

# Introduction to the cryogenics for superconducting systems

#### Ph Brédy CEA - Paris Saclay





philippe.bredy@cea.fr



# Summary

- Quick history of gas refrigeration and basic concepts of helium machines. Various cycles :
  - Vapor compression cycle
  - Linde's cycle
  - Brayton's cycle
  - Claude' cycle
- Current general configuration
- Main components of helium refrigerators
  - Compressor
  - Heat exchangers
  - Turbo-expanders
- Integration in superconducting magnet cooling. Example.
- Efficiency



# **Basic reminders**

Still today, superconducting state requires low temperature and consequently use of cryogenic fluids



- LHe for many applications with Low Temperature Sc (majority)
- LH<sub>2</sub> and LN<sub>2</sub> when High Temperature Superconductors (still rare)



## **Basic reminders**

#### 2 ways to obtain these cryogenic fluids

 buy cryogenic fluid and use it for cooling (latent heat of vaporization or by heat capacity)

> Initial low investment Supplier dependence High cost during exploitation

• *thelium gas is derived from extraction of fossil fuels and now considered as a strategic matter* 



| Fluid                                                                             | He⁴        | H <sub>2</sub> | Ne   | N <sub>2</sub> | Ar   | 0 <sub>2</sub> |
|-----------------------------------------------------------------------------------|------------|----------------|------|----------------|------|----------------|
| Boiling temperature at Patm in K                                                  | 4,2        | 20,4           | 27,1 | 77,3           | 87,3 | 90,2           |
| Latent heat of vaporization in J.g <sup>-1</sup>                                  | 21         | 452            | 86   | 199            | 157  | 213            |
| Vaporization rate(*) in W.h.l <sup>-1</sup>                                       | 0,7        | 9,0            | 29,0 | 45             | 61   | 68             |
| Approximative cost for one liter in <b>€/liter</b> (for large delivered quantity) | 40 €/liter |                |      | 0,12           | > 15 |                |

(\*): number of watts needed to vaporize one liter of liquid in 1 hour

### **Basic reminders**

- Produce the cryogenic fluid locally and install an autonomous refrigeration equipment (refrigerator, liquefier) able to produce and/or to liquefy a fluid at low temperature
  - High cost initial investment Low independence from supplier Flexibility and adaptability Sustainable for exploitation



Commonly, testing or operating large superconducting magnet needs a **CRYOPLANT** where the core is a gas-cycle refrigerator (or liquefier).



## Thermodynamic reminders for refrigeration

To cool down or/and liquefy a gas, an adapted thermodynamical cycle is needed, exhausting heat at hot source with an absorption of work, for extracting caloric energy at cold source.



What thermodynamic says :

Heat cannot flow spontaneously (without compensation) from cold source towards hot source => work W is needed

It is impossible that a system can absorb refrigeration from the external environment with a monothermal cycle =>  $T_c$  and  $T_f$  as **2 sources at minimum** 

# **Ideal Refrigeration**

Ideal Carnot cycle (reverse cycle) (2 isothermals + 2 isentropics)



For a gas closed cycle, 4 steps:

- 1-2: Isothermal compression (exhaust of **Qh** from the hot source)
- 2-3 : Adiabatic cooling down
- 3-4 : Isothermal transf (absorption of **Qc** by the cold source)
- 4-1 : Adiabatic warming up

$$COP(Carnot) = \frac{Q_C}{W} = \frac{T_c}{T_h - T_c}$$

Coefficient of performance

Specific power 
$$(W/W) = \frac{1}{COP} = \frac{W}{Q_C}$$

Needed power to absorb 1 W at  $T_c$ 

| as « reference<br>performances » | T <sub>h</sub> =293 K                  | T <sub>c</sub> 4,2 K | T <sub>c</sub> = 20 K | Т <sub>с</sub> =77 К |
|----------------------------------|----------------------------------------|----------------------|-----------------------|----------------------|
|                                  | 1/СОР (Wat 293 К /Wat T <sub>f</sub> ) | 70                   | 14                    | 2,9                  |

# <u>cea</u>

#### Equivalent cycles compared to Carnot ideal cycle

Very high P +  $\Delta$ S= 0 along large DT

Replace isentropics by **isobarics** or **isochorics**. Same efficiency than Carnot (for a perfect gas where isobaric curves are parallel...)





