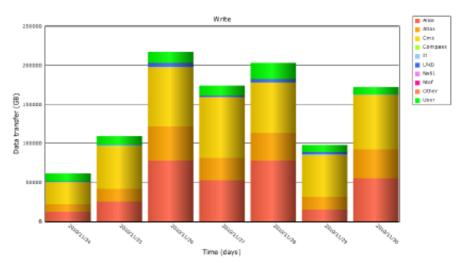

Project Status Report

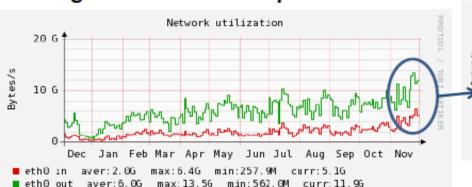
Ian Bird

Computing Resource Review Board 12th April, 2011

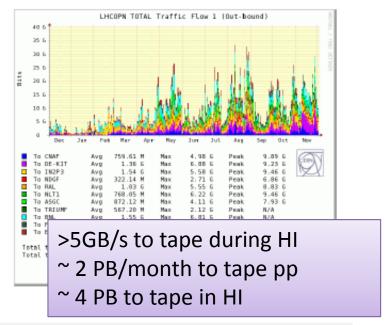
Project status report

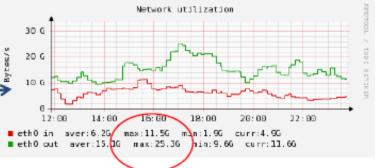
- Progress since last RRB
 - HI run, winter technical stop activities
- Reliabilities and readiness
- Service incidents
- Evolution of resource requests
 - Brief summary more details from C-RSG
- Evolution
 - Data management evolution
 - LHCOPN and evolution
 - Tier 0




Worldwide LHC Computing Grid

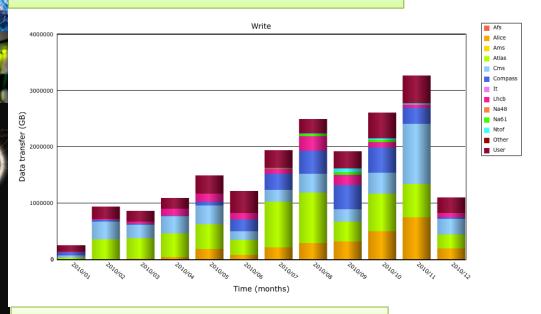
2010 Data taking

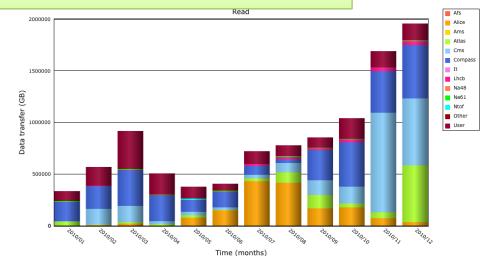

Tape recording: 220TB/day



Tier-0 Bandwidth Average in: 2 GB/s with peaks at 11.5 GB/s Average out: 6 GB/s with peaks at 25 GB/s

LHCOPN External Networking: Avg(year): 13 Gb/s with peaks at 70 Gb/s




Soldwide LHC Computing Grid

Summary of data archiving - 2010

Data written into Castor – 2010: 19 PB

Data read from Castor - 2010: 10 PB

- Continuous evolution of software meant that castor was much more efficient :
 - improved scheduling
 - Larger files written (in
 HI up to 40 GB files)
 - Used only about 50 drives at peak rates(had been a concern that would need many more) write speeds were close to native drive speeds

WLCG during winter break VO-wise Data Transfer From All Sites To All Sites CMS HI data -> FNAL 1600 ALICE HI data sent to T1's after zero suppression 1400 (HB/s) 1200 1000 Alice **Throughput** Atlas LHCb 400 DVIEW Ams Atlas Cms 100 TB Compass 100000 Data → tape at CERN in Feb/Mar: CMS HI data Na61 Data transfer (GB) after 0 suppression User 40000 20000 2011/02/03 2011/02/12 201/02/09 2011/02/11 2011/02/14 201/02/19 2011/02/21 CASTORCMS DEFAULT - Files to be recalled - last week 40 k 30 k Huge recall of data (~2 M files) from 20 k Castor in very short time without 10 k problem. 29 02 31 LCG тап.ыrd@cern.c aver: 11.31k max: 39.57k min: 12.00 curr: 5.44k 04-02-2011 14:51:44

ALICE:

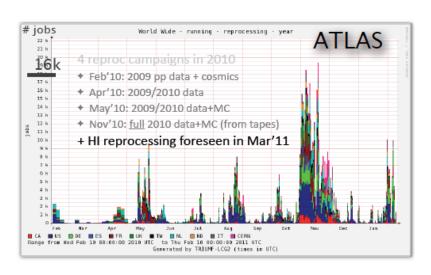
- Raw data copied to Tier 1s following run; reached max of 260 MB/s during HI run itself.
- PbPb data have been reconstructed once, 2nd pass in progress

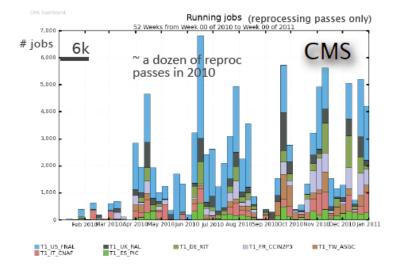
ATLAS:

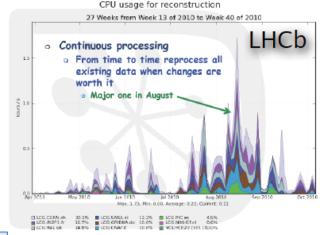
- Full reprocessing of 2010 pp data and re-distribution completed by end 2010
- HI data processed + re-processed

CMS:

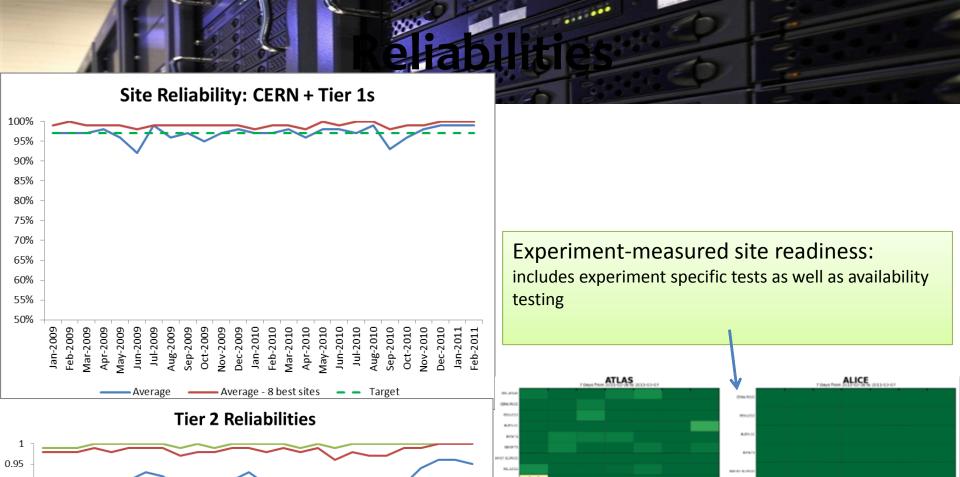
- Full reprocessing of 2010 pp data by end 2010
- Castor rates on 2GB/s in and 3-5 GB/s out to farm on average during HI run
- Zero suppression of HI data under way storing at Tier 0 and FNAL

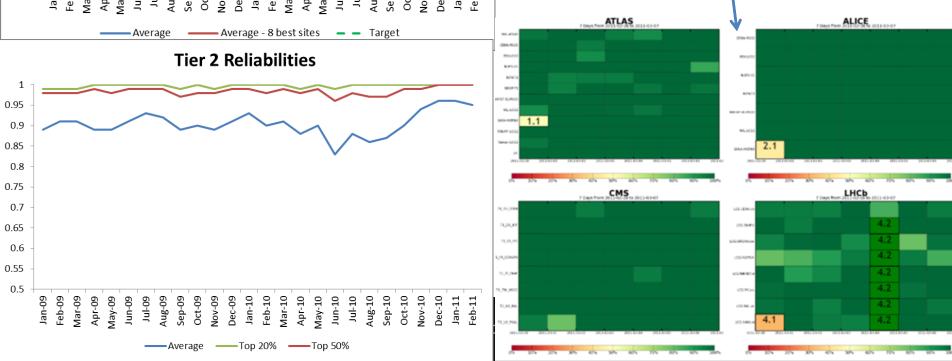

LHCb:


- Full reprocessing of all 2010 data by end of 2010
- Major MC production campaign under way
- Disk clean up campaign; can store fewer copies of data since higher pileup means event size is larger than anticipated

