Prospects for O4 of LIGO-Virgo-KAGRA

Max Lalleman on behalf of BelGrav be.hep meeting Summer Solstice Mons

ULB:

- Eleni Bagui (CBC/SGWB)
- Sébastien Clesse (CBC/SGWB)

UCL:

- Antoine Depasse (CW)
- Matthias Vereecken (CBC)
- Federico De Lillo (SGWB)
- Jishnu Suresh (SGWB)
- Stavros Venikoudis (SGWB)
- Giacomo Bruno (SGWB)
- Ricardo Cabrita (Instrumentation)
- Morgane Zeoli (Instrumentation)
- Joris van Heijningen (Instrumentation)
- Andres Jorge Tanasijczuk (Computing)

ULiège:

- Jean-René Cudell (CBC)
- Vincent Boudart (Burst)
- Maxime Fays (Burst)

• Morgane Zeoli (Instr.)

VUB:

- Simone Blasi (SGWB)
- Hannah Duval (SGWB)
- Aäron Rase (SGWB)
- Alba Romero-Rodríguez (SGWB)
- Kevin Turbang (SGWB)
- Alberto Mariotti (SGWB)
- Alexander Sevrin
 (SGWB)

UGent:

- Freija Beirnaert (CBC)
- Gergely Dálya (Burst/CBC)
- Cezary Turski (CBC)
- Archisman Ghosh (CBC)
- Daniela Pascucci (Instrumentation)

UAntwerpen:

BelGrav

- Guillaume Boileau (SGWB)
- Kamiel Janssens (SGWB)
- Max Lalleman (SGWB)
- Kevin Turbang (SGWB)
- Nick van Remortel (SGWB)
- Anoop Koushik (Instrumentation)
- Kumar Akhil Kukkadapu (Instrumentation)
- Pengbo Li (Instrumentation)
- Hans Van Haevermaet
 (Instrumentation)

KULeuven in Virgo:

- Alberto Binetti
- Thomas Hertog
- Wei-Fan Hsu
- Tjonnie Li
- Jean-Pierre Locquet
- Simon Maenaut
- Simon Mellaerts
- Arthur Offermans
- Maria Recaman
- Koen Schouteden
- Jin Won Seo
- Milan Wils

LIGO-Virgo-KAGRA (LVK)

Operational Planned

Gravitational Wave Observatories

GEO600

Virgo

KAGRA

LIGO India

https://www.ligo.calt ech.edu/image/ligo2 0160211c

Structure of LVK

Continuous Waves

Observing runs, what are they?

First merger event in O1, now \sim 100 discoveries

Experimental updates in O4

How to achieve these goals?

LIGO:

- Increasing Arm Power
- Frequency dependent Squeezing + new cavity
- Squeezed light efficacy
- Low frequency noise reduction

Virgo:

- Signal Recycling Cavity
- Increased Input Power
- Input Mode Cleaner Payload
- Frequency Dependent Squeezing
- 3 month delay in joining O4

Experimental upgrades O4: KAGRA

What is special about KAGRA?

- Cryogenic to reduce thermal noise
- Underground
- Will ramp up sensitivity quickly next few years
- Did official first run after end of O3 with GEO: O3GK (Prog. of Theor. and Exp. Phys. ptac093)

Added for O4:

- Increased laser power
- Angular Sensing Control
- Baffles
- Mirrors at cryogenic temperature
- Lock can now be achieved even with disturbance of sea waves.

Prog. of Theor. and Exp. Phys. ptac093

Inspiral/CBC What have we seen already?

Mass gap?

https://www.ligo.caltech.edu/L A/image/ligo20211107a Credits: LIGO-Virgo / Aaron Geller / Northwestern University.