# T-S diagram (Helium at low temperature)

#### Temperature T (K)





# What kind of gas expansion can be realized for reaching low temperature ?





## **Examples of inversion curves**

| Gas | maximum inversion $T^{\circ}$ (K) | (X)                              |                               |
|-----|-----------------------------------|----------------------------------|-------------------------------|
| O2  | 761                               | 700                              |                               |
| Ar  | 722                               |                                  |                               |
| N2  | 622                               | \$ 500                           |                               |
| Air | 603                               | - #77                            | air                           |
| Ne  | 250                               |                                  |                               |
| H2  | 202                               |                                  |                               |
| He  | 40                                | 200                              |                               |
| 30- | 7                                 | $T^{\circ} \downarrow T^{\circ}$ | Effect of pressure decreasing |
| 10- |                                   | Helium                           | Strong limitation of          |

Introduction to cryogenics for Sc magnet- Ph Brédy



## **Isentropic expansion**

Isentropic expansion (ideally adiabatic and reversible)

- obtained with external recovery of work and no heat transfer

$$\Delta Q=0$$
 and  $\Delta W < 0$ 

$$\delta Q = T dS = C_P dT + k dP = C_P dT - T \left(\frac{\partial V}{\partial T}\right)_P dP = 0$$

with 
$$k = -T\left(\frac{\partial V}{\partial T}\right)_P$$
  
=>  $dT = \frac{T}{C_{p'}} \left(\frac{\partial V}{\partial T}\right)_P dP = \frac{V\alpha_v T}{C_{p'}} dP$  and  $\alpha_V = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_P$ 

ΗP

piston

$$\mathcal{M}_{\mathsf{D}S=0} = \left(\frac{\partial T}{\partial P}\right)_{S} > 0$$

# With an isentropic expansion, the temperature variation is always negative and much larger than for isenthalpic expansion (JT).

### The minimum work for liquefying from 300 K and 1 bar (Patm)

CRS



Introduction to cryogenics for Sc magnet - Ph Brédy



# Ideal liquefaction (real gases)

| Fluid                         | Boiling temperature at<br>1 atm<br>(K) | $W_{tot} = W_{ideal}$<br>(J/g) | W <sub>tot</sub> =W <sub>ideal</sub><br>(W/(l/h)) |
|-------------------------------|----------------------------------------|--------------------------------|---------------------------------------------------|
| Oxygen<br>(O <sub>2</sub> )   | 90                                     | 634                            | 202                                               |
| Argon<br>(Ar)                 | 87                                     | 476                            | 188                                               |
| Air                           | 80                                     | 722                            | 176                                               |
| Nitrogen<br>(N <sub>2</sub> ) | 77                                     | 761                            | 171                                               |
| Hydrogen<br>(H <sub>2</sub> ) | 20,4                                   | 11890                          | 231                                               |
| Helium<br>(He)                | 4,2                                    | 6807                           | 236                                               |

#### (from Patm)

Ideal but not realistic (too high pressure and impossible perfect isentropic on a large  $\Delta T)$ 

Ex : Helium High Pressure needed =  $10^6$  atm !!!!



# Realistic continuous flux gas cycles





Used in « industrial or domestic » refrigeration process but limited in range due to :

- Low temperature difference reachable in wet vapor between triple and critical points

- Necessity of using a refrigerant fluid with a saturation temperature close to the room temperature (compressor)



# **Compression vapor cycle in cascading**



#### T in K Cryofluid range with « no liquid » areas

Cez



## Linde-Hampson cycle : recovering cold gas enthalpy

22

Joule-Thomson expansion (adiabatic without external work =isenthalpic) + recuperative heat exchanger (counterflow)





### Linde-Hampson cycle :

Joule-Thomson expansion (adiabatic without external work =isenthalpic) + recuperative exchangeur



### Linde-Hampson cycle for Nitrogen

EZ



Introduction to cryogenics for Sc magnet - Ph Brédy

#### Impossibility of single Linde-Hampson cycle 300-4 K for helium

Cez





### For He : Cycle Linde-Hampson cycle in cascading

Historically, to reach helium liquid temperature...





#### **Brayton cycle :**

#### replace JT valve by a work recuperative expander

Adiabatic expansion with work to be supplied= isentropic + recuperative heat exchanger





#### Isentropic expansion or nearly...

# Isentropic efficiency of an expansion device





A.N : Helium  $T_{HP}=22,4$  K and  $P_{HP}=20$  bars and  $P_{BP}=1$  bar

 $\eta = 1$  (perfect isentropic) T= 6,6 K (h=46,6 J/g)

 $\eta = 0.8$ T=9.3 K (*h*=62.0 J/g)

 $\eta = 0.6$ T=12,2 K (*h*=77,4 J/g)



S in j/mole.K



## **Claude cycle**

Mixing of Brayton cycle and Joule-Thomson cycle



One fluid, one compressor, 2 types of expansion !!!