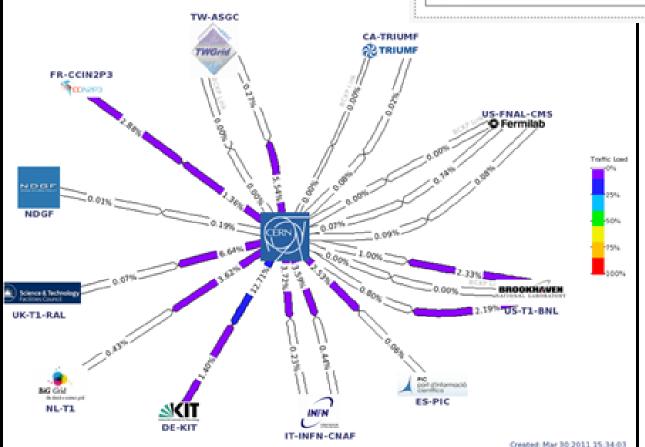

Reprocessing....

- Data at Tier 1s reprocessed as needed
 - New calibrations, improved software, new data formats





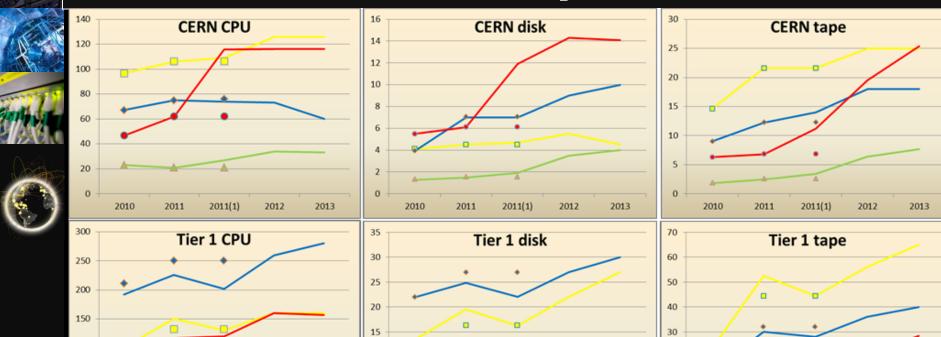


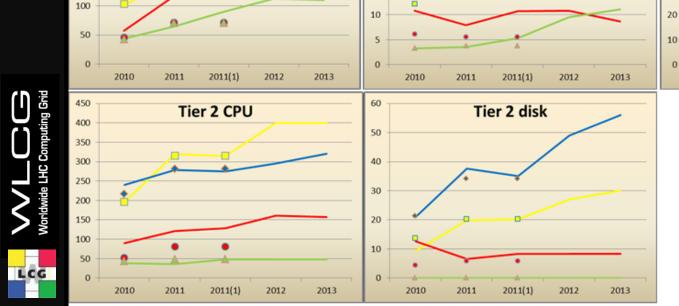

Service Incidents

<u>Site</u>	Service Area	<u>Date</u>	Duration	<u>Service</u>		<u>Impact</u>
CERN	DB	11-Mar-11	5h	CMS offline production db		The database was completely down for ~2 hours and partially not available for 5 hours
IN2P3	Infrastructure	Feb 25-26	13h	Batch system		85% of batch system unavailable, jobs lost
IN2P3	Storage	Feb 13	3 h	Storage service		Storage services degraded, no big impact on jobs
PIC	Storage	21-Jan-11 to 08-Feb- 11	18 days	Storage service		250TB of ATLAS data partially unavailable
KIT	infrastructure	28-Jan-11 to 02-Feb- 11	5 days	Batch system, submission	LHCb jobs use area intensively at start; eventually fixed with new AFS client, cache tuning on manycore boxes Not really solved also shows problems in "3rd party"	
CERN	DB	25-Jan-11	8h	FTS, LFC, SAM dashboards		
INZP3	infrastructure	8-Jul-10 to 7-Jan-11	6 months	shared s/w are		
CNAF-BNL	network	23 Aug-10 to 20-Jan- 11	months	primary OPN o		
<u>Site</u>	Date	<u>Duration</u>	<u>Service</u>	<u>Area</u>		<u>Impact</u>
CERM	18 Dec	5 days	DB	DB		Service interruption: ATLARC DB following the power cut at CERN CC
CERN	18 Dec	26 hours for services with weight > 50	power	infrastructure		Interruption of physics services following power cut
CERN	16 Dec	2.5h	DB	DB		ATLR database affected (degradation then complete outage) by FC switch replacement

