How to precisely measure the W boson properties: The most recent ATLAS results

 ☆ Improved W boson Mass Measurement using √s = 7 TeV Proton-Proton Collisions with the ATLAS Detector <u>ATLAS-CONF-2023-004</u> (Briefing <u>W-Mass-Measurement</u>)
 ☆ Precise measurements of W and Z transverse momentum spectra with the ATLAS detector at √s = 5.02 TeV and 13 TeV

LHC Seminar - ATLAS - July 11

L. Aperío Bella on behalf of the ATLAS Collaboration

The SM of particle physics @LHC

Some (not so-obvious) observations:

- A. Theory agrees with measurements across wide range of processes and cross sections ...
- B. Often data precision challenges the theory predictions...

40 years from the W and Z discovery

20 Jan 1983 UA1 seminar on W discovery; corresponding UA2 seminar (similarly packed) on 21 Jan 1983

4 July 2012 seminars: Higgs boson discovery by ATLAS and CMS

40 years after their discovery the W and Z bosons play still a central role in the LHC physic program:

- * Their **clean signatures** allow to search for/discover new processes and particles
- * They provide standard candles to **calibrate the detector** performance
- * Their properties and couplings with other particles allows to test the Standard Model

The EW sector: m_t m_w and m_H

- ▶ The m_W relation together with $\sin^2 \vartheta^{\text{eff}}_W$ and g^V , g^{A-V} couplings represent a powerful test of SM:
 - The global EW fit allowed to constrain the masses of the top quark and Higgs boson before their discovery
 - While m_H is sufficiently well known (δm_H ~ 0.2 GeV), also improving the precision on m_t has little impact on precision of global EW fit (δm_t ~0.5/0.4 GeV fit precision 5-6 times worse than that of direct measurement)
 - ▶ Both m_W and $sin^2 \vartheta^{eff}_W$ are more **precisely** determined by SM fit then experimentally...

L. Aperio Bella

The EW sector: m_t m_w and m_H

$$\begin{split} & \overbrace{M_W}^{\text{from SM EW-fit}} & = 80.3535 \pm 0.0027_{m_t} \pm 0.0030_{\delta_{\text{theo}}m_t} \pm 0.0026_{M_Z} \pm 0.0026_{\alpha_S} \\ & \pm 0.0024_{\Delta\alpha_{\text{had}}} \pm 0.0001_{M_H} \pm 0.0040_{\delta_{\text{theo}}M_W} \text{ GeV} , \\ & = 80.354 \pm 0.007_{\text{tot}} \text{ GeV} , \end{split}$$

reading PDG live

very first **UA1** measurement $m_W = 81 \pm 5 \text{ GeV}$

reading PDG live

reading PDG live

very first UA1 measurement $m_W = 81 \pm 5$ GeV. 10 years later the

best **UA2** measurement $m_W = 80.79 \pm 0.37$ GeV [0.5% precision]

L. Aperio Bella

A **<u>new</u>** and improved W boson mass measurement

- The important ingredients of the improved m_W measurement:
- consolidation of the experimental analysis
- solid and reliable physics modelling
- benefit from recent progress on statistical fitting framework

W boson signature

Incomplete kinematics (missing neutrino):

- no invariant mass
- measured quantities
 - Prompt and isolated lepton (e or μ)
 - Hadronic-**Recoil** (u_T) : sum of "everything" else" reconstructed in the calorimeters;
- exploit momentum conservation in the transverse plane to reconstruct p_T^{miss} and transverse mass (m_T)

+ Pileup ...

$$m_{\rm T} = \sqrt{2p_{\rm T}^{\ell}p_{\rm T}^{\rm miss}(1-\cos\Delta\phi)}$$

W boson signature

$$\vec{u}_{\mathrm{T}} = \sum_{i} \vec{E}_{\mathrm{T},i}$$

Incomplete kinematics (missing **neutrino**):

- no invariant mass
- measured quantities
 - Prompt and isolated **lepton** (e or μ)
 - Hadronic-Recoil (u_T): sum of "everything else" reconstructed in the calorimeters;
- exploit momentum conservation in the transverse plane to reconstruct p_T^{miss} and transverse mass (m_T)
- + Pileup ...

