping length:

$$\left(\frac{m_X}{\text{TeV}}\right)^{\frac{3}{2}} \left(\frac{m_\phi}{10 \text{ keV}}\right)^2 \left(\frac{g_n}{10^{-10}}\right)^{-\frac{1}{2}} \left(\frac{g_\phi}{1}\right)^{-\frac{3}{2}} \left(\frac{v_X}{200 \text{ km}}\right)^{-\frac{3}{2}} \left(\frac{w_X}{10^{-10}}\right)^{-\frac{1}{2}} \left(\frac{g_\phi}{10^{-10}}\right)^{-\frac{3}{2}} \left(\frac{w_X}{10^{-10}}\right)^{-\frac{1}{2}} \left(\frac{g_\phi}{10^{-10}}\right)^{-\frac{3}{2}} \left(\frac{w_X}{10^{-10}}\right)^{-\frac{3}{2}} \left(\frac{w_X}{10^{-10}}\right)^{-\frac{1}{2}} \left(\frac{g_\phi}{10^{-10}}\right)^{-\frac{3}{2}} \left(\frac{w_X}{10^{-10}}\right)^{-\frac{3}{2}} \left(\frac{w_X}{10$$

rare to occur while in detection volume: SNO+ too small $\longrightarrow M_X \lesssim 10^{22} \text{ GeV}$

IceCube requires $T \gtrsim 5$ MeV \longrightarrow ~1 reaction per crossing

reaction rate per unit volume:

$$(T \simeq \text{MeV}) \sim 10^{24} \text{ cm}^{-3} \text{ s}^{-1} \left(\frac{\rho}{1 \text{ g cm}^{-3}}\right)^2$$

Caughlan & Fowler, 1988

average energy release: $\bar{Q} \sim 10 \text{ MeV}$

more complete reaction network left for future work

(e.g. disintegration/recapture)

Direct detection signatures

bremsstrahlung + fusion requires a few nuclei per composite

~1 detectable DM event per year require

$$M_X^{max} \simeq \rho_X v_X A_{det} t_{exp}$$

 $\rho_X \simeq 0.3 \text{ GeV}$

 $v_X \simeq 220 \text{ km}$

 $t_{exp} \sim 10$

Need $A_{det} \gtrsim 10^6 \text{ cm}^2$ _____

$$R_X \gtrsim 10^{-7} \text{ cm} \longrightarrow M_X \gtrsim 10^{21} \text{ GeV}$$
$$N_c = \left(\frac{2n_X \sigma_X v_X}{3H}\right)^{6/5} R_X = \left(\frac{9\pi N_c}{4\bar{m}_X^3}\right)^{\frac{1}{3}}$$

es:
$$\frac{\rho_X v_X A_{det} t_{exp}}{M_X} \simeq 1$$

$$\longrightarrow M_X^{max} \simeq 10^{18} \text{ GeV}$$
 e.g. Xenon
 $V \text{ cm}^{-3}$ Lux
 $m \text{ s}^{-1}$
yrs

neutrino obs., e.g. IceCube, SNO+

Where in parameter space do these experiments have sensitivity?

To trigger detectors: SNO+: ~1 MeV per 100 ns IceCube: ~10 TeV per 100 ns

Composites radiate continuously along path:

$$\dot{E}_{SNO+} \simeq 10^4 \text{ GeV s}^{-1}$$
 $\dot{E}_{IC} \simeq M_X^{max} \simeq 10^{22} \text{ GeV}$ M_X^{max}

1812.09325

(~100 PeV in single crossing)

ig path: $\simeq 10^{11} \text{ GeV s}^{-1}$ $\simeq 3 \times 10^{25} \text{ GeV}$

² km

Parameter space for detection:

2012.10998

2012.10998

68

Stellar cooling bounds on coupling limit the kinetic energy:

$$\Delta E \simeq A g_n \left(\frac{m_X}{g_\phi}\right)$$

$$\lesssim \text{keV}\left(\frac{g_n}{10^{-10}}\right) \left(\frac{m_X}{\text{TeV}}\right) \left(\frac{1}{g_\phi}\right) \left(\frac{A}{10}\right)$$

$$\lesssim 10^{-6}$$

$$\approx 10^{-6}$$

for ϕ masses < eV 10^{-12} 5th force searches further constrain coupling

 10^{-15}

1611.05852 1709.07882

Parameter space of potential detectability:

LVS = large volume scintillator

increasing radius/mass

2012.10998

Migdal Bounds

Composite masses/radii determined by m_x, cosmology with $\alpha_X = 0.3$

Acevedo, JB, Goodman, 2108.10889

Summary of multi scatter bounds:

Acevedo, **JB**, Goodman, 2105.06473 Adhikari et. al., DEAP collaboration, 2108.09405

72