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An Update to the Letter of Intent for 
MATHUSLA: Search for Long-Lived Particles 
at the HL-LHC  (arXiv:2009.01693)

Recent Progress and Next Steps for the 
MATHUSLA LLP Detector [SNOWMASS] 
(arXiv:2203.08126)

https://mathusla-experiment.web.cern.ch/

https://arxiv.org/abs/2009.01693
https://arxiv.org/abs/2203.08126
https://mathusla-experiment.web.cern.ch/


Basic Concept
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An External LLP Detector for HL-LHC
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➢Dedicated detector sensitive to neutral long-lived particles that have 
lifetime up to the Big Bang Nucleosynthesis (BBN) limit (107 – 108 m)

➢Proposed large area surface detector located above CMS with robust 
tracking and background rejection

CMS IPBeam line

❖ Can run standalone or 
“combined” to CMS

❖ Construction & operation 
will not interfere with any 
other LHC experiments



An External LLP Detector for HL-LHC
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NOT TO SCALE
~100m x 100m x 25m decay volume
Displacement from IP: ~70m horizontally, 60m vertically



Backgrounds

LLP displaced vertex (DV) signal has to satisfy many stringent geometrical and 
timing requirements (“4D vertexing” with cm/ns precision)

These requirements, plus a few extra geometry & timing cuts, provide “near-
zero background” (< 1 event per year) for neutral LLP decays!
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Identifying LLPs

MATHUSLA can’t measure 
particle momentum or 
energy, but: 
track geometry → 
measure of LLP boost 
event-by-event

leptons
LLP

8arXiv:1705.06327

hadrons

Incorporate MATHUSLA into CMS 
L1 Trigger
Correlate event info off-line → 
determine LLP production mode

🍁

https://arxiv.org/abs/1705.06327


Identifying LLPs

arXiv:2007.05538 , 1809.01683 9

If production mode is known: Boost distribution → LLP mass
If LLP mass is known: Track multiplicity → LLP decay mode

MATHUSLA + CMS 
analysis will reveal 
model parameters 
(parent mass, LLP mass) 
with just  ~ 100 
observed  LLP events!

🍁

https://arxiv.org/abs/2007.05538


LLP Sensitivity
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More benchmark models can be found in Physics Beyond Colliders at CERN: 
Beyond the Standard Model Working Group Report arXiv:1901.09966

https://arxiv.org/abs/1901.09966


LLP Sensitivity: Weak- to TeV- Scale
Up to 1000x better sensitivity than LHC main detectors

e.g. hadronically-decaying LLPs in exotic Higgs decay
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Any LLP production process with σ > fb can give signal in MATHUSLA

arXiv:2001.04750

DV3: 3+ observable charged 

particles from LLP decay 

intersect 4+ detector layers

🍁



LLP Sensitivity: GeV-Scale
For scenarios where the long-lifetime limit (>100m) is accessible, 
MATHUSLA is complementary to other planned experiments

e.g. singlet dark scalar S, mixing angle θ with SM Higgs
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🍁



LLP Sensitivity: GeV-Scale

Reach for heavy neutral leptons
e.g. sterile neutrino N, whose largest mixing angle Ue is with υe

🍁
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LLP Sensitivity: DM
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Scenarios where LLP → DM + SM decay is the only way to see the DM
e.g. Freeze-In Dark Matter: BSM mass eigenstates χ1 (DM) and χ2 (LLP), 
where χ2 was in thermal equilibrium with primordial plasma

🍁



Cosmic Ray Telescope
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MATHUSLA as a Cosmic Ray Telescope
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Relevant abilities in CR experimental ecosystem (precise resolution, 
directionality, large-area coverage, interesting region CR energy spectrum)

https://indico.cern.ch/event/980853/contributions/4361206/attachments/2251261/3819144/CRMathusla
_LLP_25May2021_JC.pdf

https://indico.cern.ch/event/980853/contributions/4361206/attachments/2251261/3819144/CRMathusla_LLP_25May2021_JC.pdf
https://indico.cern.ch/event/980853/contributions/4361206/attachments/2251261/3819144/CRMathusla_LLP_25May2021_JC.pdf


MATHUSLA as a Cosmic Ray Telescope
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Reconstruction of 
shower core, 
direction, total  # 
charged particles, 
slope of radial 
particle density 
distribution

MC simulations using CORSIKA (https://www.iap.kit.edu/corsika/)

https://www.iap.kit.edu/corsika/


Detector Design
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Detector Design
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Detector Design
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🍁
Geometry Simulations
▪ Cavern, access shaft, CMS, rock, and detector all modeled in GEANT4

▪ Rock model is from a geological survey 

▪ Backgrounds under detailed study: 

▪ Upward-going muons from collisions (Pythia8) 

