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1 Introduction 
 
The aim of this paper is to write down the main use cases for Conditions Data in HEP, and 
derive requirements from those use cases.  A working definition of Conditions Data is 
needed to proceed, and we give a summary of the one defined in the HSF white paper [1].  
The paper then defines the major use cases for Conditions Data, the writing and reading 
workflows for those use cases and their constraints.  A set of requirements follows, starting 
from general requirements and then defining those that arise from consideration of the 
major use cases and workflows. 
 
1.1 Conditions Data and related concepts 
 
The generic term “Conditions data” is used to cover any information relevant to experiment 
data-taking that is not the event data itself.  Examples include data-taking conditions like 
e.g. the beam conditions, and environmental conditions (temperature).  Such data is 
recorded in databases, those involving separate systems having dedicated databases e.g. 
beam conditions may come under the remit of the accelerator group who record many 
parameters to allow them to understand their machine.  Equally, the detector conditions 
are written with high granularity to dedicated SCADA system databases so that detector 
experts can understand their devices. 
 
When offline computing experts want to process the event data, a subset of all the 
conditions data is needed – this is our working definition of “conditions data”.  As this 
subset of all possible conditions data is read from a database, and it is conditions data, the 
corresponding database is our working definition of the conditions database, as it is the only 
one relevant to the offline computing experts.  These working definitions of “conditions 
data” and “conditions database” are used throughout this document.  Although this 
definition is common across the LHC experiments and e.g. Belle II, it is neither universal nor 
particularly intuitive.  The reader has been warned! 
 
Conditions data change over time.  Understanding the relevant precision of a particular type 
of conditions data is very important, e.g. the precision of a high voltage reading needed for 
offline data processing will usually be less than the precision written out by a SCADA system.  
This allows data volume for conditions data to be reduced, although care is needed to 
ensure that any variations relevant for offline data processing are retained.  Again using high 
voltage as an example, a simple averaging algorithm would integrate over a pre-defined 
period of time, but this could easily hide significant problems if the period of time is too 
large.  A better algorithm could be to set a tolerance to define a significant change, and use 
arbitrary periods of time for averaging.  The average value produced is only valid for that 



period and is referred to as the Interval of Validity (IOV).  The length of the IOV depends on 
the conditions data and thus is not constrained to be uniform across conditions data types. 
Conditions data can be more complicated than a single high voltage value.  Indeed, in 
addition to the conditions data that are collected at the time of data taking, there are also 
conditions data that need to be derived from other sources or even inferred from the event 
data themselves, e.g. detector calibrations.  The name Payload is used to refer to the 
conditions data that is ingested by a data processing framework, whether that be a single 
floating-point number or a file.  Finally, a Tag is used to define the chronological variation 
over time (IOV) of a particular type of Payload.  These concepts are summarized in Figure 1. 
 

 
 
Figure 1: Schematic showing how Conditions Data vary over time for two types of Conditions 
Data, A and B.  A list of IOVs conveniently defines the chronological structure, with each IOV 
pointing to a Payload file for its particular Conditions Data type.  The combination of the list 
of IOVs and Payloads defines the Tag.  Note that multiple IOVs can point to the same 
Payload file (of the correct type). 
 
 
2 Conditions use cases 
 
We consider three main use cases, two of which (2.1 and 2.2) are synchronized with respect 
to data taking, and a third (2.3) which is asynchronous.  A fourth use case is a special case of 
the third use case (2.4, analysis).  A final, fifth use case is needed to support software 
development and conditions data producers (2.5). 
 
2.1 Online / real-time processing use cases 
 
The distinguishing feature of this group of use cases is that generally (apart from for 
debugging purposes) the data stream is processed once in real or close-to-real time.  The 
latency between data being recorded and processed is so small that there is no chance to 
have updated conditions prepared in time to process the data.  High-level trigger is the most 
obvious use case, and online data quality is a second example.   
 



Interestingly, the biggest challenge here is to integrate the exceptions to the assumption 
that no updates will happen.  Examples include measurements of the beam position which 
is fundamental to calculating the physics quantities used to select events.  [describe how 
this is done for ATLAS and CMS]. 
 
Aside from the exceptional conditions, the general workflow for writing is simple.  Updates 
are made rarely as a stable benchmark is more important than having the best conditions, 
and conditions calculated for old data can only be used to process future data.  These 
updates are usually carefully validated offline before carefully deployed as a well 
synchronized update, which are assumed to be valid until further notice.  The reading use 
case simply uses the latest suitable set of conditions available, but crucially there must 
always be valid conditions data available for this use case.  Figure 2 shows the online update 
use case, with Run Control being used to determine whether the conditions update is safe 
(in the future) or not. 
 
