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Experimental setup: LHC
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‣Proton-proton collider 

‣27 km circumference 

‣Up to  = 14 TeV 

‣Host of 4 large experiments 
(+ several others) 

‣ATLAS 

‣CMS 

‣LHCb 

‣ALICE 

‣Vast physics programme 

‣Standard Model physics 

‣Higgs/top physics 

‣TeV energy frontier 

‣New physics

s
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Experimental setup: CMS
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‣Particle reconstruction 

‣Detector signals  physics objects  

‣Based on ParticleFlow algorithm 

‣Operational since 2010, this talk focuses on: 

‣Run2 data (2016-2018),  = 13 TeV 

‣Run3 data (2022-ongoing),  = 13.6 TeV

→

s

s

innermost layer outermost layer

photons

muontracking

K

calorimetercalorimetersystem
electromagnetic hadronic

system

muons

electrons

protons

pions

neutrons

Kaons

0
L

C. Lippmann − 2003

‣Multi-purpose detector 

‣Layered structure 

‣Tracker 

‣Electromagnetic calorimeter 

‣Hadron calorimeter 

‣Solenoid 

‣Muon chambers



Anna Benecke & Andrea Malara

Physics program
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‣Test the self-consistency of the Standard Model 

‣Huge variety of processes analysed, across multiple final states 

‣Majority of analyses already systematics-dominated 

‣TeV energy frontier 

‣Enormous range of energy investigated (up to 10TeV), several models studied
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Top mass l+jet

‣Jet-related uncertainties are becoming a limiting factor in many analyses 

‣Jets are abundant at the LHC -> hadronic decays, associated prod. with jets, … 

‣Jet energy scale  impact on: top, Higgs, multi-jets analyses →

https://cds.cern.ch/record/2806509
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‣Jet-related uncertainties are becoming a limiting factor in many analyses 

‣Jets are abundant at the LHC -> hadronic decays, associated prod. with jets, … 

‣Jet energy scale  impact on: top, Higgs, multi-jets analyses 

‣… but also boosted searches -> merged decay products 

‣Must be known well for a wide range in energy and pseudo rapidity

→

Dijet resonances
Top mass l+jet

https://arxiv.org/abs/1911.03947
https://cds.cern.ch/record/2806509
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As a consequence of the hadronisation of quarks and gluons produced in pp collisions, 
a collimated shower of hadrons (jet) is produced.

From detector signals to jet calibration

https://cms.cern/news/jets-cms-and-determination-their-energy-scale
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‣Information from all sub-detectors

From detector signals to jet calibration
Local reconstruction: 

Tracks, Calorimeter clusters
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Local reconstruction: 
Tracks, Calorimeter clusters

Particle flow (PF)

From detector signals to jet calibration

‣Information from all sub-detectors

‣Link tracks and calorimeter signals ‣Particle identification
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Particle flow (PF)
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From detector signals to jet calibration
Local reconstruction: 

Tracks, Calorimeter clusters ‣Information from all sub-detectors

‣Link tracks and calorimeter signals ‣Particle identification
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Particle flow (PF)
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Electromagnetic calorimeter Hadron calorimeter

From detector signals to jet calibration
Local reconstruction: 

Tracks, Calorimeter clusters ‣Information from all sub-detectors

‣Link tracks and calorimeter signals ‣Particle identification
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‣Charge hadron subtraction (CHS) ‣Pileup Per Particle Identification (Puppi)

Particle flow (PF)

Pileup mitigation

From detector signals to jet calibration
Local reconstruction: 

Tracks, Calorimeter clusters ‣Information from all sub-detectors

‣Link tracks and calorimeter signals ‣Particle identification
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Particle flow (PF)

Pileup mitigation

Jet clustering

From detector signals to jet calibration
Local reconstruction: 

Tracks, Calorimeter clusters ‣Information from all sub-detectors

‣Link tracks and calorimeter signals ‣Particle identification

‣Charge hadron subtraction (CHS) ‣Pileup Per Particle Identification (Puppi)

‣Algorithms (AK, CA, HOTVR, Xcone) ‣Cone radii (0.4, 0.8, 1.5, variable)
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‣Algorithms (AK, CA, HOTVR, Xcone) ‣Cone radii (0.4, 0.8, 1.5, variable)

‣Jet energy scale & resolution ‣Jet mass resolution

Particle flow (PF)

Pileup mitigation

Jet clustering

Jet calibration

From detector signals to jet calibration
Local reconstruction: 

Tracks, Calorimeter clusters ‣Information from all sub-detectors

‣Link tracks and calorimeter signals ‣Particle identification

‣Charge hadron subtraction (CHS) ‣Pileup Per Particle Identification (Puppi)
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Pileup adds additional energy to the whole detector

http://cds.cern.ch/record/1357882?ln=en
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Proton-Proton collisions @ LHC
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Pileup adds additional energy to the whole detector
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More data, more pileup
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3

energy of reconstructed photons, electrons, and hadrons. Algorithms for the rejection of this
noise are further discussed in Section 5.2.