CBC

Expected amount of events:

- ~ 100s of binary black holes
- ~ 10 events with neutron stars
- ~ O(1) multimessenger event
- Unknown exceptional events

Keep an eye on our public alert database: <u>https://gracedb.ligo.org/</u> or check out

https://emfollow.docs.ligo.org/userguide/, https://wiki.gw-astronomy.org/OpenLVEM

Some alerts have already been pushed out (<u>https://gcn.nasa.gov/circulars?query=LIGO%2FVirgo</u>)

S230518h -> FAR: 1 per 98.463 years

https://gcn.nasa.gov/circulars/33813: NSBH candidate

GraceDB: https://gracedb.ligo.org/superevents/S230518h/view/

CBC

- → Neutrinos and GWs from CBCs (in AGN accretion disk)
- → Subsolar mass CBCs (Monthly Notices of the RAS, stad588, https://arxiv.org/abs/2301.11619)

Continuous Waves

- Search for continuous GW signals, e.g. spinning neutron stars
- Monochromatic, but weak signal

- We are ready to make the first CW detection
- Collaboration with stochastic group on dark photon as DM
- Spin-down limit has been reached.

CW: Searches

Multiple types of searches:

- Targeted searches -> Known pulsars
- Directed searches -> Known non-pulsar sources
- All-sky searches -> Blind search for e.g. non-EM pulsars
- Also probing for exotic physics, like DM interaction and Boson clouds.

BelGrav

Ultra-light boson cloud GW creation.

- → Extracting energy from BH
- → Bosons annihilate and GWs are emitted
- → Focus on signals from known binary systems

https://cga.anu.edu.au/research/projects/gravitational-waves-ultralight-boso n-clouds-around-black-holes

Burst

Low latency pipelines are vetted and tested for O4

Supernovae research

-> Short duration follow-up on interesting supernovae

Long duration: final tests for pipelines

Using O3 data, Burst waveform models were injected -> Challenge to test search pipelines

They worked with CBC on O3 FRB paper

Also preparing for burst detections in O4

https://airandspace.si.edu/exhibitions/outside-the-spacecraft/online/image-det ail.cfm?id=3117, Credit: NASA, ESA, J. Hester (Arizona State University)

Burst: new tool

BelGrav

Developing machine learning pipeline for long duration GWpyxel:

- Classify the "anomaly" of a pixel.
- Train on background using time slides.
- Train with random injected chirp signals
- Capability added to discriminate glitches from signals

Stochastic background of GW's

Stochastic background is superposition of weak sources.

Rely on cross-correlation data analysis methods.

Nelson Christensen 2019 Rep. Prog. Phys. 82 016903

Astrophysical background

Prospects of discovering the astrophysical background

O5 -> Medium probability

O4 -> Probably not

Still the best known path to first stochastic discovery of LVK

Mock data challenge to prepare for O5 sensitivity

Isotropic stochastic search

Introduced new pipeline: pygwb, replacing older MATLAB code

- Better performance
- Tested on simulated and real O3 data

SSI or stochastic search for intermittent backgrounds

Isotropic search: SSI

Step by step getting closer to real data analysis, maybe after O4?

Phys. Rev. Lett. 120, 091101

Anisotropic stochastic search

Isotropic averages over directions, what if we do not?

Same pipeline as in O3: PyStoch (Phys. Rev. D 98. 024001)

All sky all frequency (ASAF) model-independent analysis as basis

- → Folded data will be used
- → Derive narrowband and broadband from it
- → Spherical harmonics
- → In case of outliers -> frequency info given to CW and DQ

Astrophysical Implications and PE

Cosmological Implications and PE

Multiple exotic models exist.

- → Domain walls
- → First Order Phase Transitions
- → Stiff Equation / Kination
- → Parity Violation
- → Inflation
- → Primordial Black Holes

Illustration of domain walls

Credits: A. Rase made with CosmoLattice

Bubbles after FOPT

Credits: K. Turbang

Exciting times ahead!

- Many more CBCs to be discovered
 - Able to perform population analysis
- Multimessenger event possible (neutrinos?)
- CW updating pipelines and hoping for first detection
- Bursts pipelines are tested and ready for O4
- Stochastic background searches updated and refined
- O4 and O5 usher in new age of GW: statistics of events

Thanks to everybody who helped me make these slides!

Back-up slides

Structure of O4

- → Started on 24th of May
- → Will last for 20 months
- \rightarrow Two months of commissioning included
- → Virgo joins later
- \rightarrow KAGRA joins, goes down, and joins back at the end
- → Approx. 30% more sensitive
- → A merger event every 2 or 3 days

Antenna patterns LVK and benefit of LIGO-India

HHLV

HLVI

- + Duty cycle
- + Better localisation

http://www.gw-indigo.org/tiki-index.php?page=Scientific+Benefits+of+LIGO-India

Stochastic detchar

In O3, most work was performed at the end of the run.