 

 
 

 
 
Figure 2: Schematic showing an online update use case for one type of Conditions Data, A.   
In the first scenario (top), the update has a start time in the future wrt Run Control and is 
accepted – there is no end of validity.  In the second scenario (bottom), the update is 
attempted for data that has already been taken and therefore the update is rejected. 
 
 
2.2 Fast-processing use cases 
 
The physics performance that can be extracted from processed data tends to improve with 
both increasing data volume (statistics), and time (needed to understand and correct for 
subtle detector effects).  Probably the most challenging conditions data use case is the fast-



processing workflow, which attempts to balance the competing demands of making 
processed data available as fast as possible for analysis, with the physics performance of 
that processed data.  Several strategies are used depending on the physics performance 
requirements of the specific use case.  One strategy can be to process a fraction of data very 
quickly with existing conditions data to derive improved conditions (detector calibrations 
and alignment).  This can be used to give better data quality information than possible in the 
control room, and those improved conditions can be used to process all data. 
 
In this set of use cases, the updated conditions are generally calculated using the same data, 
or a subset thereof, that they will then be used to process.  Orchestration is needed to 
ensure that new conditions have been calculated before the data is processed in bulk.  
Given that orchestration is needed, there is no requirement that there should be valid 
conditions data available for all IOVs.  In the most challenging case, conditions for data 
periods can be updated out of chronological order and efficient orchestration is needed to 
ensure data processing resources are completely saturated to keep up with data taking. 
 
 
 

 
 
Figure 3: Schematic showing out of order Conditions Data updates for the prompt 
processing use case.  IOVs do not overlap and Orchestration ensures that only data that 
have valid Conditions Data are processed.  The IOVs with missing conditions data can be 
processed once those IOVs have been filled. 
 
 
2.3 Reprocessing use cases 
 
A final set of use cases is by far the simplest to handle as there is no synchronization 
required between data taking and the conditions being consumed.  The chronological 
structure and content of the conditions are fully defined by experts, with no constraints on 
the writing use case. 
 
A caveat here is that the “best guess” for future data taking is usually the last best set of 
conditions data.  Equally, avoiding artificial boundaries between the IOVs for reprocessed 
data and for future data allows knowledge to be consolidated.  For example, the “best 
knowledge” gained in Run 1 can be captured in the reprocessing IOVs that cover that period, 
while the “best knowledge” for Run 2 at the time will be captured in the “fast-processing” 



IOVs for that period (later to be superseded by Run 2 reprocessing IOVs.  This is particularly 
important when considering Data Preservation.  
 
2.4 Analysis use cases 
 
A special case of the Reprocessing use case is analysis.  Here the main issue is the variety of 
analysis use cases.  Data processed using a fast-processing or reprocessing workflow is 
computing resource intensive and is usually performed centrally with one set of conditions 
data common to the whole experiment.  Generally, the output is a dataset that can be 
analyzed with much lower computing resource consumption.  It is typically analyzed 
multiple times and analysis-specific conditions data produced and consumed at the analysis 
stage are often managed by individual physicists.  An HEP analysis is very often a 
collaborative effort, and although there are some analysis conditions that are unique to one 
analysis, there are also a lot of analysis conditions that are common across many analyses.  
The arguments to make these analysis conditions first class citizens of the conditions data 
ecosystem include reproducibility, collaboration, and data and analysis preservation.  As the 
timescale of modern HEP experimental analyses can now stretch beyond the term of a post-
doctoral contract, the risk of work being effectively lost increases. 
 
Management of analysis conditions is primarily a logistical problem rather than a technical 
one, although there are technical challenges.  For each centrally produced dataset, made 
with one set of conditions data, there are multiple sets of analysis conditions needed to 
capture the full picture of any given analysis with different degrees of commonality.  Thus, 
for an individual analysis, the problem of collecting all the conditions data needed for that 
workflow is exactly the same as for the reprocessing use case.  It would clearly be desirable 
to capture the common elements and reduce entropy across the whole physics program, 
but as there is no agreed upon solution to this aspect, we leave this as a problem for the 
interested reader. 
 

 
  
Figure 4: Conditions Data for the analysis use case shown as a hierarchy of conditions.  For 
example, Analysis 1 requires all three of “Common Reprocessing Conditions” (needed to 
produce the baseline data), the “Common Analysis Conditions” (common to all analyses for 
that experiment using that dataset) and “Analysis 1” (conditions data specific to that 
analysis).  In practice there may be several more groups and/or hierarchies. 
  
