Searches for Ultra Long-Lived Particles with

MI ANNUAL MEETING AUGUST 2023

MIRIAM DIAMOND ASSISTANT PROFESSOR

Canadian MATHUSLA Team (partially funded by NSERC Discovery grant)

UVic

UofA

<u>Faculty</u>

Steven Robertson

Faculty Heather Russell

<u>Postdoc</u> Caleb Miller

<u>Summer Students</u> Branden Aitken Sarah Alshamaily

> <u>HQPiggies</u> Quark Qubit

UofT

<u>Faculty</u> Miriam Diamond David Curtin

<u>Postdoc</u> Runze Tom Ren

<u>Grad Students</u> Jaipratap Grewal (finishing) Jared Barron (finishing) Caleb Gemmel Gabriel Owh

<u>Undergrad Students</u> Jason Yuan (fall 2022/winter 2023) Yongqi Wang (fall 2022/winter 2023) Simran Hiranandi (summer 2023) Alex Lau (fall 2023 – summer 2024)

Outline

- Basic Concept
 - Backgrounds
 - Identifying LLPs
- LLP Sensitivity
- Cosmic Ray Telescope
- Detector Design
 - Geometry simulations
 - Trackers
 - DAQ
 - Vertex Reconstruction
- Simulations for rate estimates
- Test stands

An Update to the Letter of Intent for MATHUSLA: Search for Long-Lived Particles at the HL-LHC (<u>arXiv:2009.01693</u>)

Recent Progress and Next Steps for the MATHUSLA LLP Detector [SNOWMASS] (arXiv:2203.08126)

Basic Concept

Two (or more) charged particles exit detector

Neutral long-lived particle enters detector volume

MAssive Timing Hodoscope for Ultra-Stable NeutraL PArticles

An External LLP Detector for HL-LHC

Dedicated detector sensitive to neutral long-lived particles that have lifetime up to the Big Bang Nucleosynthesis (BBN) limit (10⁷ – 10⁸ m)

Proposed large area surface detector located above CMS with robust tracking and background rejection

 Can run standalone or "combined" to CMS
Construction & operation will not interfere with any other LHC experiments

NOT TO SCALE

~100m x 100m x 25m decay volume

Displacement from IP: ~70m horizontally, 60m vertically

LLP displaced vertex (DV) signal has to satisfy many stringent geometrical and timing requirements ("4D vertexing" with cm/ns precision)

These requirements, plus a few extra geometry & timing cuts, provide "nearzero background" (< 1 event per year) for neutral LLP decays!

Identifying LLPs

MATHUSLA can't measure particle momentum or energy, but: track geometry → measure of LLP boost event-by-event

Incorporate MATHUSLA into CMS L1 Trigger Correlate event info off-line → determine LLP production mode

Charged Current (e.g. W')

Heavy Parent

Higgs: Gluon Fusion

Heavy Resonance

Higgs: Vector Boson Fusion

Direct Pair Production

<u>arXiv:1705.06327</u>

Identifying LLPs

If production mode is known: Boost distribution \rightarrow LLP mass If LLP mass is known: Track multiplicity \rightarrow LLP decay mode

MATHUSLA + CMS analysis will reveal model parameters (parent mass, LLP mass) with just ~ 100 observed LLP events!

arXiv:2007.05538, 1809.01683

LLP Sensitivity

More benchmark models can be found in **Physics Beyond Colliders at CERN: Beyond the Standard Model Working Group Report** <u>arXiv:1901.09966</u>

LLP Sensitivity: Weak- to TeV- Scale

Up to 1000x better sensitivity than LHC main detectors e.g. hadronically-decaying LLPs in exotic Higgs decay

