

MuC Physics Meeting, 4 May 2023

Heavy Vector Triplets

Andrea Thamm The University of Melbourne

based on arXiv:1402.4431, 1502.01701 and 2207.05091

Heavy Vector Resonances

- heavy vectors among the most motivated direct searches
- since they appear in many NP models

• various colourless vectors

[del Aguila, de Blas, Perez-Victoria, arXiv:1005.3998]

simplified model approach

- singlets (work in progress)
- no coupling to quarks studied here!
- no coupling to fermions

Heavy Vector Triplets

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0})$$

+ $i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a}$
+ $\frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$

Coupling to SM Vectors

Heavy Vector Triplets

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0}) + i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a} + \frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$$

- Couplings among vectors
- do not contribute to V decays
- do not contribute to single production
- only effects through (usually small) VW mixing

• irrelevant for phenomenology only need (c_H, c_F)

Heavy Vector Triplets

$$\mathcal{L}_{V} = -\frac{1}{4} D_{[\mu} V_{\nu]}^{a} D^{[\mu} V^{\nu] a} + \frac{m_{V}^{2}}{2} V_{\mu}^{a} V^{\mu a} \qquad V = (V^{+}, V^{-}, V^{0})$$

+ $i g_{V} c_{H} V_{\mu}^{a} H^{\dagger} \tau^{a} \overleftrightarrow{D}^{\mu} H + \frac{g^{2}}{g_{V}} c_{F} V_{\mu}^{a} J_{F}^{\mu a}$
+ $\frac{g_{V}}{2} c_{VVV} \epsilon_{abc} V_{\mu}^{a} V_{\nu}^{b} D^{[\mu} V^{\nu] c} + g_{V}^{2} c_{VVHH} V_{\mu}^{a} V^{\mu a} H^{\dagger} H - \frac{g}{2} c_{VVW} \epsilon_{abc} W^{\mu \nu a} V_{\mu}^{b} V_{\nu}^{c}$

Weakly coupled model

Strongly coupled model

$$g_V$$
 typical strength of V interactions

 $g_V \sim g \sim 1 \qquad \qquad 1 < g_V \le 4\pi$

 c_i dimensionless coefficients

 $c_H \sim -g^2/g_V^2$ and $c_F \sim 1$

$$c_H \sim c_F \sim 1$$

HVT Production Rates

DY and VBF production

- can compute production rates analytically
- easily rescale to different points in parameter space

HVT Decay Widths

relevant decay channels: di-lepton, di-quark, di-boson •

 M_0 [GeV]

0

$$\Gamma_{V_{\pm} \to f\bar{f}'} \simeq 2 \Gamma_{V_{0} \to f\bar{f}} \simeq N_{c}[f] \left(\frac{g^{2}c_{F}}{g_{V}}\right)^{2} \frac{M_{V}}{96\pi},$$

$$\Gamma_{V_{0} \to W_{\pm}^{+}W_{\pm}^{-}} \simeq \Gamma_{V_{\pm} \to W_{\pm}^{\pm}Z_{L}} \simeq \frac{g_{V}^{2}c_{H}^{2}M_{V}}{192\pi} [1 + \mathcal{O}(\zeta^{2})]$$

$$\Gamma_{V_{0} \to Z_{L},h} \simeq \Gamma_{V_{\pm} \to W_{\pm}^{\pm}h} \simeq \frac{g_{V}^{2}c_{H}^{2}M_{V}}{192\pi} [1 + \mathcal{O}(\zeta^{2})]$$

$$Weakly coupled model$$

$$g_{V}c_{H} \simeq g^{2}c_{F}/g_{V} \simeq g^{2}/g_{V}$$

$$\int_{0.10}^{0.10} \frac{W^{+}W^{-} f_{L}}{2h} \frac{V^{+}}{V^{V}} \frac{g_{L}}{10} \frac{V^{+}}{10} \frac{V^{+}}{2h} \frac{W^{+}W^{-}}{10} \frac{f_{L}}{10} \frac{V^{+}}{10} \frac{W^{+}W^{-}}{10} \frac{f_{L}}{10} \frac{V^{+}}{10} \frac{V^{+}}{10} \frac{W^{+}W^{-}}{10} \frac{f_{L}}{10} \frac{V^{+}}{10} \frac{V^{$$

8

 M_0 [GeV]

LHC bounds

- excluded for masses < 3 TeV
- di-lepton most stringent
- di-boson searches < I-2 TeV

- excluded for masses < 1.5 TeV unconstrained for larger *gV*
- di-boson most stringent
- in excluded region G_F , $\,m_Z\,$ not reproduced

Heavy Vector Resonances

many searches at 8 and 13 TeV

10

Limits on parameter space

• experimental limits converted into (c_H, c_F) plane

yellow: CMS $l^+\nu$ analysis dark blue: CMS $WZ \rightarrow 3l\nu$ light blue: CMS $WZ \rightarrow jj$ black: bounds from EWPT

 $B_{g_{y=3}}$ $B_{g_{y=3}}$ $B_{g_{y=3}}$ $A_{g_{y=3}}$ $M_{V} = 2 \text{ TeV}$ $g_{V=3}$ $M_{V} = 2 \text{ TeV}$ $g_{V=3}$ G_{H}

- $l\nu$ dominates
- EWPT not competitive
- only $-1 \lesssim c_F \lesssim 1$ allowed

- EWPT become comparable
- di-bosons more and more relevant
- strongly coupled model evades bounds from direct searches

Limits on parameter space

yellow: CMS $l^+\nu$ analysis dark blue: CMS $WZ \rightarrow 3l\nu$ light blue: CMS $WZ \rightarrow jj$ black: bounds from EWPT

Limits on parameter space

compare with weakly coupled vectors

yellow: CMS $l^+\nu$ analysis dark blue: CMS $WZ \rightarrow 3l\nu$ light blue: CMS $WZ \rightarrow jj$ black: bounds from EWPT

strongly coupled vectors have weaker bounds

HVT at Future Colliders

- theoretically excluded $\xi \leq 1$
- LHC8 at 8 TeV with 20 $\,{\rm fb}^{-1}$ LHC at 14 TeV with 300 $\,{\rm fb}^{-1}$ HL-LHC at 14 TeV with 3 $\,{\rm ab}^{-1}$
- di-leptons more sensitive for small $g_{
 ho}$
- di-boson more sensitive for large $g_{
 ho}$
- increase in \sqrt{s} : improves mass reach
- increase in L: improves g_{ρ} reach
- resonances too broad for large $g_{
 ho}$
- direct: more effective for small g_{ρ} ineffective for large g_{ρ}
- indirect: more effective for large

[Thamm,Torre,Wulzer: 1502.01701]

95% C.L.

HVT at Future Colliders

- theoretically excluded $1 \le g_{\rho} \le 4\pi$
- LHC8 at 8 TeV with 20 $\,{\rm fb}^{-1}$ HL-LHC at 14 TeV with 3 $\,{\rm ab}^{-1}$

[Thamm,Torre,Wulzer: 1502.01701]

HVT in VBF

Some parameter regions can only be accessed via VBF

HVT in VBF

Some parameter regions can only be accessed via VBF

HVT at the Muon Collider

- Production via
 - Resonance production
 - Radiative return
 - Vector boson fusion

HVT at the Muon Collider

- Decay into all final states
 - Leptons, quarks
 - WW
 - Wh
- HVT is an ideal benchmark
 - Explore several production modes
 - Explore several decay modes

Conclusions

- Model independent framework to study heavy spin-1 triplets
- Captures weakly and strongly coupled extensions of the SM
- HVT is an ideal benchmark for the muon collider