Measurements of sin 2β and ϕ_s with the full LHCb Run 1 & 2 data sample

Vukan Jevtic (TU Dortmund), Peilian Li (CERN) On behalf of the LHCb collaboration

> June 13, 2023 LHC Seminar

CP-violation history

CKM mechanism

SM charged current interaction

- The unitary CKM matrix V_{CKM} introduces tree-level couplings between up and down-type quarks
- 3 free parameters + CP violating phase δ
- V_{CKM} unitarity tested by over-constraining CKM parameters

1

CKM measurements through the years

One of unitarity conditions: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

CKM measurements through the years

Neutral B meson oscillation

Mixing and decay can be described by Schrödinger-like equation

$$i\frac{d}{dt}\begin{pmatrix}B\\B\end{pmatrix} = \tilde{\mathbf{H}}\begin{pmatrix}B\\B\end{pmatrix} = \begin{bmatrix}m - \frac{i}{2}\Gamma & m_{12} - \frac{i}{2}\Gamma_{12}\\m_{12}^* - \frac{i}{2}\Gamma_{12}^* & m - \frac{i}{2}\Gamma\end{bmatrix}\begin{pmatrix}B\\B\end{pmatrix}$$

describing the decay and time-dependent mixing. The resulting decay rates of initial B and \overline{B} are

$$\begin{split} |\langle f|H|B_{(s)}\rangle|^2 &= \frac{1}{2}e^{-\Gamma t}|A_f|^2 \{\cosh\left(\frac{\Delta\Gamma}{2}t\right) + A_{\Delta\Gamma}\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ &+ C\cos(\Delta mt) - S\sin(\Delta mt) \Big\} \end{split}$$

Opportunities for probing for new physics

- NP short-distance contributions can influence mixing $m_{12}^q = m_{12}^{\text{SM},q} \cdot \Delta_q^{\text{NP}}$ PRD 86(2012)033008
- Through B mixing, NP energy scales of up to 20 TeV for tree level NP or 2 TeV for NP in loops can be probed

PRD 89 (2014) 033016

in 2eta and ϕ_s

CP violation

CP-violating nature of weak interaction has multiple manifestations

CP violation in mixing Unequal transition probabilities between flavour eigenstates $P(B \rightarrow \overline{B}) \neq P(\overline{B} \rightarrow B)$

CP violation in decay

Unequal *CP*-conjugated decay rates $\Gamma(B \rightarrow f) \neq \Gamma(\overline{B} \rightarrow \overline{f})$

CP violation in interference of decays with/without mixing

Time-dependent or time-integrated difference of decay rates of initial flavour eigenstates $\Gamma(B_{(\rightsquigarrow\overline{B})} \rightarrow f_{CP})(t) \neq \Gamma(\overline{B}_{(\rightsquigarrow B)} \rightarrow f_{CP})(t)$

7/44

LHCb detector performance Int J Mod Phys A 30 (2015), 1530022

LHCb detector performance Int J Mod Phys A 30 (2015), 1530022

8/44

LHCb detector performance Int J Mod Phys A 30 (2015), 1530022

LHCb detector performance Int J Mod Phys A 30 (2015), 1530022

Measurement of *CP* violation in $B^0 \rightarrow \psi K_S^0$ decays

LHCb-Paper-2023-013 (In preparation)

Measurement of *CP* violation in $B^0 \rightarrow \psi K^0_S$ decays

The decay channel $B^0 \rightarrow \psi K^0_S$ offers a theoretically clean access to the CKM angle β .

¹J.Phys.G 48(2021) 065002

V. Jevtic, P. Li

World average (HFLAV)

$$S = 0.699 \pm 0.017$$
$$C = -0.005 \pm 0.015$$

 $S = \sin(2\beta + \Delta\phi_d + \Delta\phi_d^{NP})$, penguin contributions are small: $\Delta\phi_d \approx 0.5 \text{ deg}^{-1}$

