
HSF Conditions Database use cases and requirements
Version 1.0

Authors: Roland Sipos (CERN), Paul Laycock (BNL), Andrea Formica (Saclay), Giacomo Govi
(INFN Padova)

1 Introduction

The aim of this paper is to write down the main use cases for Conditions Data in HEP, and
derive requirements from those use cases. A working definition of Conditions Data is
needed to proceed, and we give a summary of the one defined in the HSF white paper [1].
The paper then defines the major use cases for Conditions Data, the writing and reading
workflows for those use cases and their constraints. A set of requirements follows, starting
from general requirements and then defining those that arise from consideration of the
major use cases and workflows.

1.1 Conditions Data and related concepts

The generic term “Conditions data” is used to cover any information relevant to experiment
data-taking that is not the event data itself. Examples include data-taking conditions like
e.g. the beam conditions, and environmental conditions (temperature). Such data is
recorded in databases, those involving separate systems having dedicated databases e.g.
beam conditions may come under the remit of the accelerator group who record many
parameters to allow them to understand their machine. Equally, the detector conditions
are written with high granularity to dedicated SCADA system databases so that detector
experts can understand their devices.

When offline computing experts want to process the event data, a subset of all the
conditions data is needed – this is our working definition of “conditions data”. As this
subset of all possible conditions data is read from a database, and it is conditions data, the
corresponding database is our working definition of the conditions database, as it is the only
one relevant to the offline computing experts. These working definitions of “conditions
data” and “conditions database” are used throughout this document. Although this
definition is common across the LHC experiments and e.g. Belle II, it is neither universal nor
particularly intuitive. The reader has been warned!

Conditions data change over time. Understanding the relevant precision of a particular type
of conditions data is very important, e.g. the precision of a high voltage reading needed for
offline data processing will usually be less than the precision written out by a SCADA system.
This allows data volume for conditions data to be reduced, although care is needed to
ensure that any variations relevant for offline data processing are retained. Again using high
voltage as an example, a simple averaging algorithm would integrate over a pre-defined
period of time, but this could easily hide significant problems if the period of time is too
large. A better algorithm could be to set a tolerance to define a significant change, and use
arbitrary periods of time for averaging. The average value produced is only valid for that

period and is referred to as the Interval of Validity (IOV). The length of the IOV depends on
the conditions data and thus is not constrained to be uniform across conditions data types.
Conditions data can be more complicated than a single high voltage value. Indeed, in
addition to the conditions data that are collected at the time of data taking, there are also
conditions data that need to be derived from other sources or even inferred from the event
data themselves, e.g. detector calibrations. The name Payload is used to refer to the
conditions data that is ingested by a data processing framework, whether that be a single
floating-point number or a file. Finally, a Tag is used to define the chronological variation
over time (IOV) of a particular type of Payload. These concepts are summarized in Figure 1.

Figure 1: Schematic showing how Conditions Data vary over time for two types of Conditions
Data, A and B. A list of IOVs conveniently defines the chronological structure, with each IOV
pointing to a Payload file for its particular Conditions Data type. The combination of the list
of IOVs and Payloads defines the Tag. Note that multiple IOVs can point to the same
Payload file (of the correct type).

2 Conditions use cases

We consider three main use cases, two of which (2.1 and 2.2) are synchronized with respect
to data taking, and a third (2.3) which is asynchronous. A fourth use case is a special case of
the third use case (2.4, analysis). A final, fifth use case is needed to support software
development and conditions data producers (2.5).

2.1 Online / real-time processing use cases

The distinguishing feature of this group of use cases is that generally (apart from for
debugging purposes) the data stream is processed once in real or close-to-real time. The
latency between data being recorded and processed is so small that there is no chance to
have updated conditions prepared in time to process the data. High-level trigger is the most
obvious use case, and online data quality is a second example.

Interestingly, the biggest challenge here is to integrate the exceptions to the assumption
that no updates will happen. Examples include measurements of the beam position which
is fundamental to calculating the physics quantities used to select events. [describe how
this is done for ATLAS and CMS].

