First observation of four top quark production at CMS

Niels Van den Bossche on behalf of the CMS Collaboration Be.HEP Solstice, June 23, 2023

Quick introduction on top quark physics

Heaviest standard model particle

- Discovered at Tevatron in 1995
- LHC is first top quark factory
- Usually produced in pairs: **tt production**
 - Cross section at 13 TeV: 833.9 pb

LHC is first collider where **precision top physics** is possible

- Precise measurements of top quark properties
 - Even the **top-Higgs Yukawa** coupling
- Measurements of top associated production: e.g. tt + W boson
- Search for new physics in top sector
 - Directly through new particles
 - Indirectly through EFT,...

What is four top production?

Four top production is an **extremely rare standard model (SM)** process: $-\sigma(tttt)_{NIO+NII}$,=13.4^{+1.0}, fb at 13 TeV [M. Van Beekveld, A. Kulesza, L. Moreno Valero; ArXiv:2212.03259]

But why are we interested?

- Sensitivity to top-Higgs Yukawa coupling
- Large EW corrections, partly in top-top scattering
- BSM physics: 2HDM, SUSY, ...
- EFT: sensitivity to color singlet 4-fermion operators

3

Signatures

Large object multiplicity final state

Each top decays to W+b, so the detector signature is characterized by:

• 4 b-quarks leading to jets

the decay	products	of 4 W	bosons	dilepton
		4		

• 2 quarks or a lepton + neutrino

Three analysis strategies:

- All hadronic: huge QCD background
- Single lepton and opposite sign dilepton (1L, OSDL)
 - Large branching fraction but large irreducible background (from tt)
- Same-sign dilepton and multilepton (SSDL, ML)
 - Small branching fraction and high purity
 - \circ "Golden channels" of four tops

Note: only muons or electrons are counted as leptons, taus decay inside the detector and can lead to hadrons

Translated into results

And a 2018 projection

Experimental challenges

Extremely rare:

- 1 four top event for every 65k top-pair events
- 1850 four top events expects in Run 2 dataset
- 240 in same-sign dilepton and multilepton final states
 - Further reduced by acceptance effects and efficiencies of the detector, object reconstruction

Signature easily imitated by more common processes with additional radiation

7

Analysing same-sign dilepton and multilepton channels

Selecting leptons

- -pT as low as possible \rightarrow big effect on acceptance
 - _pT > 10 GeV
 - Triggers: pT > 25 (20) GeV for
 - (sub)leading leptons
- Already 2 important backgrounds at this first step:
 - 1) Charge mis-identified leptons

– tŧ □ 2I, 2v, 2b

9

Selecting leptons: charge misidentification

- CMS performs 3 charge measurements
- Usually perform majority vote
- In an analysis like this: require all to be the same
 - Has an impact on the selection efficiency

Selecting leptons

- -pT as low as possible \rightarrow big effect on acceptance
 - _pT > 10 GeV
- Already 2 important backgrounds at this first step:
 - 1) Charge mis-identified leptons
 - tt □ 2I, 2v, 2b
 - 2) Additional "nonprompt" leptons $-tt \Box 2l, 2v, 2b OR 1l, 1v, 2b, 2q$

Selecting leptons: nonprompt reduction

- Use a BDT to distinguish prompt vs nonprompt leptons
- Similar used in ttH, tZq,... measurements
- Major improvement at low momentum

Selecting jets

- Again, pT as low as possible: pT > 25 GeV
- b-tagging of jets:
 - Properties of jets coming from b-quarks slightly different than jets from lighter quarks
 - With Machine Learning, we can try to identify which ones come from b-quarks
 - Continuously improving: use model with RNN architecture

Event selection

- Select four top phase space:
 - Cuts on number of (b)-jets and available energy in the event
 - Also remove events with Z-boson resonances
- -2 strategies:
 - 1. Cut out a high purity region and find a fitting variable
 - Usually fitting variable is a BDT output
 - Why bother with finding high purity?
 - 2. Keep as many signal events and let machine learning do the work

Based on this idea: 3 signal regions, differ on the number of leptons

Selection also optimized for each signal region

Event selection

– Select four top phase space:

Based on this idea: 3 signal regions, differ on the number of leptons Selection also optimized for each signal region

Last step: machine learning

In each Signal Region: multiclassification	×	1 _E
BDT with 3 classes:	E	0.9
– tttt-class: signal	T score	0.8
– ttX-class: ttW+ttZ+ttH		0.7
– tt-class: nonprompt and charge mis-ID	BC	0.6
background		0.4
– Trained on various variables:		0.3
 Angles between leptons, jets 		0.2
 Top reconstruction variables 		0.1
 BDTs surprisingly powerful, would be 		0 [⊟]
interesting to compare with a GNN		

16

Backgrounds: ttX processes

- Irreducible backgrounds: ttW, ttZ, ttH
 - Hard process does contain less particles -> easily distinguished?
 - No! These processes occur with additional (b-)jets

General treatment:

- Predicted from simulations
- Input theory cross sections

Let cross section of ttW and ttZ float free in fit

- Uncertainty on ttX+b(b)
- Uncertainty on ttW+jets
 - Motivated by difficult modelling

CMS Experiment at the LHC, CERN Data recorded: 2018-Sep-07 02:15:53.337408 GMT Run / Event / LS: 322356 / 153159025 / 79

Results

- Template fit to
 - 1 distribution from each control region
 - BDT output score per BDT class in signal regions
- First observation of four top production -5.6σ observed, 4.9σ expected
- $-\sigma(t\bar{t}t\bar{t}\bar{t}) = 17.7^{+3.7}_{-3.5} \text{ (stat)} ^{+2.3}_{-1.9} \text{ (syst) } \text{fb} = 17.7^{+4.4}_{-4.0} \text{ fb}$

Result consistent with Standard Model

Results per channel

Triple tops: the highly correlated brother

- Triple top production is a collection of 2 processes:
 - ttt + quark
 - ttt + W boson
- Especially last one: four tops with one b-quark less
- Luckily 10 times more rare
 - Cross section: 2 fb @ NLO QCD + LO EW
 - Calculation provided by Gauthier Durieux, looking

forward to future exchange

Summary and outlook

- Four top production is observed for the first time at CMS (also at ATLAS):
 - CMS: <u>ArXiv:2305.13439</u>
 - ATLAS: <u>ArXiv:2303.15061</u>
- Measured cross section compatible with standard model prediction
- Run 3 is promising:
 - Many improvements on the jet side
 - New machine Learning developments for b-tagging

ATLAS+CMS Preliminary

 $\sigma_{ttt\bar{t}} = 12.0^{+2.2}_{-2.5}$ (scale) fb JHEP 02 (2018) 031 NLO(QCD+EW)

ATLAS, 1L/2LOS, 139 fb⁻¹ JHEP 11 (2021) 118

ATLAS, comb., 139 fb⁻¹ JHEP 11 (2021) 118

CMS, 1L/2LOS/all-had, 138 fb⁻¹ arXiv:2303.03864

CMS, comb., 138 fb⁻¹ arXiv:2303.03864

ATLAS, 2LSS/3L, 140 fb⁻¹ arXiv:2303.15061

CMS, 2LSS/3L, 138 fb⁻¹ arXiv:2305.13439

ATLAS and CMS observe simultaneous production of four top quarks

The ATLAS and CMS collaborations have both observed the simultaneous production of four top quarks, a rare phenomenon that could hold the key to physics beyond the Standard Model

24 MARCH, 2023 | By Naomi Dinmore