10/44

Measurement of *CP* violation in $B^0 \rightarrow \psi K^0_S$ decays

The decay channel $B^0 \to \psi K^0_{\rm S}$ offers a theoretically clean access to the CKM angle $\beta.$

$$\sin(2\beta) = \operatorname{Im}\left(\frac{q}{\rho} \frac{\overline{A}_{J/\psi \, K_{\mathrm{S}}^{0}}}{A_{J/\psi \, K_{\mathrm{S}}^{0}}}\right)$$
$$\beta = \arg\left(-\frac{V_{cb}^{*} V_{cd}}{V_{tb}^{*} V_{td}}\right)$$

¹J.Phys.G 48(2021) 065002

V. Jevtic, P. Li

World average (HFLAV)

$$S = 0.699 \pm 0.017$$
$$C = -0.005 \pm 0.015$$

 $S = \sin(2\beta + \Delta\phi_d + \Delta\phi_d^{NP})$, penguin contributions are small: $\Delta\phi_d \approx 0.5 \text{ deg}^{-1}$

Measurement of *CP* violation in $B^0 \rightarrow \psi K^0_S$ decays

The decay channel $B^0 \! \to \psi K^0_{\rm S}$ offers a theoretically clean access to the CKM angle $\beta.$

$$\mathcal{A}^{CP}(t) = \frac{\Gamma(\overline{B}^{0}(t) \to \psi K_{\mathrm{S}}^{0}) - \Gamma(B^{0}(t) \to \psi K_{\mathrm{S}}^{0})}{\Gamma(\overline{B}^{0}(t) \to \psi K_{\mathrm{S}}^{0}) + \Gamma(B^{0}(t) \to \psi K_{\mathrm{S}}^{0})} \approx \underbrace{D_{\Delta t} D_{FT}}_{\text{Experimental dilution factors}} S \sin(\Delta m_{d} t)$$

Summary of most recent measurements

•
$$B^0 \rightarrow J/\psi (\rightarrow \mu\mu) K^0_S (\rightarrow \pi^+\pi^-)$$
 (82%)

•
$$B^0 \rightarrow J/\psi (\rightarrow ee) K^0_{\rm S} (\rightarrow \pi^+\pi^-)$$
 (12%)

•
$$B^0 \rightarrow \psi(2S) (\rightarrow \mu \mu) K^0_{\mathrm{S}} (\rightarrow \pi^+ \pi^-)$$
 (6%)

- Previous LHCb analyses:
 - [PRL 115 (2015) 031601]
 - [JHEP 11 (2017) 170]

Candidate selection

- Trigger
 - High $p_{\rm T}$ muon or electron pair with invariant mass near J/ψ or $\psi(2S)$ resonance
 - High $p_{\rm T}$ pion pair with good common vertex near $K_{\rm S}^0$ mass
- *B*⁰ candidate vertex required to be separated from PV and be well reconstructed.
- Long $K_{\rm S}^0$ flight distance: In approx. 60 % of cases $K_{\rm S}^0$ leave VELO \rightarrow use π candidates without VELO information

- measurement
 - *upstream tracks* are considered, combined with *long track*
 - Combinations of long and downstream tracks are included
- New reco. categories add 13 % signal

 $\sin 2\beta$ and ϕ_i

Reduction of backgrounds

- Boosted decision tree to suppress combinatorial background
 - Signal proxy: Simulation
 - Background proxy: Upper mass side band
- $\Lambda_b^0 \rightarrow J/\psi \Lambda(\rightarrow p\pi^-)$: Require a low proton identification probability
- $B^0 \to J/\psi \, K^* (\to K^+ \pi^-)$: Apply minimum $K^0_{
 m S}$ decay time cut
- $B^+
 ightarrow J\!/\psi\,K^+(+\pi^-)$: Apply kaon mis-identification probability cut
- Remaining background from partially reconstructed *B* decays are modelled

Mass fits and signal yield

$$\begin{split} N_{J/\psi\,(\to\mu\mu)K_{\rm S}^0} &= 306\,322\pm619\\ N_{J/\psi\,(\toee)K_{\rm S}^0} &= 42\,870\pm269\\ N_{\psi(2S)(\to\mu\mu)K_{\rm S}^0} &= 23\,570\pm164 \end{split}$$

From mass fits, *sWeights* are obtained for effective background subtraction in *CP* fit