W boson signature

ATLAS m_W measurement done with 4.7 fb⁻¹ at $\sqrt{s} = 7$ TeV with $\langle \mu \rangle \sim 9$

- ~14M candidates in W→ℓν (ℓ= e,μ)
 (Background: 5% (6.5%) for μ(e))
- ~2M of $Z \rightarrow \ell \ell$ for calibration

Observable sensitive to m_W

(A) Identify observables sensitive to m_w :

 \approx lepton transverse momenta (\mathbf{p}^{I}_{T}) has a Jacobian peak at $m_{w}/2$

 \Rightarrow transverse mass (**m**_T) has an endpoint at m_w

Building m_w templates

(B) Produce models ("templates") with different m_w -hypotheses and compare to **data** in 28 categories (e/µ, η regions, W⁺W⁻, p^I_Tm_T)

 $\Delta m_W = 15 \text{ MeV} \Rightarrow -0.1-0.2\%$ variation in the kinematics of the W production

 $\Rightarrow p_{\tau}^{l}$ and m_{τ} distributions are sensitive to:

- →Leptons and Recoil calibration
- ➡Modelling effects:

Experimental precision

Hadronic recoil response calibration used the p^{z}_{τ} balance in Z boson events

- Z boson events are used to derive detector calibrations.
- Outstanding experimental precision :
 - Lepton performances at sub-% level $\Rightarrow \delta m_{W} \sim 7-10 \text{ MeV}$
 - Hadronic Recoil calibration at % level $\Rightarrow \delta m_W \sim 12 \text{ MeV}$

The physics modelling

- W mass physics modelling is described using a composite model :
 - ▶ Start Powheg+Pythia8 [NLO+LL (PS)] and apply corrections \Rightarrow NNLO pQCD accuracy

Key role of <u>ancillary measurements</u> : used to validate (and tune) the model and assess systematic uncertainties.

The p^w_T modelling

 $m_W \, d\sigma / dp_T \, modelling \, uses \, \underline{Pythia \, parton \, shower}$

- ▶ PS parameters tune on 7TeV p^Z_T data (AZ tune)
- Fairly good modelling of the W-data, but hard to improve on uncertainties (mostly related to model limitations)

Addressing the difficulties of $p^{w_{T}}$ modelling

- p_T^W modelling is a challenge for QCD theory (resummation, heavy flavour, multiple scale, no pQCD)
 - Experimentally very precise p_T^Z measurement (W limited by recoil resolution)
- ▷ Approach: adjust model parameters using Z events → extrapolate to W production

@time of the first measurement: analytic resummed predictions were **strongly disfavoured** by the recoil distribution in data.

M. Boonekamp Strong2020

@time of the first measurement: low $p_T W/Z$ ratio very different between analytic resummed predictions and PS tuning.

The pW_T modelling validation

- p_T^W modelling is a challenge for QCD
 (resummation, heavy flavour, multiple scale, no pQCD)
 - Experimentally very precise p_T^Z measurement (W limited by recoil resolution)
- ▷ Approach: adjust model parameters using Z events → extrapolate to W production

M. Boonekamp Strong2020

A **measurement** able to resolve low $p^{w_{\tau}}$ spectra with 1% uncertainty would validate the $p^{w_{\tau}}$ modelling for the m_{w} analysis \rightarrow crucial experimental input to any future m_{w} measurement

<u>NB</u> To resolve W p_{T} with $\vdash O(5 \text{GeV}) \rightarrow in$ data hadronic recoil resolution need same order.

Hadronic recoil resolution

some basics concepts :

in W events the Hadronic recoil (u_{τ}) is the measurement of "everything else" reconstructed in the calorimeters

The response of u_{τ} is measured in data using the p^{Z}_{τ} balance in Z events

 u_T scale and resolution are characterise by the I and \bot projection of the recoil into the p^{Z}_{T} axis

▶ **u**_T resolution strongly depends on ΣE_T (~ total event activity)

At low p_T^W, <u>underlying event</u> & <u>pileup</u> contribute to deterioration of the recoil resolution

Underlying event and Pileup contribtuion to the recoil

Low-µ dataset

In Run-2 ATLAS collected ~ 500 pb⁻¹ at $<\mu>$ ~ 2 fantastic opportunity for W precision physics!

- Unique recoil resolution
- Benefit from super precise luminosity uncertainty
- Dedicated set of detector calibration and performances

Efficiency 0.95⊢*ATLAS* √s = 13 TeV, 139 fb⁻¹ Data Medium muons 0.1 < |n| < 2.5, p > 10 GeV Data / MC Stat only <mark>Sys 🕀 Stat </mark> 1.02 0.98 10 20 30 40 50 60 70 80 Number of interactions per crossing wherever possible extrapolated high-µ to low-µ conditions

Transverse momenta

leptons performance accuracy límíted by the Z sample statístíc

26

Hadronic recoil performances

A) Particle flow objects (**PFOs**) for recoil **reconstruction** up to 5% improvement in resolution

B) in-situ in $Z \rightarrow \ell \ell$ events used to **Calibrate** the recoil response:

- Modelling of underlying activity from data
- Correcting response non-uniformity in the calorimeter (beam displacement, beam-crossing angle. azimuthal angle)
- Equalising response and resolution differences between data/MC
- Correcting for residual non-Gaussian tails in the response

Hadronic-recoil uncertainties have <u>sub-percent level</u> impact on $p_T^W < 50 \text{ GeV}$ (@ 5TeV limited stat of the Z samples is the dominant source)