▪ Backscatter (to upwards going V0) from downward-going cosmic rays (Parma) 

▪ Neutrino interactions (Genie3) 

▪ Exploring background rejection power of adding a high-coverage floor veto, 
[partially]- instrumented walls



Tracker layers: Composed of extruded scintillator bars with WLSFs 
(wavelength-shifting fibers) coupled to SiPMs (Silicon Photomultipliers)

◦ Extrusion facilities in FNAL used for several experiments (e.g. Belle muon 
trigger upgrade, Mu2e)

22

Trackers
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Trackers
Considering readout at both ends of 
each scintillator bar, or looped fiber 
for readout at one end

◦ Transverse resolution depends on 
bar width

◦ Δt between two ends gives 
longitudinal resolution

Nominal layer design: 256 bars, each 
2.5 m long

◦ Each layer segmented into 4  
sheets of bars

◦ Overlapping sheets, and 
alternating layer orientation, 
ensures no gaps in coverage

🍁
MRS engineering support for layout 
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SiPM 1 SiPM 2

T1       T2

To reconstruct hit position along scintillator bar: use difference in arrival 
time between separate measurements at two ends

or

Target timing resolution ~1 ns 

Trackers
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Precise timing resolution is a critical feature of the detector design 
▪ Separates downward- from upward-going tracks
▪ Rejects low-β particles from neutrino quasi-inelastic scattering
▪ “4D” tracking and vertexing reduces fakes/combinatorics

Ongoing characterization studies using small dark-box setups indicate 
1 ns timing resolution goal is achievable

WLSF

D1 D2

Trackers
🍁
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▪ Currently under investigation in dark-box setups at UToronto & UVic with 
different vendors/models of scintillator, WLSF, SiPM:
▪ Optimizing timing (position) resolution 
▪ Light yield
▪ Light leakage and fiber stress
▪ Temperature effects, e.g. on SiPM dark current

🍁
Trackers
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▪ MATHUSLA Trigger 
▪ Tower agg module triggers on upward-going tracks within 3x3 tower volume
▪ Selects data from buffer for permanent storage 

▪ Trigger to CMS 
▪ Upward-going vertex forms trigger to CMS 
▪ Trigger latency estimates appear compatible with CMS L1 latency budget 

▪ Data rate well within COTS servers 

DAQ
Modular design of FEBs and 
link aggregation boards
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Implementation of custom tracking algorithms (based on Kalman filtering) + “4D” 
vertex formation, to achieve high LLP reconstruction efficiency for low-multiplicity 
LLP final states in MATHUSLA’s unique environment

🍁
Vertex Reconstruction

e.g. scalar LLP X

pp → h →XX,  X → bb
mX = 20 GeV, cτX = 1000 m
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Validated using GEANT4 simulated events

🍁
Vertex Reconstruction

e.g. scalar LLP X

pp → h →XX,  X → bb
mX = 20 GeV, cτX = 1000 m

10000 events simulated

Geometric acceptance 73%

Vertex identification efficiency 98%



Constructing 64-channel “mini-
module” of 4 layers, ~1m x 1.5m each

Potential studies include:

• Mechanical structure

• Basic track reconstruction with 
cosmics (validation, performance)

• Basic triggering

• Hit efficiencies, effects of gaps 
between bars

• Comparisons with simulations
30

🍁Test Stand @ UVic
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Test Stand @ UVic 🍁



Constructing 120-channel “mini-module” of 5 layers, ~1m x 1m each
More advanced features include:
• PCBs (with pre-amps) to carry SiPM signals to readout boards
• Compression-fitting mounting apparatus to keep each SiPM in place
• Layers [re]moveable and height-adjustable individually

Potential studies include:
▪ PCB design optimization
▪ “Large angle” tracking

▪ Modelling interfaces between modules

32

🍁Test Stand @ UToronto
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The MATHUSLA Collaboration
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https://mathusla-experiment.web.cern.ch/

https://mathusla-experiment.web.cern.ch/
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Conclusions
• MATHUSLA is a planned external LLP detector for the HL-LHC 

that can probe deep into LLP parameter space in a variety of 
BSM scenarios

• Canadian groups highly active in multiple aspects
• Sensitivity projections for various BSM models
• Detector simulations of rare backgrounds
• Layout of tracker layers
• Scintillator/fiber/SiPM characterizations
• Vertex reconstruction software
• Test stands

• Excellent training-ground for HQP
• Conceptual Design Report to be published soon, followed by 

prototype module and full detector for HL-LHC
• New collaborators always welcome!
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BACKUP



