
The HSF Conditions
Database reference
implementation

8-12 May 2023

Andrea Formica1, Lino Gerlach2, Giacomo Govi3, Paul
Laycock2, Ruslan Mashinistov2, Chris Pinkenburg2

1Université Paris-Saclay (IRFU/CEA, FR)
2Brookhaven National Lab (US)
3Fermilab (US)

1

Overview - Conditions data

Changes over time

• Repeat detector
calibration with larger
cosmic dataset

• Improve calibration
algorithms

High access rates

• Distributed
computing jobs
access same
conditions data
simultaneously

• Access rates up to
~kHz

Heterogenous data

• Granularity varies
(time indexed,
run-indexed,
constant)

• Structure of payload
varies (3D map,
single number, …)

Similar challenges for various HEP experiments

“Conditions data is any additional data needed to process event data”

Versioning &
configuration

Fast DB queries &
effective caching

Payload agnostic by
design

Conditions Data – Recommendations

• The HSF Conditions Databases activity is a CERN-based forum for cross-experiment discussions
with as broad an audience as possible:
https://hepsoftwarefoundation.org/activities/conditionsdb.html

• Key recommendations for conditions data handling
• Separation of payload queries from metadata queries
• General Conditions Database schema design (below) proposed by the White Paper

HSF-CWP-2017-03

3

Typically Payloads are the files of
data per detector subsystem

Global Tag (GT) is
the top-level
configuration of all
conditions data.

Payload is characterised by the
period of time when it is “valid” -
Interval of Validity (IOV)

https://hepsoftwarefoundation.org/activities/conditionsdb.html
https://arxiv.org/abs/1901.05429

NoPayloadDB Deployment

● Postgres DB with
persistent storage on
nfs

● pgBouncer - DB pooler
● NoPayloadDB

Django-application
running under gunicorn
(WSGI server). 5 Pods

● nginx - web server. 5
Pods

4

● Fully automated deployment (Helmchart based) at the
OKD (open source container application platform)
makes NoPayloadDB an easily adoptable, scalable
and attractive solution for HEP experiments

5

nopayloadclient: Client-side stand-alone C++ tool

• Experiment unspecific

payload

remote
payload

store

nopayloaddb

HSF Reference Implementation - Client

Experiment-
agnostic lib

nopayloadclient

sPHENIX-
specific lib

sphenixnpc

DUNE-
specific lib

dunenpc

client
side

server
side

nopayloadclient

• Communicates with nopayloaddb
• Local caching

• Handling of payloads

NoPayloadDB DB schema

● IOVs presented by two fields: major and minor IOVs
● Combined IOV - integer part for major and fractional parts for minor IOV
● PayloadIOVs also has ending IOVs

6

Lo
ck

ed
 🔒

U
nl

oc
ke

d

For a given IOV, a GT will
resolve to the single (or
none) conditions data
payload per each detector
subsystemPayloadType allows to collect all of the

calibrations of the same detector subsystem

GT workflows

start=t1
end=t2

start=t3
end=null

start=t2
end=t3

APPEND IOVs, IOV_END is
null

Online_GT
(locked)

● Online GT - global tag consequently growing at time and returning the latest conditions

start=t1
end=t2

start=t4
end=t5

start=t2
end=t3

OVERLAPPING IOVs ARE
NOT ALLOWED!!

Prompt_GT
(locked)

● Prompt GT - overwriting isn’t allowed

● Prompt GT - overwriting isn’t allowed

start=t1
end=t4

start=t7
end=t8

start=t9
end=t10

Prompt_GT
(locked)

Repro_GT
(unlocked)

start=t5
end=t6

CLONE Prompt_GT AND EDIT IT

While editing, the service will take
care of removing unnecessary PIOVs

start=t4
end=t5

start=t1
end=t2

start=t2
end=t3

ORM vs SQL tests

Two reference read APIs with Django
ORM were implemented with the
following logics:
● Group Payloads by type. Then

descending order by IOV and
distinct per type

● Get maximal IOV per type and
append to the final output

Scenario Global Tags Payload Types Payload IOVs (per type) Update Rate

tiny 1 10 100 (10)

tiny-moderate 1 10 2000 (200)

moderate 1 100 20000 (200) 1 day

heavy-usage 1 100 500000 (5000) 1 hour

worst-case 1 200 5200000 (26000) 10 minutes

PayloadIOV read API

● LATERAL joining. Without LATERAL, each sub-SELECT is evaluated independently and
so cannot cross-reference any other FROM item

● Covering index on Payload table including combined IOV and reference to the PayloadList

9

SELECT pi.payload_url, pi.major_iov, pi.minor_iov,
pt.name, …
FROM "PayloadList" pl
JOIN "GlobalTag" gt ON pl.global_tag_id = gt.id AND
gt.name = %(my_gt)s
JOIN LATERAL (
 SELECT payload_url, major_iov, minor_iov, …
 FROM "PayloadIOV" pi
 WHERE pi.payload_list_id = pl.id
 AND pi.comb_iov <= CAST(%(my_major_iov)s +
CAST(%(my_minor_iov)s AS DECIMAL(19,0)) / 10E18 AS
DECIMAL(38,19))
 ORDER BY pi.comb_iov DESC
 LIMIT 1
) pi ON true
JOIN "PayloadType" pt ON pl.payload_type_id = pt.id;

Retrieving latest Payloads of each
type for the given GlobalTag and IOVs

For each PayloadList (Type)

Get Payloads descending ordered
by combined IOV - arranged from
last to first

Limit return to 1 line - latest
Payload for a given IOVs

And then append the
results of each subquery
to create the final outputDjango Documentation on ‘Database Access Optimization’:

Scalability tests 1/2
● Each dot on the plot is

independent GT
○ All 32 GTs was created

at the same time
● Testing dependance

from the number of
payload types in the GT

○ Different colours vary
in number of payload
types

● The x-axis is the number
of IOVs per payload type

10

Heavy-usage GT:
200 Payload types x 5000 IOVs

Scalability tests 2/2
● Query Payloads for the given GT

and random IOV
○ Testing 3 scenarios for the

used GTs
● Populating the DB by cloning

“worst-case” GT
○ After 12 clones (13*5.2M =

~68M rows), postgres pod
reached the limit for the
persistent volume (20 GB)

11

Scenario Global Tags Payload Types Payload IOVs (per type) Update Rate

tiny 1 10 100 (10)

tiny-moderate 1 10 2000 (200)

moderate 1 100 20000 (200) 1 day

heavy-usage 1 100 500000 (5000) 1 hour

worst-case 1 200 5200000 (26000) 10 minutes

Summary

● NoPayloadDB is the first HSF reference implementation
of conditions database

● Fully automated deployment at the OKD makes
NoPayloadDB an easily adoptable, scalable and
attractive solution for HEP experiments.
○ NoPayloadDB was chosen by sPHENIX experiment and was

commissioned for production at the beginning of May 2023.
○ Moreover, other experiments, such as the protoDune and

Belle2, express interest in the service

12

Backup

●

13

PostgreSQL HA cluster
We’re considering using
the CloudNativePG

14

CloudNativePG provides:
● Covers the full

lifecycle of a HA
PostgreSQL cluster

● Primary/standby
architecture, using
native streaming
replication

● Native support for
connection pooling
with PgBouncer

Open source Kubernetes operator
for HA PostgreSQL

https://cloudnative-pg.io
https://cloudnative-pg.io/documentation/1.15/connection_pooling/
https://cloudnative-pg.io/documentation/1.15/connection_pooling/

