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An Update to the Letter of Intent for

O Ut‘ | r] e MATHUSLA: Search for Long-Lived Particles
at the HL-LHC (arXiv:2009.01693)

o Basic Concept Recent Progress and Next Steps for the
MATHUSLA LLP Detector [SNOWMASS]

o
Backgrounds (arXiv:2203.08126)

 |dentifying LLPs
* LLP Sensitivity
* Cosmic Ray Telescope
* Detector Design
e Geometry simulations
 Trackers
e DAQ
* Vertex Reconstruction
 Simulations for rate estimates
e Test stands



https://arxiv.org/abs/2009.01693
https://arxiv.org/abs/2203.08126
https://mathusla-experiment.web.cern.ch/

Basic Concept

Two (or more) charged
decays and particles exit detector

MmEGA

MAssive Timing Hodoscope for Ultra-Stable NeutraL PArticles

Neutral long-lived particle

enters detector volume
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An External LLP Detector for HL-LHC

» Dedicated detector sensitive to neutral long-lived particles that have
lifetime up to the Big Bang Nucleosynthesis (BBN) limit (107 — 102 m)

» Proposed large area surface detector located above CMS with robust

tracking and background rejection
Pt
Ao

[

B <+ Canrunstandaloneor
“combined” to CMS

¢ Construction & operation
willnot interfere with any
other LHC experiments

.




An External LLP Detector for HL-LHC

Multi-layer tracker

Surface

Double layer tracker

Floor detector
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Backgrounds Cosmic rays
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LLP displaced vertex (DV) signal has to satisfy many stringent geometrical and
timing requirements (“4D vertexing” with cm/ns precision)

These requirements, plus a few extra geometry & timing cuts, provide “near-
zero background” (< 1 event per year) for neutral LLP decays!




| dentifying LLPs §&

MATHUSLA can’t measure
particle momentum or
energy, but:

track geometry =
measure of LLP boost
event-by-event
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Incorporate MATHUSLA into CMS

L1 Trigger
Correlate event info off-line =
determine LLP production mode
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https://arxiv.org/abs/1705.06327

l[dentifying LLPs €&

If production mode is known: Boost distribution - LLP mass
If LLP mass is known: Track multiplicity - LLP decay mode
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https://arxiv.org/abs/2007.05538

LLP Sensitivity

More benchmark models can be found in Physics Beyond Colliders at CERN:
Beyond the Standard Model Working Group Report arXiv:1501.05966



https://arxiv.org/abs/1901.09966

LLP Sensitivity: Weak- to TeV- Scale 0%

Up to 1000x better sensitivity than LHC main detectors
e.g. hadronically-decaying LLPs in exotic Higgs decay
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Any LLP production process with o > fb can give signal in MATHUSLA
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LLP Sensitivity: GeV-Scale W

For scenarios where the long-lifetime limit (>100m) is accessible,
MATHUSLA is complementary to other planned experiments
e.g. singlet dark scalar S, mixing angle 0 with SM Higgs
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LLP Sensitivity: GeV-Scale W

Reach for heavy neutral leptons
e.g. sterile neutrino N, whose largest mixing angle U, is with v,
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LLP Sensitivity: DM W

Scenarios where LLP - DM + SM decay is the only way to see the DM
e.g. Freeze-In Dark Matter: BSM mass eigenstates x, (DM) and ¥, (LLP),
where X, was in thermal equilibrium with primordial plasma
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Cosmic Ray Telescope




MATHUSLA as a Cosmic Ray Telescope

Relevant abilities in CR experimental ecosystem (precise resolution,
directionality, large-area coverage, interesting region CR energy spectrum)
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https://indico.cern.ch/event/980853/contributions/4361206/attachments/2251261/3819144/CRMathusla_LLP_25May2021_JC.pdf
https://indico.cern.ch/event/980853/contributions/4361206/attachments/2251261/3819144/CRMathusla_LLP_25May2021_JC.pdf

MATHUSLA as a Cosmic Ray Telescope

Primary
particle

Primary
particle

Reconstruction of
shower core,
direction, total #
charged particles,
slope of radial
particle density
distribution

Air Shower“' :
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Corsika

MATHUSLAs Apparatus

MC simulations using CORSIKA (https://www.iap.kit.edu/corsika/)



https://www.iap.kit.edu/corsika/

Detector Design




Detector Design

» Worked with Civil Engineers to define building and layout of MATHUSLA at P5

» Layout restricted by existing structures based on concept and engineering
requirements