Any LLP production process with $\sigma >$ fb can give signal in MATHUSLA

arXiv:2001.04750

LLP Sensitivity: GeV-Scale

For scenarios where the long-lifetime limit (>100m) is accessible, MATHUSLA is complementary to other planned experiments

e.g. singlet dark scalar S, mixing angle θ with SM Higgs

LLP Sensitivity: GeV-Scale

Reach for heavy neutral leptons

e.g. sterile neutrino N, whose largest mixing angle U_{e} is with υ_{e}

LLP Sensitivity: DM

Scenarios where LLP \rightarrow DM + SM decay is the only way to see the DM e.g. Freeze-In Dark Matter: BSM mass eigenstates χ_1 (DM) and χ_2 (LLP), where χ_2 was in thermal equilibrium with primordial plasma

Cosmic Ray Telescope

MATHUSLA as a Cosmic Ray Telescope

Relevant abilities in CR experimental ecosystem (precise resolution, directionality, large-area coverage, interesting region CR energy spectrum)

https://indico.cern.ch/event/980853/contributions/4361206/attachments/2251261/3819144/CRMathusla LLP_25May2021_JC.pdf

MATHUSLA as a Cosmic Ray Telescope

Reconstruction of shower core, direction, total # charged particles, slope of radial particle density distribution

MATHUSLA's Apparatus

MC simulations using CORSIKA (<u>https://www.iap.kit.edu/corsika/</u>)

Detector Design

Detector Design

- > Worked with Civil Engineers to define **building and layout of MATHUSLA at P5**
- Layout restricted by existing structures based on concept and engineering requirements

 Decay volume ~100 x 100 x 25 m³ Modular design 130 m 100 m 20 m 20 m Above Ground 100 m above ground

Detector Design

- Total ~ 25 m height for decay volume
- Individual detector units each 9 x 9 x 30 m³

S S

Geometry Simulations

• Cavern, access shaft, CMS, rock, and detector all modeled in GEANT4

- Backgrounds under detailed study:
 - Upward-going muons from collisions (Pythia8)
 - Backscatter (to upwards going V⁰) from downward-going cosmic rays (Parma)
 - Neutrino interactions (Genie3)
- Exploring background rejection power of adding a high-coverage floor veto, [partially]- instrumented walls

Trackers

Tracker layers: Composed of extruded scintillator bars with WLSFs (wavelength-shifting fibers) coupled to SiPMs (Silicon Photomultipliers)

 Extrusion facilities in FNAL used for several experiments (e.g. Belle muon trigger upgrade, Mu2e)

Trackers

MRS engineering support for layout

Considering readout at both ends of each scintillator bar, or looped fiber for readout at one end

- Transverse resolution depends on bar width
- Δt between two ends gives longitudinal resolution

Nominal layer design: 256 bars, each 2.5 m long

- Each layer segmented into 4 sheets of bars
- Overlapping sheets, and alternating layer orientation, ensures no gaps in coverage

To reconstruct hit position along scintillator bar: use difference in arrival time between separate measurements at two ends

Target timing resolution ~1 ns

Trackers

Precise timing resolution is a critical feature of the detector design

- Separates downward- from upward-going tracks
- Rejects low-β particles from neutrino quasi-inelastic scattering
- "4D" tracking and vertexing reduces fakes/combinatorics

Ongoing characterization studies using **small dark-box setups** indicate 1 ns timing resolution goal is achievable

Trackers

- Currently under investigation in dark-box setups at UToronto & UVic with different vendors/models of scintillator, WLSF, SiPM:
 - Optimizing timing (position) resolution
 - Light yield
 - Light leakage and fiber stress
 - Temperature effects, e.g. on SiPM dark current

MATHUSLA Trigger

- Tower agg module triggers on upward-going tracks within 3x3 tower volume
- Selects data from buffer for permanent storage
- Trigger to CMS
 - Upward-going vertex forms trigger to CMS
 - Trigger latency estimates appear compatible with CMS L1 latency budget
- Data rate well within COTS servers

Vertex Reconstruction

Implementation of **custom tracking algorithms** (based on Kalman filtering) + "**4D**" **vertex formation**, to achieve high LLP reconstruction efficiency for low-multiplicity LLP final states in MATHUSLA's unique environment