The principle of cycle used today for large refrigeration or liquefaction

## **Claude cycle**

CRS

Mixing a Brayton cycle and Joule-Thomson cycle





### Nitrogen pre-cooling in the top of a Cold Box (Helium cycle)





# **Examples of machines : « small » He refrigerator/liquefier**

From a few tenth to hundred of W @ 4.5 K (Qc) : 1 to 2 turboexpanders (turbines) + 1 JT valve









#### Commercial data from Air Liquide

| Liquefaction capacities and consumption | HELIAL SL         | HELIAL ML           | HELIAL LL           |
|-----------------------------------------|-------------------|---------------------|---------------------|
| Capacity with nitrogen pre-cooling      | From 35 to 85 L/h | From 110 to 170 L/h | From 200 to 330 L/h |
| Capacity without nitrogen pre-cooling   | From 15 to 40 L/h | From 45 to 80 L/h   | From 100 to 150 L/h |
| Compressor power                        | From 55 to 90 kW  | From 110 to 160 kW  | From 200 to 315 kW  |



#### Commercial data from Linde Kryotechnik

|      | Without LN <sub>2</sub> precooling | With LN <sub>2</sub> precooling |
|------|------------------------------------|---------------------------------|
| 70   | 20–35 l/h                          | 40-70 l/h                       |
| 140  | 45-70 l/h                          | 90-140 l/h                      |
| 280  | 100–145 l/h                        | 200–290 l/h                     |
| R70  | on request                         | 130-190 Watt                    |
| R140 | 210–290 Watt                       | 255-400 Watt                    |
| R280 | 445-640 Watt                       | 560–900 Watt                    |
|      |                                    |                                 |



# **Examples of machines : « small » He refrigerator/liquefier**





# **Examples of machines : « small » He refrigerator/liquefier**

#### Neurospin helium refrigerator (for 11.7 T MRI magnet)

Turbo-expander





Adsorber pot

Heat exchangers

Dedicated PLC for fully automatic operation

200 W (ref) or 120 l/h (liq) or 70 l/h+ 40 W (mixed) With a compressor 45 g/s @ 15 bars

Opened Cold Box without its vacuum vessel



## **Examples of machines : large Helium Refrigeration**

Ex : Cold Box LHC 18 kW @ 4.5 K Refrigerators

#### Air Liquide









## **Examples of machines : large Helium Refrigeration**

Compression unit for a refrigerator 18 kW @ 4,2 K





## **Examples of machines: « large » refrigeration Helium CERN**

18 kW @ 4.5 K refrigerators

#### 33 kW @ 50 K to 75 K - 23 kW @ 4.6 K to 20 K - 41 g/s liquefaction



Introduction to cryogenics for Sc magnet - Ph Brédy

<u>cea</u>

#### Cycles for temperatures below 4,2 K ( $T_{sat}$ at 1 atm) (example : superfluid helium at T < 2,17 K)



> Depressurising of circuits under atmospheric pressure !!!
> Risk of air inlets, contamination =>plugging at low temperature...
And additionnally, mass flow at low pressure leads to high pressure drop
=> Very large heat exchanger if used at very low pressure

#### Various possibilities to obtain T below 4.2 K (T < 2.17 K=> He II)

٠

• Pumping at room temperature small cold power at T < 2.17 K (< 4.5 g/s i.e < 100 W)

C22

Cold compressors

large cold power at T < 2.17 K (> 4.5 g/s i.e > 100 W) and continuous operation





# Typical components for helium refrigeration machines (recuperative cycle)



## Gas buffers for pure He storage



2 x 100 m3 for a 150 l/h liquefier : - Redundancy for maintenance (PED)

# He compressor

Classically, screw compressors for helium cycles

Generally

- multi-staged (2), up to 21 bars, with devices in // above 5000 Nm<sup>3</sup>/h
- Lubricated screws
  - => extraction of heat compression thanks to oil as extra media
  - => lubrification !



R : High efficiency centrifugal compressors have technical difficulties with He (compression rate and overheating due to helium properties )



#### screw compression



Suction phase: The gas enters through the suction port into the rotor turns opened on the suction side





<u>Compression phase:</u> the progressive rotation of the rotors causes the gas inlet orifice to close, the volume is reduced and the pressure rises.

n-1 lobes Male screw

#### n grooves Female screw



Evacuation phase: compression is complete, final pressure is reached and discharge begins..