Detector level distributions

Excellent data/MC

Multijet background

estimated with data-

driven improved

use experimental

agreement between

data and MC for the

reconstructed u_T

sensitivity to

optimise the

distribution

agreement

method

√s = 13Te∨

L. Aperio Bella

The role of Z sample

u₇ measurement: the challenge

Detector level distributions unfolded at particle level in fiducial volume:

$$\begin{split} & \text{lepton } p_{T} > 25 \text{ GeV} \\ & \text{lepton } |\eta| < 2.5 \\ & W: p_{T}^{\vee} > 25 \text{ GeV} \text{ ; } m_{T} > 50 \text{ GeV} \\ & Z: 66 < m_{\ell\ell} < 116 \text{ GeV} \end{split}$$

- **Bayesian unfolding** of $u_T(W)$; $p^{\ell\ell}(Z)$, separately for e/μ channels
 - Bin width/iterations optimise to reduce uncertainty of unfolding prior bias
 - ▶ 9 (25) iterations, -7GeV- bin at low p_T^W at 5.02 (13) TeV
 - ▶ 2 iterations, \vdash 2GeV \dashv bin width at low p_T^Z
- electron and muon channels combined with BLUE, all giving good χ^2

Most precise integrated fiducial measurement of the W[±] and Z boson @ 5.02 and 13 TeV:

Process	Cross section at $\sqrt{s} = 5.02 \text{TeV} [\text{pb}]$	Cross section at $\sqrt{s} = 13 \text{TeV} [\text{pb}]$
$W^{-} \to \ell \nu$ $W^{+} \to \ell \nu$ $Z \to \ell \ell$	$1385 \pm 2 \text{ (stat.)} \pm 5 \text{ (sys.)} \pm 15 \text{ (lumi.)}$ $2228 \pm 3 \text{ (stat.)} \pm 8 \text{ (sys.)} \pm 23 \text{ (lumi.)}$ $333.0 \pm 1.2 \text{ (stat.)} \pm 2.2 \text{ (sys.)} \pm 3.3 \text{ (lumi.)}$	$3486 \pm 3 \text{ (stat.)} \pm 18 \text{ (sys.)} \pm 34 \text{ (lumi.)}$ $4571 \pm 3 \text{ (stat.)} \pm 21 \text{ (sys.)} \pm 44 \text{ (lumi.)}$ $780.3 \pm 2.6 \text{ (stat.)} \pm 7.1 \text{ (sys.)} \pm 7.1 \text{ (lumi.)}$

experimental accuracy 0.4 - 0.5 % with 1% lumi factor of 2 (3.5) better then previous W X-section at 5.02 (13TeV) good agreement with DYTURBO [NNLO+NNLL] prediction with 3 different PDF sets

W⁺ and W⁻ transverse momentum measurement

W⁺ and W⁻ transverse momentum measurement

W+/W-ratio

The W+ /W- ratio is expected to be relatively insensitive to universal resummation effects, but the low-pT range is sensitive to the different initial quark flavours. Exp precision ~ 1%

L. Aperio Bella

Z transverse momentum differential measurement

The "new" m_W physics modelling

▶ Recent Unique set of high-precision $d\sigma/dp_T^w$ cross section at $\sqrt{s} = 5.02$ and 13TeV validate the "week point" of the m_w physics modelling

 p_T^W in data measured with 1% precision

Revisit ATLAS measurement with profile likelihood (PLH) fitting

- Advantage:
 - (in situ) constrain experimental & modelling systematic uncertainties
 - + adding modern PDF sets
- Disadvantage:
 - Computational expensive
 - ▷ Several 1000 Nuisance Parameter (NP) → robust systematic model

The improvement of the analysis

expected allowed shift $m_W \pm 16 (\pm 23)$ MeV for $p_T^{\dagger}(m_T)$

Rigorous review of the analysis

- New data-driven multijet Background estimation
 - ▶ $\Delta m_W = 1.9$ MeV and reduction unc. by 2 MeV
- Better evaluation of EW uncertainties
 - Increase of 1-2 MeV unc.
- Recovering data in the electron channel
 - Increase statistics by 1.5%
- Add parametric uncertainty on Γ(W)

Overall fixes/improvements result in only $\sim 2 \text{ MeV}$ impact on m_w

Post fit PLH observable

post-fit value estimated with CT18 PDFs

PLH and NP constraint

NP Ranking with CT18 PDFs

The largest NPs **pulls** are related to

- eigenvector of the PDF set
- muon momentum scale extrapolation uncertainty
- \blacktriangleright modelling uncertainty of charm-induced production for $p^{W}{}_{\mathcal{T}}$
- missing higher-order EW final state radiation corrections.

Normal distribution for <u>nuisance parameter pulls</u>: overall correct estimation of the pre-fit uncertainties.