Vertex Reconstruction

Test Stand @ UVic

Constructing 64-channel "minimodule" of 4 layers, ~1m x 1.5m each

Potential studies include:

- Mechanical structure
- Basic track reconstruction with cosmics (validation, performance)
- Basic triggering
- Hit efficiencies, effects of gaps between bars
- Comparisons with simulations

Test Stand @ UVic

Test Stand @ UToronto

Constructing 120-channel "mini-module" of 5 layers, ~1m x 1m each More advanced features include:

- PCBs (with pre-amps) to carry SiPM signals to readout boards
- Compression-fitting mounting apparatus to keep each SiPM in place
- Layers [re]moveable and height-adjustable individually

Potential studies include:

- PCB design optimization
- "Large angle" tracking

Modelling interfaces between modules

The MATHUSLA Collaboration

https://mathusla-experiment.web.cern.ch/

Conclusions

- MATHUSLA is a planned external LLP detector for the HL-LHC that can probe deep into LLP parameter space in a variety of BSM scenarios
- Canadian groups highly active in multiple aspects
 - Sensitivity projections for various BSM models
 - Detector simulations of rare backgrounds
 - Layout of tracker layers
 - Scintillator/fiber/SiPM characterizations
 - Vertex reconstruction software
 - Test stands
- Excellent training-ground for HQP
- Conceptual Design Report to be published soon, followed by prototype module and full detector for HL-LHC
- New collaborators always welcome!

References

Alpigiani et al. Recent Progress and Next Steps for the MATHUSLA LLP Detector". Proceedings of the US Community Study on the Future of Particle Physics (Snowmass), March 2022, arXiv:2203.08126.

John Paul Chou, David Curtin, and H.J. Lubatti. New detectors to explore the lifetime frontier. Physics Letters B, 767:29–36, Apr 2017, arXiv: 1606.06298.

- Cristiano Alpigiani et al. A Letter of Intent for MATHUSLA: a dedicated displaced vertex detector above ATLAS or CMS, 2018, arXiv:1811.00927.
- David Curtin and Michael E. Peskin. Analysis of long-lived particle decays with the MATHUSLA detector. Physical Review D, 97(1), Jan 2018.
- David Curtin et al. Long-lived particles at the energy frontier: the MATHUSLA physics case. Reports on Progress in Physics, 82(11):116201, Oct 2019, arXiv:1806.07396.
- Imran Alkhatib. Geometric Optimization of the MATHUSLA Detector, 2019, arXiv:1909.05896.
- Henry Lubatti et al. MATHUSLA: A Detector Proposal to Explore the Lifetime Frontier at the HL-LHC, 2019, arXiv:1901.04040.
- Cristiano Alpigiani. Exploring the lifetime and cosmic frontier with the MATHUSLA detector, 2020, arXiv: 2006.00788.
- Jared Barron and David Curtin, On the Origin of Long-Lived Particles, 2020, arXiv:2007.05538.
- Cristiano Alpigiani et al. An Update to the Letter of Intent for MATHUSLA: Search for Long-Lived Particles at the HL-LHC, 2020, arXiv:2009.01693.
- M. Alidra et al. The MATHUSLA Test Stand. NIMA, 985:164661, 2021, arXiv:2005.02018.

BACKUP

LLPs at the [HL-]LHC

Seeking to go Beyond the Standard Model (BSM) motivates the possibility of so-far-undiscovered LLPs

- "Top-down": Various BSM theories (e.g. supersymmetry) constructed to explain the "fundamental mysteries" naturally include new LLPs
- "Bottom-up": LLPs occur in the SM (e.g. muons), and can occur via similar mechanisms when adding new particles to the model

The problem of long lifetimes: LHC could be making LLPs that are invisible to its main detectors!