### **Examples of He screw compressor**



HP tank for oil decanting

Oil pump for oil injection inside the screws

#### He screw compressor KAESER

(15 bars - 80 g/s)

#### He screw compressor MYCOM

Exchanger

cooling water/oil

(16 bars - 90 g/s)

#### Compressors, oil and ORS (oil removal skid)

Need of oil for cooling the compression

C2

R : Adiabiatic compression from 1,05 to 15 bars (Tinit=300 K) 
$$\frac{T_{hp}}{T_{bp}} = \left(\frac{P_{hp}}{P_{bp}}\right)^{\frac{g-1}{g}} \Rightarrow T_{hp} \approx 870 K$$
 (597°C!!!)

Injection of oil with helium will absorb a large quantity of compression heat (pulverisated oil in order to have a large exchange surface).

Typically, **1** g/s of compressed He needs to be mixed with **35** g/s of oil for an efficient cooling

An Oil removal system is mandatory for supplying the cold box with pure HP gas





ORS (oil removal skid)

HP from compressor







### **Cold box internal components**

# HX battery made of several plate heat exchanger (Al brazed)



High compacity : 850 à 1500 m<sup>2</sup>/m<sup>3</sup>





« 25 kW @4.5 K » ITER cold box





### **Cold box internal components**

Turbo-expanders : « turbine » for quasi-isentropic expansion

Turbo-expanders :

- high rotation speed (up to 4000 tr/s)
- gas bearings with very small fonctionnal gaps (a few  $\mu$ m) for a high efficiency( $\eta \approx 0,7$ )
- large difference of temperature between expansion wheel and brake wheel (> 250 K)
- expansion rate : 6 à 10
- MTBF > 100 000 h





Exploded view of He refrigerator turbo expander(origin SULZER/LINDE)

Turbine wheel

Introduction to cryogenics for Sc magnet - Ph Brédy



#### **Cold box internal components**

#### **Example of turbo-expander**



Brake wheel



Turbine wheel: closed type

# Complementary equipment for cycles at T < 4,2 K : cold compressors

They allow compression of cold gas below Patm. Same general conception than a turboexpander but with classically magnetic bearings and a ratio of compression in He around a factor 3. To reduce heat leaks, motor can operate at  $LN_2$  temperatures..

Compression field limited (see example on curve)

 $\eta \approx 0,7$ 

Compression ratio  $\approx 3$ 

Installation in serial is possible taking care about speed regulation of each compressor.





# Complementary equipement for cycles at T < 4,2 K : cold compressors

- High isentropic effiiency
- High reliability
- Easy handling and maintenance









Liquefier mode Capacity in l/h (or g/s) Independance of equipment Low efficiency Large turbo-expanders



Refrigerator mode Capacity in « W at 4 K » Better efficiency Equipment strongly interacting Large heat exchanger

Mixed mode W at 4 K + l/h (or g/s) Adaptative



# Approximative estimation in mixed mode





.

.

٠

# Example: CMS refrigerator (mixed mode) and its magnet





2.5 g/s



**Refrigeration part** 

Liquefaction part



COLDBOX

43 K 3.5 bara



(Ø 45 x 2.5)



# Example: CMS refrigerator (mixed mode) and its magnet

150 g/s between 300 K and 80 K for magnet pre-cooling (225 t)

then simultaneously

Itaneously 4500 W (max) between 60 K & 80 K for magnet thermal shielding

800 W (max) at 4.45 K for Sc magnet cooling

4 g/s liquefaction for current leads (2 x 20 kA)





#### Strobridge Diagram





# Summary

For large cooling power, possibly down to 1.8 K, recuperative machines based on the Claude cycle are used, integrating :

Oil lubricated screw compressor Oil removal system Several turboexpanders Battery of counterflow exchangers JT valve Possibly 2 K stage with pumping units and/or cold compressors

- Commercial standard helium :
  - liquefiers available from 15 l/h to 600 l/h
  - refrigerators available from 100 W to 1000 W @ 4.5K
- Customized plants for helium liquefiers larger than 650 l/h and refrigerators larger than 1000 W @ 4.5K (ex : up to 25 kW (ITER) or 8000 l/h (Qatar plant))
- Experiments below 2.2 K can use cold compressor technology above 100 W of power.

Only a few european manufacturers (above a few tenths l/h) :

- Air Liquid Advanced Technology
- Linde Kryotechnik AG
- Vorbuchner GmbH & Co(< 50 l/h)

*R* :For small cooling capacities (a few *W* at 4 K or a very few *l/h* of *LHe*), another concept exists to avoid *LHe* purchase: using a **cryocooler**. This is another story...



# Thank you for your attention.