W mass analysis and in situ PDF constraint

Eur. Phys. J. C 69 (2010) 379-397 (d), *p p* (b), *p p* 3.0 $- W^+$ --- W^- $- W^+$ $d\,\sigma/d\,p_{T,l}~[{\rm nb/GeV}]$ 2.5 $d \sigma / d \eta_l \; [nb]$ 0.6 2.0 1.5 1.0 0.50.0 0.8 $\operatorname{Asym}^{(+,-)}(\eta_l)$ $\operatorname{Asym}^{(+,-)}(p_{T,l})$ 0.4 0.20 0.0 -0.40.1 20 $p_{T,l} [\text{GeV}]$ 10

- ▶ Difference between u,d valence and the see distributions determine the W-boson rapidity distributions → affects acceptance and fiducial volume
 - kinematic distributions & signal yields in the different categories have additional constraining power on the PDFs unc. (in situ constraint)

- ▶ reduction of ∆m_W PDFs envelope
- **reduction** impact of PDF uncertainties (previous measurement $\delta^{(PDF)}m_w \pm 9-10$ MeV)

- Profiling reduces the Δm_w spread of PDFs:
 methodologícal PDF unc. ±14 MeV → ±9MeV
- **CT18 PDF** set **new baseline**: yields most conservative uncertainties $\delta^{(PDF)}m_w = 7.7 \text{ MeV}$
 - cover the central values of CT10, CT14, MMHT2014 and MSHT20, but not of NNPDF3.1 and NNPDF4.0

PDF-Set	$p_{\mathrm{T}}^{\ell} \; [\mathrm{MeV}]$	$m_{\rm T}~[{\rm MeV}]$	combined [MeV]
CT10	$80355.6^{+15.8}_{-15.7}$	$80378.1^{+24.4}_{-24.8}$	$80355.8^{+15.7}_{-15.7}$
 CT14	$80358.0^{+16.3}_{-16.3}$	$80388.8^{+25.2}_{-25.5}$	$80358.4^{+16.3}_{-16.3}$
CT18	$80360.1^{+16.3}_{-16.3}$	$80382.2^{+25.3}_{-25.3}$	$80360.4^{+16.3}_{-16.3}$
MMHT2014	$80360.3^{+15.9}_{-15.9}$	$80386.2^{+23.9}_{-24.4}$	$80361.0^{+15.9}_{-15.9}$
MSHT20	$80358.9^{+13.0}_{-16.3}$	$80379.4^{+24.6}_{-25.1}$	$80356.3^{+14.6}_{-14.6}$
NNPDF3.1	$80344.7^{+15.6}_{-15.5}$	$80354.3^{+23.6}_{-23.7}$	$80345.0^{+15.5}_{-15.5}$
NNPDF4.0	$80342.2^{+15.3}_{-15.3}$	$80354.3^{+22.3}_{-22.4}$	$80342.9^{+15.3}_{-15.3}$

The new W boson mass

- ▶ p_{τ}^{l} and m_{τ} measurement are compatible at 1.2 σ level
 - ▶ correlation between the 2 measurements $\rho = 0.63$

Obs.	Mean	Elec.	PDF	Muon	\mathbf{EW}	PS &	Bkg.	Γ_W	MC stat.	Lumi	Recoil	Total	Data	Total
	[MeV]	Unc.	Unc.	Unc.	Unc.	A_i Unc.	Unc.	Unc.	Unc.	Unc.	Unc.	sys.	stat.	Unc.
p_{T}^{ℓ}	80360.1	8.0	7.7	7.0	6.0	4.7	2.4	2.0	1.9	1.2	0.6	15.5	4.9	16.3
$m_{ m T}$	80382.2	9.2	14.6	9.8	5.9	10.3	6.0	7.0	2.4	1.8	11.7	24.4	6.7	25.3

$$\Delta m_W(p_T^{\dagger}) > \Delta m_W(m_T)$$
 due to impact of PDF/p_T^W sys profiling

BLUE Combination for p_{τ}^{l} and m_{τ} results $m_{W} = 80360 \pm 5(\text{stat.}) \pm 15(\text{syst.}) = 80360 \pm 16 \text{ MeV}$

▶ The p_{τ}^{I} fit largely dominates the final result (95% weight)

Conclusion

New set of high-precision ATLAS results show that it is possible to **very precisely measure W boson properties** @LHC:

- ☆ Unique set of high-precision Wp_T spectra measured at √s= 5.02 and 13TeV validate modelling used m_W
- Re-analysis of 7TeV data with new fitting technique confirms previous ATLAS results and improves precision by **3 MeV** to m_W = 80360 ± 16 MeV which is compatible with the SM

what next?

ATLAS results reaches an outstanding experimental precision

- significant progress has been made in the statistical framework: PLH test statistics adopt for m_w measurement
- The W boson physics modelling stays the most difficult aspect to challenge the current theoretical precision of 7MeV on the W-mass
 - Recently make public an unique measurement to validated the modelling of low-p_T^W
 - data can be used to <u>test and constrain</u> most recent state of the art prediction:
 - PDF uncertainties
 - ▶ p_T^W modelling

addítíonal slídes

the EW Fit

L. Aperio Bella

How to measure m_w ?