Aside from the exceptional conditions, the general workflow for writing is simple. Updates
are made rarely as a stable benchmark is more important than having the best conditions,
and conditions calculated for old data can only be used to process future data. These
updates are usually carefully validated offline before carefully deployed as a well
synchronized update, which are assumed to be valid until further notice. The reading use
case simply uses the latest suitable set of conditions available, but crucially there must
always be valid conditions data available for this use case. Figure 2 shows the online update
use case, with Run Control being used to determine whether the conditions update is safe
(in the future) or not.

Figure 2: Schematic showing an online update use case for one type of Conditions Data, A.
In the first scenario (top), the update has a start time in the future wrt Run Control and is
accepted – there is no end of validity. In the second scenario (bottom), the update is
attempted for data that has already been taken and therefore the update is rejected.

2.2 Fast-processing use cases

The physics performance that can be extracted from processed data tends to improve with
both increasing data volume (statistics), and time (needed to understand and correct for
subtle detector effects). Probably the most challenging conditions data use case is the fast-

processing workflow, which attempts to balance the competing demands of making
processed data available as fast as possible for analysis, with the physics performance of
that processed data. Several strategies are used depending on the physics performance
requirements of the specific use case. One strategy can be to process a fraction of data very
quickly with existing conditions data to derive improved conditions (detector calibrations
and alignment). This can be used to give better data quality information than possible in the
control room, and those improved conditions can be used to process all data.

In this set of use cases, the updated conditions are generally calculated using the same data,
or a subset thereof, that they will then be used to process. Orchestration is needed to
ensure that new conditions have been calculated before the data is processed in bulk.
Given that orchestration is needed, there is no requirement that there should be valid
conditions data available for all IOVs. In the most challenging case, conditions for data
periods can be updated out of chronological order and efficient orchestration is needed to
ensure data processing resources are completely saturated to keep up with data taking.

Figure 3: Schematic showing out of order Conditions Data updates for the prompt
processing use case. IOVs do not overlap and Orchestration ensures that only data that
have valid Conditions Data are processed. The IOVs with missing conditions data can be
processed once those IOVs have been filled.

2.3 Reprocessing use cases

A final set of use cases is by far the simplest to handle as there is no synchronization
required between data taking and the conditions being consumed. The chronological
structure and content of the conditions are fully defined by experts, with no constraints on
the writing use case.

A caveat here is that the “best guess” for future data taking is usually the last best set of
conditions data. Equally, avoiding artificial boundaries between the IOVs for reprocessed
data and for future data allows knowledge to be consolidated. For example, the “best
knowledge” gained in Run 1 can be captured in the reprocessing IOVs that cover that period,
while the “best knowledge” for Run 2 at the time will be captured in the “fast-processing”

IOVs for that period (later to be superseded by Run 2 reprocessing IOVs. This is particularly
important when considering Data Preservation.

2.4 Analysis use cases

A special case of the Reprocessing use case is analysis. Here the main issue is the variety of
analysis use cases. Data processed using a fast-processing or reprocessing workflow is
computing resource intensive and is usually performed centrally with one set of conditions
data common to the whole experiment. Generally, the output is a dataset that can be
analyzed with much lower computing resource consumption. It is typically analyzed
multiple times and analysis-specific conditions data produced and consumed at the analysis
stage are often managed by individual physicists. An HEP analysis is very often a
collaborative effort, and although there are some analysis conditions that are unique to one
analysis, there are also a lot of analysis conditions that are common across many analyses.
The arguments to make these analysis conditions first class citizens of the conditions data
ecosystem include reproducibility, collaboration, and data and analysis preservation. As the
timescale of modern HEP experimental analyses can now stretch beyond the term of a post-
doctoral contract, the risk of work being effectively lost increases.

Management of analysis conditions is primarily a logistical problem rather than a technical
one, although there are technical challenges. For each centrally produced dataset, made
with one set of conditions data, there are multiple sets of analysis conditions needed to
capture the full picture of any given analysis with different degrees of commonality. Thus,
for an individual analysis, the problem of collecting all the conditions data needed for that
workflow is exactly the same as for the reprocessing use case. It would clearly be desirable
to capture the common elements and reduce entropy across the whole physics program,
but as there is no agreed upon solution to this aspect, we leave this as a problem for the
interested reader.

Figure 4: Conditions Data for the analysis use case shown as a hierarchy of conditions. For
example, Analysis 1 requires all three of “Common Reprocessing Conditions” (needed to
produce the baseline data), the “Common Analysis Conditions” (common to all analyses for
that experiment using that dataset) and “Analysis 1” (conditions data specific to that
analysis). In practice there may be several more groups and/or hierarchies.