3 Data and simulated samples

In this paper, data corresponding to an integrated luminosity of 35.9 fb�1 [1] taken in 2016 are
used. Figure 1 shows the PU conditions in the years 2016–2018. The number of pp interactions
is calculated from the instantaneous luminosity based on an estimated inelastic pp collision
cross section of 69.2 mb. This number is obtained using the PU counting method described in
the inelastic cross section measurements [11, 12]. In the following sections of this paper, we
distinguish between two definitions: “mean number of interactions per crossing” (abbreviated
“number of interactions” and denoted µ) and “number of vertices” (denoted Nvertices). Vertices
are reconstructed through track clustering using a deterministic annealing algorithm [8]. The
number of interactions is used to estimate the amount of PU in simulation. The number of
vertices can be determined in both data and simulation. Further details on the relationship
between µ and Nvertices are provided in Section 5.3. The studies presented in this paper focus
on the PU conditions in 2016, though the trends towards higher PU scenarios with up to 70
simultaneous interactions are explored as well. The trigger paths used for the data taking are
mentioned in each section.
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Figure 1: Distribution of the mean number of inelastic interactions per crossing (pileup) in data
for pp collisions in 2016 (dotted orange line), 2017 (dotted dashed light blue line), 2018 (dashed
navy blue line), and integrated over 2016–2018 (solid grey line). A total inelastic pp collision
cross section of 69.2 mb is chosen. The mean number of inelastic interactions per bunch crossing
is provided in the legend for each year.

Samples of simulated events are used to evaluate the performance of the PU mitigation tech-
niques discussed in this paper. The simulation of standard model events composed uniquely of
jets produced through the strong interaction, referred to as quantum chromodynamics (QCD)
multijet events, is performed with PYTHIA v8.212 [13] in standalone mode using the Lund
string fragmentation model [14, 15] for jets. For studies of lepton isolation, dedicated QCD mul-
tijet samples that are enriched in events containing electrons or muons (e.g., from heavy-flavor
meson decays) are used. The W and Z boson production in association with jets is simulated
at leading-order (LO) with the MADGRAPH5 aMC@NLO v2.2.2 [16] generator. Production of
top quark-antiquark pair (tt) events is simulated with POWHEG (v2) [17–19]. Single top quark
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https://arxiv.org/abs/2003.00503
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Challenges with pileup
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PU affects jet substructure, jet counting, lepton isolation…
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Chapter 7. Monte-Carlo studies 145
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Figure 7.1: The impact of NPU on the jet mass distribution. Top row: the raw jet mass distribution
for Z 0

! tt̄ final states with mZ0 = 1.5 TeV, in the presence of pileup with µ = 30, 60, 100, and 140,
before (left) and after (right) area–median pileup subtraction. The second and third rows show the
same results after trimming (middle row) and filtering (lower row). vertical size of the graphs

Top 2

Top 1

https://arxiv.org/abs/1801.09721
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Lepton Isolation

PUPPI with lepton 
PU dependent eff. due to PU particles 
that get not down-weighted enough

PUPPI no lepton 
PU dependent misidentification 
rate due to down weighting of LV 
particles 

CHS PUPPI

Neutral PU  
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Charged PU  
gets removed All sorts of PU  

gets removed

Muon

LV

PU

Click me 

https://cms.cern/news/how-cms-weeds-out-particles-pile
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1. Define variable ⍺ to discriminate pileup 
from leading vertex

PUPPI in Detail

2. Assume charged pileup has the same 
shape as neutral pileup 

3.  Use ⍺ on an event-by-event basis to 
calculate a per-particle weight
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1. Define variable ⍺ to discriminate pileup 
from leading vertex

http://cds.cern.ch/record/1357882?ln=en
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1. Define variable ⍺ to discriminate pileup 
from leading vertex

CMS-JME-18-001

https://arxiv.org/abs/2003.00503
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2. Assume charged pileup has the same 
shape as neutral pileup 

α

a.
u.