- The W-boson mass can be measured from:
 - Kinematic properties of decay leptons in the final state in pp→W→In processes (hadron colliders)
 - Direct reconstruction from the final state in ee→WW→qqqq/qqln (e+e- colliders)
 - W-pair production at thresholds (e+e- colliders)
 - Limited by statistics at LEP, but most precise prospect at future colliders.

40 years of measurements

L. Aperio Bella

$p\overline{p} W p_T spectra$

The SM of particle physics @LHC

- ☆ In our days the LHC experiments have in their hands the richest hadron collision data sample ever recorded
- ☆ Vast and reach program at High energy frontier.
 - testing self consistency of the SM
 - 1st observation of very rare processes
 - exploring new physics
 via direct and indirect
 measurements

Observable sensitive to m_W

ATLAS m_W measurement done with 4.7 fb⁻¹@7TeV $<\mu>~9$

~14M candidates in W→ev and W→ $\mu\nu$ channels (Background: 5% (6.5%) for μ (e)-channel)

Total of ~2M of $Z \rightarrow \ell \ell$ for calibration

(A) Identify observables sensitive to m_w :

 \approx lepton transverse momenta (\mathbf{p}^{I}_{T}) has a Jacobian peak at $m_{w}/2$

 \approx transverse mass (**m**_T) has an endpoint at m_w

ATLAS m_W measurement done with 4.7 fb⁻¹@7TeV $<\mu>~9$

~14M candidates in W→e ν and W→ $\mu\nu$ channels (Background: 5% (6.5%) for μ (e)-channel)

Total of ~2M of $Z \rightarrow \ell \ell$ for calibration

(B) Produce models ("templates") with different m_W -hypotheses and compare to **data** in 28 categories (e/µ, **η** regions, W⁺W⁻, p^I_Tm_T)

Combined categories	Value [MeV]	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.	χ^2/dof of Comb.
$p_{\mathrm{T}}^{ar{\ell}},W^{\pm},e ext{-}\mu$	80369.4	7.2	6.3	6.7	2.5	4.6	8.3	5.7	9.0	18.7	19/13
$m_{\mathrm{T}}, W^{\pm}, e$ - μ	80375.7	9.6	7.8	5.5	13.0	8.3	9.6	3.4	10.2	25.1	11/13

Combination	Weight
Electrons Muons	$0.427 \\ 0.573$
$m_{ m T} \ p_{ m T}^\ell$	$\begin{array}{c} 0.144 \\ 0.856 \end{array}$
W^+ W^-	$0.519 \\ 0.481$

lepton calibration

- Leptons momentum scales are measured using Z->II and events and corrected in MC
 - Scale known better than $\sim 2 \times 10^{-4}$ (except for muons at highest rapidity)
 - Translates into an uncertainty on $m_{\scriptscriptstyle W}$ of approx. **8-9 MeV**
- Reconstruction, identification and trigger efficiency studied from Z sample, small effects for muon, of similar size as the energy scale for electrons.

recoil calibration

- The reconstruction of the **hadronic recoil** depends strongly on the total ΣE_T in the event, three corrections are needed:
 - 1. Pileup distribution: data/MC equalisation.
 - 2. Correction of residual differences in the total ΣE_T distribution (activity mis-modeling)
 - 3. Derive scale and resolution corrections from the p_T balance in Z events [**precision at**

% level]

Uncertainty on $m_W \sim 13 \text{ MeV}$ for m_T fits (smaller for p_T), dominated by the total ΣE_T correction.

Eur. Phys. J. C 78 (2018) 110

The systematic uncertainty in the muon momentum scale due to the extrapolation from the $Z \rightarrow \mu\mu$ momentum range to the $W \rightarrow \mu\nu$ momentum range is estimated by evaluating momentum-scale corrections as a function of 1/pT for muons in various $|\eta|$ ranges. The extrapolation uncertainty $\delta \alpha$ is parameterised as

$$\delta \alpha = p_0 + \frac{p_1}{\left\langle p_{\rm T}^{\ell}(W) \right\rangle}$$

follows:

If the momentum-scale corrections are independent of 1/pT, the fitting parameters are expected to be p0 = 1and p1 = 0. Deviations of p1 from zero indicate a possible momentum dependence. The fitted values of $\delta \alpha$ are shown in Figure 5(a), and are consistent with one, within two standard deviations of the statistical error.