LHCOPN – better monitoring

LHC®PN

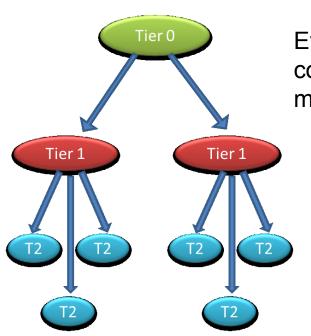



Evolution of requirements

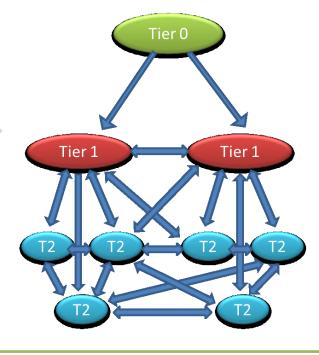
- Change in LHC schedule, run in 2011 and 2012, break in 2013
- Considerations based on real experience from 2010:
 - Much higher pile-up than anticipated for this stage of LHC
 - Drives event sizes and thus reconstruction times and storage space needs – in some cases factors of 2 or more
- More discussion in C-RSG report

Evolution of requirements

2011(1)



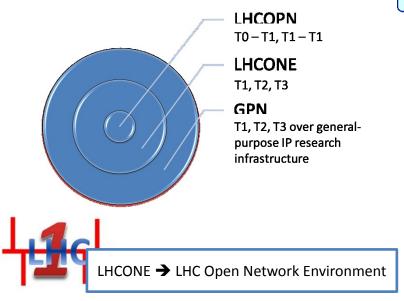
- Overall goal to improve data access and availability, especially for analysis:
- Follow up of prototyping activities
 - Started in Amsterdam meeting last June
 - several "demonstrators" proposed
 - Follow up in January to wrap up process as agreed
- ~10 demonstrators actively being investigated or followed by one or more experiments
 - High level of commonality
 - Based on real needs
 - Several are related and will likely converge

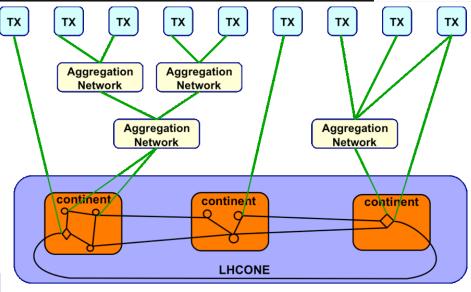


Worldwide LHC Computing Grid

Network evolution

Evolution of computing models


- On-demand will augment data preplacement
- Network usage will increase & be more dynamic (less predictable)
 - need to enable high-volume data transport between T1s, T2s, and T3s.
- General-purpose R&E networks should not be swamped with Tier1/2/3 LHC traffic


- LHCOPN works well so don't break it!
- T1/2/3s are not all equal -> architecture must be all-inclusive
- No central structure distributed management & operations
- Design for agility and expandability (new technologies; changes in traffic volumes)
- Must be appealing to funding agencies
- Need good monitoring

Proposed solution -> LHCone

- distributed exchange point
- single node exchange point

- LHCONE builds on the idea of exchange points
- Exchange points will be built in carrier-neutral facilities so that any connector can connect with their own fiber or using circuits provided by any telecom provider.
- LHCONE enables T2s and T3s to obtain their data from any T1 or T2
- Use of LHCONE will allowiste the general R&F ID infrastructure
- such as the Eur

LHCONE provid NB: Network requirements should in future be (again) included in resource requests, and budgeted for in pledges

Next steps:

- Solicit comr
- Build a prototype (first switch installed at CERN)
- Refine architecture document and work on governance, operations model, monitoring...

us aggregation networks, et2, ESnet, CANARIE, etc.

Tier o Evolution

- Following invitation for interested countries to submit informal proposals for a remote Tier 0
 - Around 25 were received by the end of November
 - Many of them are very interesting, not all can be directly compared
 - Visits and discussions ongoing with a number of these
- More formal steps not likely until later this year
- Given the evolution of the LHC schedule and resources, the requirement is to have additional capacity available by 2014.

- 2010 was a very successful start for LHC computing
 - Data rates (especially in HI running) exceeded by far those anticipated and tested
 - The full system (Tier 0-1-2) managed these without problem
- Resource usage reached a peak in the latter part of the year with Tier 1 and Tier 2 sites reaching full capacity
 - In 2011 we will need to manage resource contention ...
- Activities continued without break over the LHC technical stop ...
- Based on experience and better understanding of LHC conditions, computing models are evolving; important that commonalities are exploited as far as possible