* Decay volume ~100 x 100 x 25 m?3
* Modular design




Detector Design

6-layer tracking/timing detectors, 4m1 ;
A

80 cm inter-layer separation

Additional tracking/timing = Ground

double layer at ground level

25m

Tracking/timing double layer v :
floor detector g'; ‘

* Total ~ 25 m height for decay volume

* |Individual detector units each9x9 x 30 m3




Geometry Simulations

= Cavern, access shaft, CMS, rock, and detector all modeled in GEANT4

" Rock modelis from a geological survey _
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" Backgrounds under detailed study:
= Upward-going muons from collisions (Pythia8)
= Backscatter (to upwards going V°) from downward-going cosmic rays (Parma)
= Neutrino interactions (Genie3)

= Exploring background rejection power of adding a high-coverage floor veto,
[partially]- instrumented walls




Trackers

Tracker layers: Composed of extruded scintillator bars with WLSFs
(wavelength-shifting fibers) coupled to SiPMs (Silicon Photomultipliers)

o Extrusion facilities in FNAL used for several experiments (e.g. Belle muon
trigger upgrade, Mu2e)
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Considering readout at both ends of
each scintillator bar, or looped fiber
for readout at one end

> Transverse resolution depends on

Trackers | MRS engineering support for layout

bar width
Fiber bend diameter > At between two ends giVES
{ ~ H . . .
" il sl longitudinal resolution

Nominal layer design: 256 bars, each
2.5 mlong

> Each layer segmented into 4
sheets of bars

> Overlapping sheets, and
alternating layer orientation,
ensures no gaps in coverage




Trackers

To reconstruct hit position along scintillator bar: use difference in arrival
time between separate measurements at two ends

vAg

\Y%
SiPM 1 SIPM 2

or

Target timing resolution ~1 ns




Trackers

W

Precise timing resolution is a critical feature of the detector design

= Se

= Rej

u 114

Ongoing

narates downward- from upward-going tracks
ects low-P particles from neutrino quasi-inelastic scattering

D” tracking and vertexing reduces fakes/combinatorics

characterization studies using small dark-box setups indicate

1 ns timing resolution goal is achievable

Several test distances D1 D2

=

Cosmic trigger, ~¥3X3cm Y S SIPM

LED triggers for
calibration
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Trackers

" Currently under investigation in dark-box setups at UToronto & UVic with
different vendors/models of scintillator, WLSF, SiPM:
" Optimizing timing (position) resolution
" Lightyield
" Lightleakage and fiber stress
" Temperature effects, e.g. on SiPM dark current
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= MATHUSLA Trigger
= Tower agg module triggers on upward-going tracks within 3x3 tower volume

= Selects data from buffer for permanent storage

= Trigger to CMS
= Upward-going vertex forms trigger to CMS
" Trigger latency estimates appear compatible with CMS L1 latency budget

= Data rate well within COTS servers
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Vertex Reconstruction

Implementation of custom tracking algorithms (based on Kalman filtering) + “4D”
vertex formation, to achieve high LLP reconstruction efficiency for low-multiplicity
LLP final states in MATHUSLA’s unique environment
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e.g. scalar LLP X
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Vertex Reconstruction

Validated using GEANT4 simulated events

Longitudinal
1 0=27.9%+0.9cm
] x=3.5%0.7 cm

102}k Transverse
- 1 0=14.9+0.9 cm

e.g. scalar LLP X
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Test Stand @ UVic @

Top layer close to ceiling

Constructing 64-channel “mini-
module” of 4 layers, “1m x 1.5m each

Potential studies include:

e Mechanical structure 8x8 SiPM array Jii

e Basic track reconstruction with RS il P
cosmics (validation, performance) 3

* Basic triggering AT

* Hit efficiencies, effects of gaps
between bars

* Comparisons with simulations

- - o

Bottom layer on the ﬂobr |




Test Stand @ UVic




Test Stand @ UToronto @

Constructing 120-channel “mini-module” of 5 layers, “1m x 1m each
More advanced features include:

* PCBs (with pre-amps) to carry SiPM signals to readout boards

* Compression-fitting mounting apparatus to keep each SiPM in place
* Layers [re]moveable and height-adjustable individually

Potential studies include:
PCB design optimization
“Large angle” tracking

—

Modelling interfaces between modules




The MATHUSLA Collaboration
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Conclusions

* MATHUSLA is a planned external LLP detector for the HL-LHC
that can probe deep into LLP parameter space in a variety of
BSM scenarios

* (Canadian groups highly active in multiple aspects
e Sensitivity projections for various BSM models
 Detector simulations of rare backgrounds
* Layout of tracker layers
e Scintillator/fiber/SiPM characterizations
 Vertex reconstruction software
 Test stands

* Excellent training-ground for HQP

 Conceptual Design Report to be published soon, followed by
prototype module and full detector for HL-LHC

* New collaborators always welcome!
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LLPs at the [HL-|LHC

Seeking to go Beyond the Standard Model (BSM) motivates the possibility

of so-far-undiscovered LLPs

 "Top-down": Various BSM theories (e.g. supersymmetry) constructed to
explain the “fundamental mysteries” naturally include new LLPs

 "Bottom-up": LLPs occurin the SM (e.g. muons), and can occur via
similar mechanisms when adding new particles to the model

The problem of long lifetimes: LHC could be making LLPs that are invisible

to its main detectors!