61

multijet background in W precision analysis

- General method:
 - Define a background dominated fit region with relaxed kinematic cut(s)
 - Signal distribution from MC
 - mj templates from control region with inverted lepton isolation cut (large activity around leptons)
 - The multijet background is normalized with fraction fit

Data

Fit result

 $\rightarrow ev + EW$

sinale top

• Variations:

Events / 2 GeV

Data/Fit

Eur. Phys. J. C 78 (2018) 110

10

 10^{6}

10⁵

10⁴

10³

 10^{2}

10

1.05

0.95

0

- 3 observables(p_τ^{miss},m_τ,pⁱ/m_τ); 2 fitting regions
- try different isolation criteria,
- extrapolate to the signal region
- Uncertainty: ~ 4 MeV (µ); ~ 8 MeV (e)

\s = 7 TeV. 4.6 fb⁻

20

30

40

50

60

70

80

90

p_T^{miss} [GeV]

100

10

ATLAS

Complexity of the physics modelling

- 10 MeV precisions required ~0.1-0.2% control on the kinematics of the W production
- sub-percent accuracy of predictions for PDF ; p_TW modelling and W polarisation (Ai) is extreme challenge for QCD theory!
- @LHC W mass physics modelling is described using a composite model :
- Start from the NLO generators + LL parton-shower (Powheg+Pythia8) and apply corrections to reach the state of the art accuracy.
 - Use <u>ancillary measurements</u> of Drell-Yan processes to validate (and tune) the model and assess systematic uncertainties.

The Drell-Yan cross-section can be decomposed by factorising the dynamic of the boson production and the kinematic of the boson decay.

W mass: Angular coefficients

The DY cross section can be reorganised by factorising the dynamic of the boson production, and the kinematic of the boson decay

$$\frac{d\sigma}{dpdq} = \frac{d^3\sigma}{dp_T dy dm} \sum_i A_i(y, p_T, m) P_i(\cos\theta, \phi)$$

- Current m_W physics modelling has the angular coefficients (Ai) modelled with fixed order perturbative QCD at NNLO
- Ai predictions are <u>validated</u> by comparisons to the Z measurement
 - Suboptimal for A4: fixed order prediction down to low pT ?
 - Nowadays A4 can be predicted including resummation effects
 - ▶ LHCb m_W measurement accounts for A3 data/ prediction discrepancy [cf. Recent LHCb measurement of Aí in Z→ll]

CMS approach: PDF constraint from Helicity X-section

- Idea: Lepton kinematic (pT:η) retain information on the Wboson rapidity and helicity states.
- From a multi-differential measurement of lepton pT:η extract the W boson rapidity and helicity cross-section
 - charge asymmetry are also measured as functions of the charged lepton transverse momentum and pseudorapidity.
 - Large sensitivity (and constraints) on valence-quark PDFs.

- Exploit fully available information
 from lepton distribution (pT:η)
- Minimal theoretical assumptions on W vs Z uncertainties
- Reduction of uncertainties through in-situ constraints

Exploit PDF constraint power of ancillary measurements

W mass @LHC (eg pp collision)

A pp collider is the most challenging environment to measure m_W, worse compared to e⁺e⁻ and $p\overline{p}$

- In pp
 collisions W bosons are mostly produced in the same helicity state but in pp
 collision instead the W
 polarisation is determined by the difference between the u,d valence and sea densities
 - Large PDF-induced W-polarisation uncertainty affecting the p_{τ}^{I} distribution
- W^+/W^- production is asymmetric \rightarrow charge-dependent analysis
- Second generation quark PDFs play a larger role at the LHC (25% of the W boson production is induced by at least one second generation quark s or c not the case for the Z boson). The amount of heavy-quark- initiated production has implications for the W-boson transverse-momentum distribution and for the W polarisation.

challenge of W production @LHC

flavour decomposition of W cross sections

flavour decomposition of Z⁰ cross sections

Eur. Phys. J. C 69 (2010) 379-397

L. Aperio Bella

challenge of W production @LHC

Eur. Phys. J. C 69 (2010) 379-397

7TeV w_m re-analysis

- The idea is to revisit ATLAS
 measurement with profile likelihood
 (PLH) fitting
 - Advantage:
 - Rigorous review of the analysis
 - (in situ) constrain
 experimental & modelling
 systematic uncertainties
 - + adding modern PDF sets
 - Disadvantage:
 - Computational expensive
 - Several 1000 Nuisance Parameter (NP) → robust systematic model

The analysis improvements

Improvement of the analysis:

- Multijet Background Estimation ($\Delta m_w = 1.9 \text{ MeV}$)
 - Systematic shape variation using PCA (principal component analysis)
 - New transform function form CR to SR
 - Reduction of 2 MeV uncertainty
- EW unc. are evaluated at detector level
 - increase of 1-2 MeV uncertainty
- Recovering data in the electron channel
 - Increase statistics by 1.5%
- Add ΓW as NP parameter

The PLH fit result using all categories yields a value of $m_w = 80355.1 \pm 15.6$ MeV with the CT10nnlo PDF

Overall $m_w \underline{14.4 \text{ MeV}}$ lower compared to the legacy (80369.5 ± 18.5 MeV) Profiling of systematic uncertainties has an impact of $\underline{-16.3 \text{ MeV}}$

New Measurement

DESY.