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1

10

210
| < 2.5ηPU sample, |

Data, charged

Simulation, charged

Data, neutral

Simulation, neutral

α
0 5 10 15 20 25

Si
m

ul
at

io
n

D
at

a

0
0.5

1
1.5

 (13 TeV)-13.18 nb

CMS
CMS-JME-18-001

https://arxiv.org/abs/2003.00503


Anna Benecke & Andrea Malara 24

3.  Use ⍺ on an event-by-event basis to 
calculate a per-particle weight

1. Calculate Median and RMS 
of charged PU shape (blue)


ᾱPU,  RMSPU
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2. For each particle calculate 

3.  Use ⍺ on an event-by-event basis to 
calculate a per-particle weight

χ2
i =

(αi − ᾱPU) |αi − ᾱPU |
RMS2

PU

1. Calculate Median and RMS 
of charged PU shape (blue)


ᾱPU,  RMSPU
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2. For each particle calculate 

3.  Use ⍺ on an event-by-event basis to 
calculate a per-particle weight

3. Assign a weight to each  
particle

wi = Fχ2,NDF=1(χ2
i )

1. Calculate Median and RMS 
of charged PU shape (blue)
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27

Performances of PUPPI jets/MET  were extensively studied and compared to CHS 
jets/PF MET in JME-18-001

CMS-JME-18-001

https://arxiv.org/abs/2003.00503
https://arxiv.org/abs/2003.00503


Anna Benecke & Andrea Malara

Jet reconstruction
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Starting point: cleaned PF candidates

[Albrecht, AB, Kogler, work in progress] 

Top 1

b-quark Quarks from W

Top 2

End point: two jets representing the 
top quark kinematics
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24 2 Phenomenology of Jet Substructure

Table 2.3 Numerical values of ρ and α for top quark decays for the approximation in (2.19). Shown
are the values for the minimum value that #Rmax can take, and the 70th, 80th and 90th percentiles
of #Rmax. All values are obtained for a quark threshold of pT,q > 20GeV

a requirement of pT,q > 30GeV leads to a drop of the efficiency to 70%, and with
pT,q > 40GeV the efficiency is only 60%.

Similar to the case of vector boson and H decays, a pT threshold on the quarks
leads to a change in the distribution of the angular distance between the quarks.
Since there are three quarks involved, the relevant quantity is the maximum angular
distance

#Rmax = max
[
#R(b, q),#R(b, q ′),#R(q, q ′)

]
, (2.18)

which represents a proxy for fully merged final states. Obviously, approxima-
tion (2.14) will not yield an accurate prediction for#Rmax. Surprisingly, it still gives
a relatively good estimate for the MPV of #Rmax, as can be seen in Fig. 2.10. How-
ever, the 1/pT scaling does not give an accurate description of the minimum value
#Rmax can take, and also cannot be used to predict a given percentile of the #Rmax

distribution. A better phenomenological approximation is obtained by modifying the
scaling with an exponent α, similar to (2.16),

#Rmax =
ρ

p α
T
. (2.19)

Numerical values for ρ and α are given in Table2.3, for the three percentiles shown
in Fig. 2.10. The values given approximate the shape of the three percentiles to within
1% in the range 200 < pT < 1500GeV.

Fig. 2.10 Maximum angular
distance #Rmax of the three
quarks from the hadronic top
quark decay, as a function of
the top quark pT. The
transverse momenta of the
three quarks b, q and q ′ are
required to be
pT,q > 20GeV. The fraction
of events contained within a
given interval in #Rmax are
shown by shaded areas, the
MPV is depicted by a dashed
line. For comparison, also
shown are the expressions
2mt/pT (solid line) and
(800GeV)/pT (dotted line)  [GeV]
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Advances in Jet Substructure at the LHC, R. Kogler

https://link.springer.com/book/10.1007/978-3-030-72858-8
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Fixed R clustering
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Variable R jet clustering
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Corrections based on simulation of pp 
collisions and detector response:  
  PU subtraction

‣Remove average offset due to PU  

‣Approx. 0.5 GeV extra energy 

‣per jet and per interaction 

‣Neutral component not removed by CHS 

‣Significant outside tracker acceptance 

210 310
[GeV]ptcl

T
p

0

20

40

60

80

100

 [%
]

pt
cl

T
Av

er
ag

e 
O

ffs
et

 / 
p

2018 Legacy (13 TeV)

CMS
Simulation
Preliminary

 (R = 0.4), PF+CHSTAnti-k
| < 5.0η3.0 < |

 < 10µ ≤ 0 
 < 20µ ≤10 
 < 30µ ≤20 
 < 40µ ≤30 
 < 50µ ≤40 

Private

Target



Anna Benecke & Andrea Malara

‣Remove average offset due to PU  

‣Approx. 0.5 GeV extra energy per jet  

‣per jet and per interaction 

‣Neutral component not removed by CHS 

‣Significant outside tracker acceptance 
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Corrections based on simulation of pp 
collisions and detector response:  
  PU subtraction
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Corrections based on simulation of pp 
collisions and detector response:  
  Jet response calibration 

Jet Calibration
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‣Core of the calibration 

‣Simulation-based 

‣Accounts for detector effects 

‣change in performance due to 
detector acceptance
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Corrections derived from data ‣Based on precision of other reference objects 

‣Electrons, photons, muons, other jets… 

‣Address different response in each sub-detector 

‣usually small corrections except in transition regions
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Run2 Run3

‣Usually small corrections offline for data 

‣means small effect on data online (trigger) 

‣Start of Run3: 

‣underestimated corrections for calorimeter 
energy scale (downstream) 

‣confirmed impact by jet energy scale (upstream) 

‣small fraction of data collected less efficiently
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39Successful workshop in Brussels!