- If the LLP has c · lifetime >> detector size, most escape the detector
- Even LLPs that decay in the detector, but a significant distance away from the Interaction Point, are difficult to spot
- If the LLPs decay in the detector with only a tiny rate, they get swamped by backgrounds

Backgrounds

- Cosmic rays
 - Calibrations performed using Test Stand measurements (taken above ATLAS IP in 2018) <u>arXiv: 2005.02018</u>
 - Downward-going events ~3 x 10¹⁴ over entire HL-LHC run, distinguished from LLPs using timing cuts
 - Upward-going events ~2 x 10¹⁰: inelastic backscatter from CRs hitting the floor, or decay of stopped muons in floor. Only tiny fraction (estimates underway) produce fake DV, via decay to 3 charged tracks
 - Rare production of K⁰_L harder to estimate; work underway on veto strategies
- Rare decays of muons originating from HL-LHC collisions
 - Upward-going events $\sim 2 \times 10^8$, mostly from W and bbar production
 - Work underway for optimal rejection strategies
- Charged particles from neutrino scattering in decay volume
 - Neutrinos from HL-LHC collisions << 1 "fake" DV/year
 - Atmospheric neutrinos ~30 "fake" DV/year, reduced to < 1 with cuts

Backgrounds: Recent Refined Estimates

- Cosmic rays
 - Calibrations performed using Test Stand measurements (taken above ATLAS IP in 2018) <u>arXiv: 2005.02018</u>
 - Simulated using PARMA 4.0 + GEANT4
 - Downward-going events ~3 x 10¹⁴ over entire HL-LHC run, distinguished from LLPs using timing cuts
 - Upward-going events ~2 x 10¹⁰, produced through inelastic backscatter from CRs that hit the floor, or through decay of stopped muons in floor. Tiny fraction can produce fake DV, via decay to 3 charged tracks
 - Rare production of K⁰_L harder to estimate; veto strategies are available. Currently working on precise estimates and studying rejection

Backgrounds: Recent Refined Estimates

- Rare decays of muons originating from HL-LHC collisions
 - Expect ~2 x 10⁸ upward-going muons over entire HL-LHC run, mostly from W and bbar production
 - Simulated using MadGraph & Pythia8
 - Full study underway to demonstrate optimal rejection while maintaining high LLP signal efficiency; test-bed for custom tracking algorithms in unique MATHUSLA environment
- Charged particles from neutrino scattering in decay volume
 - Simulated using GENIE
 - Neutrinos from HL-LHC collisions: using LHC minimum-bias samples, estimate << 1 "fake" DV/year
 - Atmospheric neutrinos: using flux measurements from Frejus experiment, estimate ~30 "fake" DV/year, reduced to < 1 with cuts

LLP Sensitivity: TeV-Scale

Any LLP production process with $\sigma > fb$ can give signal. e.g. meta-stable Higgsinos

LLP Sensitivity: DM

Scenarios where LLP \rightarrow DM + SM decay is the only way to see the DM e.g. Inelastic Dark Matter: BSM mass eigenstates χ_1 (DM) and χ_2 (LLP) with mass splitting Δ , dark photon A' with mixing ϵ with SM photon

Black curve: thermal o-annihilations $\chi_2 \chi_1 \to A' \to f\bar{f}$ yield observed DM relic density

LLP Sensitivity: DM

Scenarios where DM model requires existence of LLP, but LLP signature does not involve the DM particle directly

e.g. Co-Annihilating DM: BSM χ and χ_2 with mass splitting δ , $\chi \chi_2 \rightarrow \phi \phi$ where scalar ϕ has mixing angle θ with SM Higgs

MATHUSLA Test Stand

Operated above ATLAS in 2018

Downward cosmic rays, upward LHC muons and upward CR backscatter well described by simulations

MATHUSLA as a Cosmic Ray Telescope

CR physics reach would be greatly enhanced by adding an analog RPC layer, due to scintillator saturation effects

- In region of maximum efficiency linear dependence of logE with logA.
 - --> It could provide energy scale

Shower age shows sensitivity to primary composition.

--> Useful for composition studies

Charge density at the RPC

Lateral charge density at RPC

RPC allows to extend CR energy and composition studies above E = 10¹⁵ eV.