- Profiling reduces the spread of PDFs from 28 to 18 MeV
- CT18 PDF Set chosen as new baseline: yields most conservative uncertainties
- CT18 PDF uncertainties of 7.7 MeV cover the central values of CT10, CT14, MMHT2014 and MSHT20, but <u>not</u> of NNPDF3.1 and NNPDF4.0
- Normalization of NNPDF4.0 far away from other PDFs sets (NNPDF4.0 and 3.1 are not overlapping even within their own systematics)

$$v_{ji}(\mu, \theta) = \mathbf{\Phi} \times [S_{ji}^{nom} + \mu \times (S_{ji}^{\mu} - S_{ji}^{nom})] + \sum (\theta_k \times (S_{ji}^{k} - S_{ji}^{nom})) + B_{ji}^{nom} + \sum (\theta_t \times (B_{ji}^{t} - B_{ji}^{nom}))$$

The signal normalisation factors (fitted in the LH model) obtained from the combined PLH fits indicate the quality of the description of the W-boson cross sections at √s = 7 TeV by the different PDF sets.

	0		
PDF-Set	$p_{\rm T}^{\ell} [{ m MeV}]$	$m_{\rm T} [{\rm MeV}]$	combined [MeV]
CT10	$80355.6^{+15.8}_{-15.7}$	$80378.1^{+24.4}_{-24.8}$	$80355.8^{+15.7}_{-15.7}$
CT14	$80358.0^{+16.3}_{-16.3}$	$80388.8^{+25.2}_{-25.5}$	$80358.4^{+16.3}_{-16.3}$
CT18	$80360.1^{+16.3}_{-16.3}$	$80382.2^{+25.3}_{-25.3}$	$80360.4^{+16.3}_{-16.3}$
MMHT2014	$80360.3^{+15.9}_{-15.9}$	$80386.2^{+23.9}_{-24.4}$	$80361.0\substack{+15.9\\-15.9}$
MSHT20	$80358.9^{+13.0}_{-16.3}$	$80379.4^{+24.6}_{-25.1}$	$80356.3^{+14.6}_{-14.6}$
NNPDF3.1	$80344.7^{+15.6}_{-15.5}$	$80354.3^{+23.6}_{-23.7}$	$80345.0^{+15.5}_{-15.5}$
NNPDF4.0	$80342.2^{+15.3}_{-15.3}$	$80354.3^{+22.3}_{-22.4}$	$80342.9^{+15.3}_{-15.3}$

(compatibility of NNPDF4.0 with other ATLAS measurement)

more recent NNPDF PDF set is appeared to be slightly disfavour by ATLAS data

Compatibility test between 8TeV ATLAS full phacespace $Z \rightarrow \ell \ell \, d\sigma / dy$ measurements and predictions obtained from DYTURBO using different PDF sets.

PDF set	Total χ^2 / d.o.f.	χ^2 p-value	Pull on luminosity
$MSHT20aN^{3}LO$ [60]	13/8	0.11	1.2 ± 0.6
CT18A [61]	12/8	0.17	0.9 ± 0.7
MSHT20 [62]	10/8	0.26	0.9 ± 0.6
NNPDF4.0 [63]	30/8	0.0002	0.0 ± 0.2
ABMP16 [64]	30/8	0.0002	1.8 ± 0.4
HERAPDF2.0 [65]	22/8	0.005	-1.3 ± 0.8
ATLASpdf21 [66]	20/8	0.01	-1.1 ± 0.8

ATLAS-CONF-2023-013

low mu benefit

Transverse mass W

Combination	Weight
Electrons	0.427
Muons	0.573
m_{T}	0.144
p_{T}^{ℓ}	0.856
W^+	0.519
W^{-}	0.481

Transverse momenta W

Underlying event

In order to resolve p_{τ}^{w} at 5 GeV we need to achieve a hadronic recoil resolution of the same order.

- The resolution of the hadronic recoil strongly depends on ΣE_T (the scalar sum of the transverse energy deposited in the detector that represents the total event activity)
 - At low p_r^w, two sources largely contribute to ΣE_T and to the deterioration of the recoil resolution: <u>A) underlying event</u> and B) pileup

The underlying event grows as expected with √s as well as recoil resolution

In order to resolve p_{T} at 5 GeV we need to achieve a hadronic recoil resolution of the same order. The resolution of the hadronic recoil strongly depends on ΣE_T (the scalar sum of the transverse energy deposited in the detector that represents the total event activity)

At low p_{τ}^{w} , two sources largely contribute to ΣE_{T} and to the deterioration of the recoil resolution:

A) underlying event and **B) pileup**

24 additionally reconstructed vertices

In order to resolve $p_{\tau^{W}}$ at 5 GeV we need to achieve a hadronic recoil resolution of the same order. The resolution of the hadronic recoil strongly depends on ΣE_{T} (the scalar sum of the transverse energy deposited in the detector that represents the total event activity) At low $p_{\tau^{W}}$, two sources largely contribute to ΣE_{T} and to the deterioration of the recoil resolution:

