

Reconstructing jets at the LHC

Andrea Malara¹, Anna Benecke²

¹Université Libre De Bruxelles, ²Université Catholique de Louvain

Experimental setup: LHC

- Proton-proton collider
 - 27 km circumference
 - ► Up to $\sqrt{s} = 14$ TeV
- Host of 4 large experiments (+ several others)
 - ATLAS
 - CMS
 - LHCb
 - ALICE
- Vast physics programme
 - Standard Model physics
 - Higgs/top physics
 - TeV energy frontier

New physics
Anna Benecke & Andrea Malara

Experimental setup: CMS

- Multi-purpose detector
- Layered structure
 - Tracker
 - Electromagnetic calorimeter
 - Hadron calorimeter
 - Solenoid
 - Muon chambers
- Particle reconstruction
 - \blacktriangleright Detector signals \rightarrow physics objects
 - Based on ParticleFlow algorithm
- Operational since 2010, this talk focuses on:
 - ▶ Run2 data (2016-2018), $\sqrt{s} = 13$ TeV

Run3 data (2022-ongoing),
$$\sqrt{s} = 13.6$$
 TeV
Anna Benecke & Andrea Malara

Physics program

- Test the self-consistency of the Standard Model
 - Huge variety of processes analysed, across multiple final states
 - Majority of analyses already systematics-dominated
- TeV energy frontier
 - Enormous range of energy investigated (up to 10TeV), several models studied

Anna Benecke & Andrea Malara

Era of precision physics

Jet-related uncertainties are becoming a limiting factor in many analyses

Jets are abundant at the LHC -> hadronic decays, associated prod. with jets, ...

▶ Jet energy scale \rightarrow impact on: top, Higgs, multi-jets analyses

Anna Benecke & Andrea Malara

Era of precision physics

Jet-related uncertainties are becoming a limiting factor in many analyses

- Jets are abundant at the LHC -> hadronic decays, associated prod. with jets, ...
- > Jet energy scale \rightarrow impact on: top, Higgs, multi-jets analyses
- In but also boosted searches -> merged decay products
- Must be known well for a wide range in energy and pseudo rapidity

As a consequence of the hadronisation of quarks and gluons produced in pp collisions, a collimated shower of hadrons (jet) is produced.

Local reconstruction: Tracks, Calorimeter clusters

Information from all sub-detectors

Proton-Proton collisions @ LHC

Pileup adds additional energy to the whole detector

Proton-Proton collisions @ LHC

Pileup adds additional energy to the whole detector

More data, more pileup

Run 4

140-200

Challenges with pileup

Pileup mitigation in CMS

Click me

PUPPI in Detail

Anna Benecke & Andrea Malara

1. Calculate Median and RMS of charged PU shape (blue) $\bar{\alpha}_{PU}, RMS_{PU}$

Anna Benecke & Andrea Malara

1. Calculate Median and RMS of charged PU shape (blue) $\bar{\alpha}_{PU}$, RMS_{PU}

2. For each particle calculate

$$\chi_i^2 = \frac{(\alpha_i - \bar{\alpha}_{PU}) |\alpha_i - \bar{\alpha}_{PU}|}{RMS_{PU}^2}$$

1. Calculate Median and RMS of charged PU shape (blue) $\bar{\alpha}_{PU}$, RMS_{PU}

2. For each particle calculate

$$\chi_i^2 = \frac{(\alpha_i - \bar{\alpha}_{PU}) |\alpha_i - \bar{\alpha}_{PU}|}{RMS_{PU}^2}$$

3. Assign a weight to each particle

$$w_i = F_{\chi^2, NDF=1}(\chi_i^2)$$

Hard scattering

Anna Benecke & Andrea Malara

Validation of PUPPI

Performances of PUPPI jets/MET were extensively studied and compared to CHS jets/PF MET in <u>JME-18-001</u>

Starting point: cleaned PF candidates

End point: two jets representing the top quark kinematics

Fixed R clustering

Variable R jet clustering

- Corrections based on simulation of pp collisions and detector response: PU subtraction
 - Remove average offset due to PU
 - Approx. 0.5 GeV extra energy
 - per jet and per interaction
 - Neutral component not removed by CHS
 - Significant outside tracker acceptance

- Corrections based on simulation of pp collisions and detector response: PU subtraction
 - Remove average offset due to PU
- Approx. 0.5 GeV extra energy per jet
 - per jet and per interaction
- Neutral component not removed by CHS
- Significant outside tracker acceptance
- Not needed for Puppi

Corrections derived from data

- Based on precision of other reference objects
 - Electrons, photons, muons, other jets...
- Address different response in each sub-detector
 - usually small corrections except in transition regions

37

Jet Calibration in Run3

- means small effect on data online (trigger)
- Start of Run3:
 - underestimated corrections for calorimeter energy scale (downstream)
 - confirmed impact by jet energy scale (upstream)
 - small fraction of data collected less efficiently

Summary & Outlook

Successful workshop in Brussels!

- Create particle-flow (PF) particles
 - link of tracks, calorimeter deposits, muon chamber hits
 - successfully used since Run1
 - Atlas only recently moved to a similar algorithm
- > Anti- $k_{\rm T}$ algorithm to cluster together PF particles
 - small radius: R=0.4 (AK4)

alternative algorithms: CA, HOTVR, XCone

Validation of PUPPI

Performances of PUPPI jets/MET were extensively studied and compared to CHS jets/PF MET in JME-18-001

HOTVR

Jet energy scale uncertainties

- Uncertainty $\sim 1\%$ for jets pt >100 GeV
 - Primary goal it to bring down to 0.1%
 - Improve techniques, reduce biases, understand better our detector
- Increasing contribution from PU
- Detector degradation: Ageing, damage, …

Machine learning: future perspective

Anomaly detection:

Identify temporary problems in the detector
 Save time and increase data-taking efficiency

Regression for jet mass (and energy):

- More performant wrt traditional algorithms
- Currently used for jet mass
 - direct effect on analyses's sensitivity
- Planning on simultaneous training of tagging and regression for energy and mass
 - improve scale, resolution and flavour dependency

46