Figure 3: Jet energy resolution as a function of the number of pileup interactions for W+jets events.
We compare the TOTAL algorithm (violet line) and the PUPPI algorithm (orange line) with the
ideal scenario of zero pileup interactions (black line). TOTAL is trained with fixed number of pileup
interactions, denoted by the vertical red line.

close to the beam axis. A predominant background in this search is the production (mediated by
the strong interaction) of a Z boson that decays into neutrinos. In Fig. 5, we demonstrate the
improvement in significance, which is defined as the signal yield S divided by the square root of
the background yield B, as a function of a selection on a linear classifier constructed from pmiss

T
and the dijet invariant mass. We find the improvement from TOTAL to be in the order of 15%
compared to PUPPI, consistent with the improvements in resolution for jets and pmiss

T . This would
lead to a better sensitivity in the search for such decays and significantly improve the expected
upper limit on the branching ratio of Higgs bosons to invisible particles quoted by the ATLAS and
CMS collaborations [24, 25].

Table 1: JER and pmiss
T resolutions for di↵erent loss function choices in the TOTAL algorithm and

for the PUPPI algorithm. In parentheses, we report the relative improvement of TOTAL with
respect to PUPPI.

QCD tt̄
JER pmiss

T res. JER pmiss
T res.

PUPPI 0.088 – 0.073 0.244
SWD 0.074 (-16%) – 0.060 (-18%) 0.221 (-9%)

SWD + pmiss
T 0.066 (-25%) – 0.053 (-27%) 0.186 (-24%)
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Link to DP notes 

ML  regressionpT

https://indico.cern.ch/event/1230157/
https://arxiv.org/abs/2211.02029
https://cds.cern.ch/record/2854697
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsDP21017
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Jet reconstruction
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‣Create particle-flow (PF) particles 

‣link of tracks, calorimeter deposits, muon chamber hits  

‣successfully used since Run1 

‣Atlas only recently moved to a similar algorithm 

‣Anti-   algorithm to cluster together PF particles 

‣small radius: R=0.4 (AK4) 

‣alternative algorithms: CA, HOTVR, XCone

kT
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Validation of PUPPI

42

Performances of PUPPI jets/MET  were extensively studied and compared to CHS 
jets/PF MET in JME-18-001
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7.1 Robustness of tagging algorithms 27
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Figure 16: The efficiency eS as a function of the generated particle pT for a working point
corresponding to eS = 30 (50)% for t quark (W/Z/H boson) identification. Upper left: t quark,
upper right: W boson, lower left: Z boson, lower right: H boson. The error bars represent
the statistical uncertainty in each specific bin, due to the limited number of simulated events.
Additional fiducial selection criteria applied to the jets are listed in the plots.

JME-18-002

https://arxiv.org/pdf/2004.08262.pdf
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Jet energy scale uncertainties

‣Uncertainty 1% for jets pt >100 GeV 

‣Primary goal it to bring down to 0.1% 

‣Improve techniques, reduce biases, 
understand better our detector 

‣Increasing contribution from PU 

‣Detector degradation: Ageing, damage, …
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Residual corrections ‣Based on precision of other reference objects 

‣Electrons, photons, muons, other jets… 

‣Address different response in each sub-detector 

‣usually small corrections except in transition regions

Reference

Extra jets

Target

PU

0 1 2 3 4 5
|jetη|

0.9

0.95

1

1.05

1.1

1.15

1.2<0
.3

0
α)

D
at

a
/R

M
C

(R

 (13 TeV)-12018 Legacy, 60 fb

CMS
Simulation
Preliminary

 (R = 0.4), PF+CHSTAnti-k
 = 120 GeVjet

T
p

MPF method
RunA
RunB
RunC
RunD



Anna Benecke & Andrea Malara

Machine learning: future perspective

46

Anomaly detection:

‣Identify temporary problems in the detector 

‣Save time and increase data-taking efficiency 

Link to DP notes 
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Regression for jet mass (and energy):

‣More performant wrt traditional algorithms 

‣Currently used for jet mass  

‣direct effect on analyses’s sensitivity 

‣Planning on simultaneous training of tagging and 
regression for energy and mass  

‣improve scale, resolution and flavour dependency

Link to DP notes 

https://cds.cern.ch/record/2854697
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsDP21017