A) underlying event and <u>B) pileup</u>

At low $<\mu>$, the resolution, σu_{+} increases by $\sim 12\%$

per each additional pileup interaction

9 additionally reconstructed vertices

Z/v

L. Aperio Bella

hadronic recoil

In order to resolve p_{τ}^{w} at 5 GeV we need to achieve a hadronic recoil resolution of the same order. The resolution of the hadronic recoil strongly depends on ΣE_{T} (the scalar sum of the transverse energy deposited in the detector that represents the total event activity) At low p_{τ}^{w} , two sources largely contribute to ΣE_{T} and to the deterioration of the recoil resolution:

A) underlying event and <u>B) pileup</u>

30r

. Aperio Bella

per each additional pileup interaction

78

2 additionally reconstructed vertices

leptons performances

W,Z transverse momentum differential measurement

$$\chi^2 = \sum_{ij} \Delta_i^T (C^{-1})_{ij} \Delta_j,$$

$$\Delta_i = (D_i - B_i) - \sum_k T_{ik} \times w_k.$$

Multíjet background estimated with data-driven improved m_W method

low mu data results channel compatibility

Channel	χ^2/dof	[GeV ⁻¹]
$5.02{ m TeV}$	do/dp da/dp	
$W^- \to \ell^- \nu$	14.6/15	<u>ل</u> ام 10
$W^+ \to \ell^+ \nu$	14.5/15	10
$W \to \ell \nu$	12.1/15	10
$Z \to \ell \ell$	13.7/26	
$\overline{W^+ \to \ell^+ \nu \ / \ W^- \to \ell^- \nu}$	13.0/15	10
$W \to \ell \nu / Z \to \ell \ell$	16.3/15	1.1 1.1 1.1
$13{ m TeV}$.0 Comb .0	
$W^- \to \ell^- \nu$	16.0/17	
$W^+ \to \ell^+ \nu$	17.6/17	
$W \to \ell \nu$	22.1/17	
$Z \to \ell \ell$	21.4/27	
$W^+ \to \ell^+ \nu \ / \ W^- \to \ell^- \nu$	11.3/17	
$W \to \ell \nu / Z \to \ell \ell$	17.1/17	
Ratio $13 \mathrm{TeV}/5.02 \mathrm{T}$		
$W^- \to \ell^- \nu$	11.5/15	
$W^+ \to \ell^+ \nu$	9.3/15	
$W \to \ell \nu$	7.3/15	
$Z \to \ell \ell$	14.2/25	

Detector level distributions

Multijet background estimated with data-driven improved method

Excellent data/MC agreement

- Multijet background estimated with datadriven improved method
- use experimental sensitivity to optimise the agreement between data and MC for the reconstructed u_T distribution

p_{τ} to validate p_{τ} ^w

Z boson decay powerful tool to validate p_T^W measurement: In $Z \rightarrow \ell \ell$ events the transverse momentum spectra can be inferred either from the $p_T(\ell \ell)$ or from the u_T distributions

compatibility check

<u>The Measurements</u>: fiducial differential measurement of the W[±] and Z boson transverse momenta at 13 and 5.02 TeV

- **Bayesian unfolding** of u_T in the W and $p_T(\ell \ell)$ in the Z, separately in electron and muon channels
 - Binning and number of iterations optimised to minimise total uncertainty in the low p_T^W region
 - 9 (25) iterations, 7 GeV bin width at low p_T^W for the W at
 5.02 (13) TeV
 - ▶ 2 iterations, 2 GeV bin width at low p_T^Z for the Z
- \triangleright electron and muon channels combined with BLUE, all giving good $\chi 2$

excellent compatibility between the p_T^Z measured with the $u_T \text{ or } p_T(\ell \ell)$ spectra $\chi^2/\text{dof} = 14.9/145.02 \text{ TeV}$ $\chi^2/\text{dof} = 8.7/1613 \text{ TeV}$

W transverse momentum differential measurement

The results

<u>The Measurements:</u> integrated fiducial measurement for W[±] and for Z boson at 13,5.02 TeV and their ratios

PDF set	$W^- \to \ell \nu$	$W^+ \to \ell \nu$	$Z \to \ell \ell$	
(Cross-section			
CT18 MSHT20 NNPDF3.1	$1364 \\ 1351 \\ 1381$	2199 2185 2232	320.9 324.3 329.8	~2/3% PDF unc. expected
Data	1384 ± 16	2228 ± 25	333.0 ± 4.1	
Cross-section at $13 \mathrm{TeV} [\mathrm{pb}]$				
CT18 MSHT20 NNPDF3.1	$3410 \\ 3397 \\ 3452$	$4462 \\ 4457 \\ 4513$	749.8 766.1 771.4	~2/3% PDF unc. expected
Data	3486 ± 38	4571 ± 49	780.3 ± 10.4	