Challenges and Opportunities for Optical Neural Network

Arka Majumdar

Electrical and Computer Engineering Physics Department

University of Washington, Seattle

https://labs.ece.washington.edu

Email: arka@uw.edu

Team and Funding

My team at UW:

Luocheng Huang Quentin Tanguy Johannes Froch Anna Wirth-Singh Zheyi Han Saswata Mukherjee Zhuoran Fang Rui Chen

Alumni:

Alan Zhan (in Tunoptix) Shane Colburn (in Tunoptix) Elyas Bayati (in Tunoptix) James Whitehead (in Micron) Albert Ryou (in Atom Computing) Jiajiu Zheng (in Analog Photonics)

Collaborators:

Eli Shlizerman (UW) Karl Bohringer (UW) Felix Heide (Princeton) Steven Johnson (MIT)

facebook Reality Labs TUN PTIX

Why Photonics for computing?

Light provides an enormous bandwidth, possibility of wavelength division multiplexing

Transponders Transponders MUX DEMUX TP5 link 1 TP1 link 1 TP2 TP6 link 2 link 2 TP3 TP7 link 3 link 3 TP8 link 4 TP4 link 4 signal flow

Communication through optical waveguides can be almost lossless

Light does not interact with other light: there is an inherent parallelism offered by light

Why optical computing failed: Intrinsic and extrinsic reasons

Large size and misalignment

Lack of nonlinearity

Light does not interact easily: the input-output relation is generally linear.

Lack of tunability

Fast tuning of optical phase by 2π with low power is difficult!!

Skepticism about neural network

The surge in ANN is recent phenomenon

Electronic computers and software

Opportunities for today

- Large computational resources for design
- Sophisticated nanofabrication technology

Emerging material systems for tunable photonics

Quantum-confined structures, solution-processed materials, atomically thin materials, phasechange materials

Emerging material systems for nonlinear photonics

- Novel resonator structure (multimode)
- Nonlinear materials: AlN, LiNbO3, 2D materials
- Organic materials

Photonics in computing

Analog computing (all-optical)

Nature Photonics, 2010 No explicit signal transduction

Hybrid Electro-photonics computing

Nature Photonics, 2017

Computational imaging and computer vision with

- Capture image with existing camera and software processing to extract features
- Capture information in a ٠ non-canonical basis, and with software create image
- Very little innovation in • photonic devices.

Hybrid integrated photonics for VMM and nonlinear activation

Zheng et al., Advanced Materials, 2020 Zheng et al., ACS Applied Materials & Interfaces, 2020 Fang et al., Nature Nanotechnology, 2022 Zheng et al., ACS Photonics, 2019 Chen at al., ACS Photonics, 2022 Fang et al., Adv. Optical materials, 2021 Chen et al., arXiv:2301.00468, 2023

Metaphotonic information processing

Colburn et al., Science Advances, 2018 Colburn et al., ACS Photonics, 2019 Colburn et al., Applied Optics 2021 Xiang et al., Applied Optics 2022 Colburn et al., Nature Communications, 2021

Basic block of neural network: Vector-Matrix multiplication (VMM)

hungry and limit scalability: $\Delta n < 0.001$

Englund, Soljacic, 2017

Non-volatile phase-change materials (PCMs): GST for in-memory computing

Integration of GST with silicon photonics and optical switching

Zheng, J. et al. Opt. Mater. Express 8(6) (2018).

Reset (amorphization)

- A single pulse of $\sim 31 \text{ mJ/cm}^2$.
- Equivalent energy: ~9 aJ/nm³ (~620 pJ for GST on waveguide)
- Fundamental limit: 1.2 aJ/nm³

Set (crystallization)

- 450 numbers of pulses with ~10 mJ/cm² at 50 kHz.
- Equivalent energy: ~3 aJ/nm³ (~200 pJ for GST on waveguide).

Consideration of the design of broadband switches

Traditional MZI switch 😥

Directional coupler (DC) switch

When $L = L_{\pi}$, change the phase of one arm, the light will switch port.

Large insertion loss and cross talk!

GST Si SiO₂ Ber Cross

High loss associated with cGST is circumvented!

Low loss broadband switch

Phase-change 2×2 DC switch: experiment

Zheng, J. et al. ACS Photonics, 2019

<1dB insertion loss even when the material loss is very high.

Electrical control of broadband nonvolatile switch: Programmable Unit for VMM

Chen, R. et al. ACS Photonics 9(6) (2022).

Broadband Operation and >5000 Cycles

Chen, R. et al. ACS Photonics 9(6) (2022).

Phase transition actuated via graphene heater

Fang, Z. et al. Nature Nanotechnology 17(8) (2022)

Broadband operation with high endurance

Comparative Advantage: Approaching the Fundamental Limit of Energy

Fang, Z. et al. Nature Nanotechnology 17(8) (2022)

Wide bandgap PCMs: SbS and SbSe

Nonvolatile microring switch integrated with Sb₂S₃ phase shifter

<u>Chen, R.</u> et al. arXiv (2023)

Quasi-continuous tuning: Multi-level operation

Chen, R. et al. arXiv (2023)

PCM integrated Silicon Photonic Switch for neural network

Nonlinear activation function: Self-electro-optic effect

Symmetric self-electro-optic device

Majumdar et al., Optics Letter, 2014

Is integrated photonics the way to go?