2.5 Development use cases

A final use case is critical for conditions data producers who need to validate new conditions
data payloads, and software developers creating new types of conditions data. Here the
main challenge is to validate that the newly produced conditions data behaves as expected.

The producer needs a mechanism by which they can override a subset of data processing
conditions and then compare the results against a control sample. In practice the subset of
conditions data usually consists of only one conditions data type, though there are cases
where conditions data types are highly correlated and require coherent sets to be validated
at once. Similarly, the developer needs a mechanism by which they can add a new
conditions data type to the conditions used for data processing, such that they can compare
the results with the corresponding control sample. Ideally in both cases the same software
version should be used to produce the control sample, and the size of the control sample
will depend on the conditions data being tested.

3 General Requirements

We start with the fundamental requirements which are independent of the individual use
cases and arise from the context of data processing for big science.

3.1 Versioning – ARE IOVS AND TAGS ACTUALLY REQUIREMENTS THAT SHOULD BE
DEFINED ALREADY IN SECTION 1 WHEN THEY FIRST APPEAR? BREAKS UP THE
REQUIREMENTS BUT MAYBE BETTER LIKE THAT.

Already while introducing general conditions data terminology, the fact that HEP data are
generally analyzed as large datasets that have time-varying conditions required us to track
those changes in time using IOVs. Similarly, versioning of each type of conditions data
across multiple IOVs is required and we use the term Tag to indicate this. One Tag should
be valid for many IOVs, i.e. a large dataset.

3.2 Coherence – THIS AND 3.3 COULD ALSO BE MOVED TO SECTION 1 AS GENERAL
REQUIREMENTS

As coherent data processing results require several different types of conditions data to be
used in parallel by data processing frameworks, versioning across different types of
conditions data and time is required. This global versioning is referred to as a GlobalTag
which again should be valid for many IOVs, i.e. a large dataset.

3.3 Reproducibility

As conditions data need to be updated, and yet we require reproducibility, some minimal
finite state behavior for a GlobalTag is needed which we define to as the GlobalTagState.
The simplest set of states could comprise e.g. LOCKED and UNLOCKED, with only the
LOCKED state guaranteeing coherent results.

Running the same data processing software on the same computing hardware over the
same input data with the same version of conditions data configuration should produce the
same output. Data processing should therefore in general be configured to use a LOCKED
GlobalTag.

4 Use case requirements

From the data processing use cases considered, several requirements follow.

4.1 Open-ended IOVs – DO WE NEED TO RECORD THE START TIMES FOR THE ONLINE DATA
PROCESSING USE CASE? I WOULD ARGUE YES, AND THEREFORE IT’S CORRECT TO REFER
TO THIS AS AN IOV WITH A START TIME AND NO END TIME. A SYSTEM THAT ONLY
ALLOWED UPDATES WITHOUT RECORDING WHEN THEY HAPPENED WOULD MAKE IT
IMPOSSIBLE TO DEBUG PROBLEMS AFTER THE FACT.

It must be possible to define an “infinite” or Open-ended IOV such that for the Online data
processing use case there is always valid conditions data. Once an update is made it is valid
until further notice (i.e. there is no end validity time). This is shown in Figure 2.

4.3 Atomic updates of LOCKED GlobalTags – THIS WAS THE MOST GENERAL PHRASING I
COULD THINK OF THAT DOESN’T TIE ITSELF TO AN IMPLEMENTATION, IS IT CORRECT?
DOES IT NEED MORE CLARIFICATION?

GlobalTags should be in a LOCKED state for data processing, and yet data processing
workflows require conditions data updates. Atomic transactions that allow conditional
updates to support both the Online and fast-processing workflows are required.

4.4 Closed IOVs – THIS IS DIFFICULT TO UNDERSTAND WITHOUT REFERENCE TO FIGURE 3,
BUT THIS IS A REAL USE CASE FOR SPHENIX !

To satisfy the worst case scenario of the fast-processing use case, atomic LOCKED GlobalTag
transactions must allow out-of-chronological-order updates. To simultaneously guarantee
reproducibility for any existing IOVs, that implies that the end of validity must be specified
when writing fast-processing conditions data, i.e. Closed IOVs must be supported.