Seeking to go Beyond the Standard Model (BSM) motivates the possibility 
of so-far-undiscovered LLPs
• "Top-down": Various BSM theories (e.g. supersymmetry) constructed to 

explain the “fundamental mysteries” naturally include new LLPs
• "Bottom-up": LLPs occur in the SM (e.g. muons), and can occur via 

similar mechanisms when adding new particles to the model

The problem of long lifetimes: LHC could be making LLPs that are invisible 
to its main detectors!
• If the LLP has c ∙ lifetime >> detector size, most escape the detector
• Even LLPs that decay in the detector, but a significant distance away 

from the Interaction Point, are difficult to spot
• If the LLPs decay in the detector with only a tiny rate, they get 

swamped by backgrounds

37

LLPs at the [HL-]LHC



Backgrounds
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• Cosmic rays
• Calibrations performed using Test Stand measurements (taken above ATLAS IP 

in 2018) arXiv: 2005.02018
• Downward-going events ~3 x 1014 over entire HL-LHC run, distinguished from 

LLPs using timing cuts
• Upward-going events ~2 x 1010 : inelastic backscatter from CRs hitting the 

floor, or decay of stopped muons in floor. Only tiny fraction (estimates 
underway) produce fake DV, via decay to 3 charged tracks

• Rare production of K0
L harder to estimate; work underway on veto strategies

• Rare decays of muons originating from HL-LHC collisions
• Upward-going events ~2 x 108 , mostly from W and bbar production
• Work underway for optimal rejection strategies

• Charged particles from neutrino scattering in decay volume
• Neutrinos from HL-LHC collisions << 1 “fake” DV/year
• Atmospheric neutrinos ~30 “fake” DV/year, reduced to < 1 with cuts

https://arxiv.org/abs/2005.02018


Backgrounds: Recent Refined Estimates
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• Cosmic rays
• Calibrations performed using Test Stand measurements (taken 

above ATLAS IP in 2018) arXiv: 2005.02018
• Simulated using PARMA 4.0 + GEANT4
• Downward-going events ~3 x 1014 over entire HL-LHC run, 

distinguished from LLPs using timing cuts
• Upward-going events ~2 x 1010 , produced through inelastic 

backscatter from CRs that hit the floor, or through decay of stopped 
muons in floor. Tiny fraction can produce fake DV, via decay to 3 
charged tracks

• Rare production of K0
L harder to estimate; veto strategies are 

available. Currently working on precise estimates and studying 
rejection

https://arxiv.org/abs/2005.02018


Backgrounds: Recent Refined Estimates
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• Rare decays of muons originating from HL-LHC collisions
• Expect ~2 x 108 upward-going muons over entire HL-LHC run, mostly 

from W and bbar production
• Simulated using MadGraph & Pythia8
• Full study underway to demonstrate optimal rejection while 

maintaining high LLP signal efficiency; test-bed for custom tracking 
algorithms in unique MATHUSLA environment

• Charged particles from neutrino scattering in decay volume
• Simulated using GENIE
• Neutrinos from HL-LHC collisions: using LHC minimum-bias samples, 

estimate << 1 “fake” DV/year
• Atmospheric neutrinos: using flux measurements from Frejus

experiment, estimate ~30 “fake” DV/year, reduced to < 1 with cuts



LLP Sensitivity: TeV-Scale

Any LLP production process with σ > fb can give signal.
e.g. meta-stable Higgsinos



LLP Sensitivity: DM

Scenarios where LLP → DM + SM decay is the only way to see the DM
e.g. Inelastic Dark Matter: BSM mass eigenstates χ1 (DM) and χ2 (LLP) 
with mass splitting Δ , dark photon A’ with mixing ϵ with SM photon  

Black curve: thermal o-annihilations                               yield observed DM relic density



LLP Sensitivity: DM

Scenarios where DM model requires existence of LLP, but LLP signature does 
not involve the DM particle directly

e.g. Co-Annihilating DM: BSM χ and χ2 with mass splitting δ,                    

χ χ2 → ϕϕ where scalar ϕ has mixing angle θ with SM Higgs



MATHUSLA Test Stand

Operated above ATLAS in 2018  

Downward cosmic rays, upward LHC  
muons and upward CR backscatter  

well described by simulations
6



MATHUSLA as a Cosmic Ray Telescope

45

CR physics reach would be greatly 
enhanced by adding an analog RPC layer, 
due to scintillator saturation effects

https://indico.cern.ch/event/980853/contributions/4361206/attachments/2251261/3819144/CRMathusla
_LLP_25May2021_JC.pdf

https://indico.cern.ch/event/980853/contributions/4361206/attachments/2251261/3819144/CRMathusla_LLP_25May2021_JC.pdf
https://indico.cern.ch/event/980853/contributions/4361206/attachments/2251261/3819144/CRMathusla_LLP_25May2021_JC.pdf
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