Pros:

- Long travel path and resonant structures: reconfigurability and nonlinearity
- On-chip, compact footprint
- Alignment can be performed during lithography with sub-wavelength resolution

Cons:

- Scalability will be an issue: number of waveguides will be same as number of input data points ($N \sim 1000$)
- Number of MZI or switches $(N^2 \sim 10^6)$
- Resonant structures can require significant power and control circuits to stabilize: a serious problem for WDM
- Reconfigurability and nonlinearity still very power hungry
- May not be suitable to capture signal which are already in optical domain (generally free space)

Can we do deep network?

Colburn, Applied Optics, 2019

- Hybrid approach: Each signal transduction consumes energy and add latency
- All optical approach: how do we regenerate signal as it propagates?

Hybrid integrated photonics for VMM and nonlinear activation

Zheng et al., Advanced Materials, 2020 Zheng et al., ACS Applied Materials & Interfaces, 2020 Fang et al., Nature Nanotechnology, 2022 Zheng et al., ACS Photonics, 2019 Chen at al., ACS Photonics, 2022 Fang et al., Adv. Optical materials, 2021 Chen et al., arXiv:2301.00468, 2023

Metaphotonic information processing

Colburn et al., Science Advances, 2018 Colburn et al., ACS Photonics, 2019 Colburn et al., Applied Optics 2021 Xiang et al., Applied Optics 2022 Colburn et al., Nature Communications, 2021

Synergy of photonics and computation: software defined optics

Computational Sensors: Software-defined Meta-Optics

Full-color imaging with single meta-optics

Computational Spectrometer

ACS Photonics, 2022

Varifocal Imaging

Metasurface Photonics Research, 2022

3D Imaging

Double aperture metalens system for 3D imaging *ACS Photonics, 2020*

Rethinking DNN architecture

Using incoherent light: no extra power if ambient light is used. The electronic layer power and latency will increase with N.

The total power and latency for the just binning (fully electronic) and via meta-optical encoder should be same.

End to end design to define the optics

Classification Accuracy

Knowledge distillation to circumvent nonlinear activation: Spectral CNN Linear Counterpart (SCLC)

Incoherent imaging is a convolution process

$$|I(x,y)| = |O(x,y)| * |h(x,y)|^2$$

|O(x,y)| : Object Intensity

|I(x, y)| : Image Intensity

|h(x, y)| : Coherent Point Spread Function

 $|h(x, y)|^2$: Incoherent Point Spread Function

Convolutional Kernel K(x, y) $K_p(x, y)$: Positive part of K(x, y) $K_n(x, y)$: Negative part of K(x, y)

Design single meta-optics to have the desired PSF. Such dual-aperture synthesis process did not work in the past due to noise. We believe the computational backend is robust against the excess noise.

Fabricated Structures

Zoom in

Measured PSF

More chip 2 PSF error map

Imaging with a different convolutional kernel

We see 75% classification accuracy for CIFAR-10 and corresponding electrical network provides only 65% accuracy.

Need nonlinear processing of an image

Majumdar Lab, Phys. Rev. Applied, 5, 054001, 2016

Nonlinear activation: slow but strong nonlinearity

Vol. 9, No. 4 / April 2021 / Photonics Research

PHYSICAL REVIEW A 101, 013824 (2020)

- To exploit the parallelism of light we need to perform nonlinear operation in parallel
- Such parallel operation can provide large bit-rate, even with slow nonlinearity, like saturable absorption in thermal atoms.
- Can we exploit cavities that preserve the image integrity? Can we use flat-band in photonic structure?

But the electrical control and optical output can be decoupled

Large space-bandwidth product spatial light modulator

Static optics to aggregate the beams

Electrical control of subwavelength pixels not arranged in an array (reduced routing complexity)

Meta-optics to interface integrated photonics and free-space

Each meta-optics get light from its own grating and shapes it differently.

How to increase the space-bandwidth product of SLM using meta-optics?

Static optics to aggregate the beams

Electrical control of subwavelength pixels not arranged in an array (reduced routing complexity) Integrated photonics to create many beams (far from each other)

Aggregate the beams using meta-optics in an ordered array

Summary

Integrated photonic based solution

- Phase-change material can significantly reduce the size and energy of the phase shifter.
- Self-electro-optic devices can provide optoelectronic nonlinearity.
- Scalability still remains a problem.

Metasurface-based optical computing

- Object detection and classification using metaphotonics and computational postprocessing.
- Post-processing can also mitigate fabrication error.
- Functionality can be improved with fast spatial light modulator and free-space nonlinearity.

My take on Optical Information Processing: Game of Computing

Goal is not to build best optical computer, but rather to build one superior to its electrical implementation!! Need to remember history, focus on scalability, reliability, reconfigurability and nonlinearity. Find a niche application for ONN!!

Summary

Integrated photonic based solution

- Phase-change material can significantly reduce the size and energy of the phase shifter.
- Self-electro-optic devices can provide optoelectronic nonlinearity.
- Scalability still remains a problem.

Metasurface-based optical computing

- Object detection and classification using metaphotonics and computational postprocessing.
- Post-processing can also mitigate fabrication error.
- Functionality can be improved with fast spatial light modulator and free-space nonlinearity.