 
2.5 Development use cases 
 
A final use case is critical for conditions data producers who need to validate new conditions 
data payloads, and software developers creating new types of conditions data.  Here the 
main challenge is to validate that the newly produced conditions data behaves as expected.  



The producer needs a mechanism by which they can override a subset of data processing 
conditions and then compare the results against a control sample.  In practice the subset of 
conditions data usually consists of only one conditions data type, though there are cases 
where conditions data types are highly correlated and require coherent sets to be validated 
at once.  Similarly, the developer needs a mechanism by which they can add a new 
conditions data type to the conditions used for data processing, such that they can compare 
the results with the corresponding control sample.  Ideally in both cases the same software 
version should be used to produce the control sample, and the size of the control sample 
will depend on the conditions data being tested. 
 
3 General Requirements 
 
We start with the fundamental requirements which are independent of the individual use 
cases and arise from the context of data processing for big science. 
 
3.1 Versioning – ARE IOVS AND TAGS ACTUALLY REQUIREMENTS THAT SHOULD BE 
DEFINED ALREADY IN SECTION 1 WHEN THEY FIRST APPEAR?  BREAKS UP THE 
REQUIREMENTS BUT MAYBE BETTER LIKE THAT. 
 
Already while introducing general conditions data terminology, the fact that HEP data are 
generally analyzed as large datasets that have time-varying conditions required us to track 
those changes in time using IOVs.  Similarly, versioning of each type of conditions data 
across multiple IOVs is required and we use the term Tag to indicate this.  One Tag should 
be valid for many IOVs, i.e. a large dataset. 
 
3.2 Coherence – THIS AND 3.3 COULD ALSO BE MOVED TO SECTION 1 AS GENERAL 
REQUIREMENTS 
 
As coherent data processing results require several different types of conditions data to be 
used in parallel by data processing frameworks, versioning across different types of 
conditions data and time is required.  This global versioning is referred to as a GlobalTag 
which again should be valid for many IOVs, i.e. a large dataset. 
 
3.3 Reproducibility 
 
As conditions data need to be updated, and yet we require reproducibility, some minimal 
finite state behavior for a GlobalTag is needed which we define to as the GlobalTagState.  
The simplest set of states could comprise e.g. LOCKED and UNLOCKED, with only the 
LOCKED state guaranteeing coherent results. 
 
Running the same data processing software on the same computing hardware over the 
same input data with the same version of conditions data configuration should produce the 
same output.  Data processing should therefore in general be configured to use a LOCKED 
GlobalTag. 
 
 
 



 
 
 
 
 
 
4 Use case requirements 
 
From the data processing use cases considered, several requirements follow. 
 
4.1 Open-ended IOVs – DO WE NEED TO RECORD THE START TIMES FOR THE ONLINE DATA 
PROCESSING USE CASE?  I WOULD ARGUE YES, AND THEREFORE IT’S CORRECT TO REFER 
TO THIS AS AN IOV WITH A START TIME AND NO END TIME.  A SYSTEM THAT ONLY 
ALLOWED UPDATES WITHOUT RECORDING WHEN THEY HAPPENED WOULD MAKE IT 
IMPOSSIBLE TO DEBUG PROBLEMS AFTER THE FACT. 
 
It must be possible to define an “infinite” or Open-ended IOV such that for the Online data 
processing use case there is always valid conditions data. Once an update is made it is valid 
until further notice (i.e. there is no end validity time).  This is shown in Figure 2. 
 
 
4.3 Atomic updates of LOCKED GlobalTags – THIS WAS THE MOST GENERAL PHRASING I 
COULD THINK OF THAT DOESN’T TIE ITSELF TO AN IMPLEMENTATION, IS IT CORRECT?  
DOES IT NEED MORE CLARIFICATION?  
 
GlobalTags should be in a LOCKED state for data processing, and yet data processing 
workflows require conditions data updates.  Atomic transactions that allow conditional 
updates to support both the Online and fast-processing workflows are required.  
 
 
4.4 Closed IOVs – THIS IS DIFFICULT TO UNDERSTAND WITHOUT REFERENCE TO FIGURE 3, 
BUT THIS IS A REAL USE CASE FOR SPHENIX ! 
 
To satisfy the worst case scenario of the fast-processing use case, atomic LOCKED GlobalTag 
transactions must allow out-of-chronological-order updates.  To simultaneously guarantee 
reproducibility for any existing IOVs, that implies that the end of validity must be specified 
when writing fast-processing conditions data, i.e. Closed IOVs must be supported. 
 
 