Now: more proactive approach

- → Weekly DQ issues follow-up, lines in StochDQShifts.
- → Producing notch lists (bi-)monthly.
- → Workload is spread over more time + more people involved.

Tools:

- → Stochmon: Daily run over data
- → pygwb: (bi-)monthly run
- → Line/comb detection tools: STAMP-PEM, Witspec, Fscan
- → Injections: magnetic, correlated magnetic, hardware

Acronyms

- LVK: LIGO-Virgo-KAGRA Collaboration
- **CW**: Continuous Waves
- SGWB: Stochastic Gravitational-Wave Background
- **O1-5**: Observing Run 1-5 from LVK
- **CBC**: Compact Binary Coalescences
- FAR: False Alarm Rate
- **GW**: Gravitational Wave
- AGN: Active Galactic Nuclei
- **MSP**: Milli-Second Pulsars
- **EM**: Electromagnetic
- DM: Dark Matter
- **PBH**: Primordial Black Hole
- **DQ**: Data Quality (group)
- FRB: Fast Radio Burst

References for figures

[1] Image | Gravitational-Wave Observatories Across the Globe | LIGO Lab | Caltech

[2] Abbott, Benjamin P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2016) "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. **116** (6): 061102. https://arxiv.org/abs/1602.03837 https://doi.org/10.1103/PhysRevLett.116.061102

[3] https://www.ligo.org/science/GW-Burst.php

[4] https://www.ligo.org/science/GW-Continuous.php

[5] https://www.ligo.org/science/GW-Stochastic.php

[6] https://observing.docs.ligo.org/plan/

[7] <u>https://www.virgo-gw.eu/science/detector/optical-layout/</u>

[8] Abe, H.; et al. (KAGRA Collaboration) (2022) "Performance of the KAGRA detector during the first joint observation with GEO 600 (O3GK)". Progress of Theoretical and Experimental Physics. ptac093. <u>https://arxiv.org/abs/2203.07011</u> <u>https://doi.org/10.1093/ptep/ptac093</u>

[9] https://www.ligo.caltech.edu/LA/image/ligo20211107a

[10] https://gracedb.ligo.org/superevents/S230518h/view/

[11] https://cw.docs.ligo.org/public/

[12] https://cga.anu.edu.au/research/projects/gravitational-waves-ultralight-boson-clouds-around-black-holes

[13] https://airandspace.si.edu/exhibitions/outside-the-spacecraft/online/image-detail.cfm?id=3117

[14] Nelson Christensen. "Stochastic gravitational wave backgrounds". In: Reports on Progress in Physics 82.1 (Nov. 2018), p. 016903. ISSN: 1361-6633. DOI: 10.1088/1361-6633/aae6b5. URL: https://doi.org/10.1088/1361-6633/aae6b5. URL: https://doi.org/10.1088/1361-6633/aae6b5.

[15] Abbott, R. et al. (LVK Collaboration) (2023) "Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3." *Physical Review X* **13** (1): 011048. <u>https://arxiv.org/abs/2111.03634</u> <u>https://doi.org/10.1103/PhysRevX.13.011048</u>

[16] Renzini, A.; et al. "pygwb: Python-based library for gravitational-wave background searches". https://arxiv.org/abs/2303.15696

[17] Abbott, B.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2017) "GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences." Physical review letters. **120** (9): 091101. <u>https://arxiv.org/abs/1710.05837</u>

https://doi.org/10.1103/PhysRevLett.120.091101

[18] Lawrence, J.; et al. (2023) "A stochastic search for intermittent gravitational-wave backgrounds". Physical Review D **107** (10): 103026. <u>https://arxiv.org/abs/2301.07675</u> <u>https://doi.org/10.1103/PhysRevD.107.103026</u>

[19] Callister, Thomas A. et al. (2020) "Shouts and Murmurs: Combining Individual Gravitational-wave Sources with the Stochastic Background to Measure the History of Binary Black Hole Mergers." The Astrophysical Journal Letters 896 L32. <u>https://arxiv.org/abs/2003.12152</u> <u>https://doi.org/10.3847/2041-8213/ab9743</u>
 [20] Turbang, K. The Strong CP Problem and Gravitational Waves