 [ftheLLP has c: lifetime >> detector size, most escape the detector

 Even LLPs that decay in the detector, but a significant distance away
from the Interaction Point, are difficult to spot

 [fthe LLPs decay in the detector with only a tiny rate, they get
swamped by backgrounds




Backgrounds

* Cosmic rays
* Calibrations performed using Test Stand measurements (taken above ATLAS IP
in 2018) arXiv: 2005.02018
 Downward-going events ~3 x 1014 over entire HL-LHC run, distinguished from
LLPs using timing cuts
* Upward-going events ~2 x 100 : inelastic backscatter from CRs hitting the
floor, or decay of stopped muons in floor. Only tiny fraction (estimates
underway) produce fake DV, via decay to 3 charged tracks
* Rare production of K° harder to estimate; work underway on veto strategies
 Rare decays of muons originating from HL-LHC collisions
 Upward-going events ~2 x 108, mostly from W and bbar production
 Work underway for optimal rejection strategies
 Charged particles from neutrino scattering in decay volume

* Neutrinos from HL-LHC collisions << 1 “fake” DV/year
* Atmospheric neutrinos ~30 “fake” DV/year, reduced to < 1 with cuts



https://arxiv.org/abs/2005.02018

Backgrounds: Recent Refined Estimates

* Cosmic rays

e Calibrations performed using Test Stand measurements (taken
above ATLAS IP in 2018) arXiv: 2005.02018

* Simulated using PARMA 4.0 + GEANT4

 Downward-going events ~3 x 10** over entire HL-LHC run,
distinguished from LLPs using timing cuts

* Upward-going events ~2 x 10'°, produced through inelastic
backscatter from CRs that hit the floor, or through decay of stopped
muons in floor. Tiny fraction can produce fake DV, via decay to 3
charged tracks

* Rare production of K° harder to estimate; veto strategies are
available. Currently working on precise estimates and studying
rejection



https://arxiv.org/abs/2005.02018

Backgrounds: Recent Refined Estimates

 Rare decays of muons originating from HL-LHC collisions
* Expect ~2 x 10% upward-going muons over entire HL-LHC run, mostly
from W and bbar production
 Simulated using MadGraph & Pythia8
* Full study underway to demonstrate optimal rejection while
maintaining high LLP signal efficiency; test-bed for custom tracking
algorithms in unique MATHUSLA environment

 Charged particles from neutrino scattering in decay volume
* Simulated using GENIE
* Neutrinos from HL-LHC collisions: using LHC minimum-bias samples,
estimate << 1 “fake” DV/year
 Atmospheric neutrinos: using flux measurements from Frejus
experiment, estimate ~30 “fake” DV/year, reduced to < 1 with cuts




LLP Sensitivity: TeV-Scale

Any LLP production process with o > fb can give signal.
e.g. meta-stable Higgsinos

Number of observed higgsino = gravitino events Number of observed lnggsino = graviino events
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LLP Sensitivity: DM

Scenarios where LLP - DM + SM decay is the only way to see the DM
e.g. Inelastic Dark Matter: BSM mass eigenstates x; (DM) and x, (LLP)
with mass splitting A, dark photon A’ with mixing € with SM photon

Fermionic iDM, my =3m,, A=0.03, ap=0.1 Fermionic iDM, my =3m,, A=0.01, ap=0.1
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Black curve: thermal o-annihilations x2x1 —+ A’ — ff yield observed DM relic density




LLP Sensitivity: DM

Scenarios where DM model requires existence of LLP, but LLP signature does
not involve the DM particle directly

e.g. Co-Annihilating DM: BSM x and X, with mass splitting o,

X X, — 09 where scalar ¢ has mixing angle 0 with SM Higgs
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CR physics reach would be greatly
enhanced by adding an analog RPC layer,
due to scintillator saturation effects

log, O(E/GeV)

Amplitude of lateral distribution (LD)
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» Shower age shows sensitivity to

primary composition.

—> Useful for composition studies

» RPC allows to extend CR energy and composition studies above E = 1015 eV.

MATHUSLA as a Cosmic Ray Telescope

Charge density at the RPC
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https://indico.cern.ch/event/980853/contributions/4361206/attachments/2251261/3819144/CRMathusla_LLP_25May2021_JC.pdf
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