- Signal modes: Double-sided Hypatia¹ distribution
- $B^0_s \rightarrow \psi K^0_S$: Shape shared with signal + constant shift
- Combinatorial background: Exponential distribution
- Partial background: Normal distribution

¹Nucl. Instrum. Methods. Phys. Res. B 764 (2014) 150

Flavour Tagging at LHCb

The Flavour Tagging technique enables the identification of the B production flavour, allowing us to measure interference CP violation.

$$\mathcal{A}^{CP} = \frac{\Gamma(\overline{B}^{0}_{(s)} \to f_{CP}) - \Gamma(\overline{B}^{0}_{(s)} \to f_{CP})}{\Gamma(\overline{B}^{0}_{(s)} \to f_{CP}) + \Gamma(\overline{B}^{0}_{(s)} \to f_{CP})}$$

Flavour Tagging at LHCb

The Flavour Tagging technique enables the identification of the B production flavour, allowing us to measure interference CP violation.

$$\mathcal{A}^{CP} = \frac{\Gamma(\overline{B}^{0}_{(s)} \to f_{CP}) - \Gamma(\overline{B}^{0}_{(s)} \to f_{CP})}{\Gamma(\overline{B}^{0}_{(s)} \to f_{CP}) + \Gamma(\overline{B}^{0}_{(s)} \to f_{CP})}$$

CP fit model

Fit of time dependent *B* decay rates P(B, t)Simplified model:

$$egin{aligned} & \mathcal{P}_{CP}(t,d,\eta) \propto \left\{ [1+d(1-2\omega)]\mathcal{P}_{B^0}(t) + [1+d(1-2\overline{\omega})]\mathcal{P}_{\overline{B}^0}(t)
ight\} e^{-\Gamma t} \ & \mathcal{P}_{B^0,(\overline{B}^0)}(t) \propto (1\mplpha)(1\mp\Delta\epsilon)(1\mpm{S}\sin(\Delta m_d t)\pmm{C}\cos(\Delta m_d t)) \end{aligned}$$

CP fit model

Fit of time dependent *B* decay rates P(B, t)Simplified model:

$$egin{aligned} & P_{CP}(t,d,\eta) \propto \left\{ [1+d(1-2\omega)] P_{B^0}(t) + [1+d(1-2\overline{\omega})] P_{\overline{B^0}}(t)
ight\} e^{-\Gamma t} \ & P_{B^0,(\overline{B^0})}(t) \propto (1\mplpha)(1\mp\Delta\epsilon)(1\mpm{S}\sin(\Delta m_d t)\pmm{C}\cos(\Delta m_d t)) \end{aligned}$$

- α Production asymmetry
- $\Delta \epsilon$ Flavour Tagging efficiency asymmetry
- S, C CP-violation parameters

CP fit model

Fit of time dependent *B* decay rates P(B, t)Simplified model:

$$egin{aligned} & \mathcal{P}_{CP}(t,d,\eta) \propto \left\{ [1+d(1-2\omega)]\mathcal{P}_{B^0}(t) + [1+d(1-2\overline{\omega})]\mathcal{P}_{\overline{B^0}}(t)
ight\} e^{-\Gamma t} \ & \mathcal{P}_{B^0,(\overline{B}^0)}(t) \propto (1\mplpha)(1\mp\Delta\epsilon)(1\mpm{S}\sin(\Delta m_d t)\pmm{C}\cos(\Delta m_d t)) \end{aligned}$$

Decay time description

- Decay time acceptance model: Cubic splines
- Decay time resolution model: Optimized with simulation
- VELO misalignment calibrated with prompt data

Constrained parameters:

 Δm_d , α , 8 FT calibration parameters via covariance matrix

Systematic uncertainties

Fitter validation

- Generate toys of signal and background components
- Fit toys, compare to generation values
- $\Delta \Gamma_d$ uncertainty
 - Vary ΔΓ_d by HFLAV uncertainty

• FT calibration portability

• Compare transferred calibrations to MC truth calibration channels to calibrations on signal truth. Generate toys based on difference distribution.

• FT $\Delta \epsilon$ portability

• Compare FT efficiency asymmetry on MC calibration channels and signal MC. Vary parameter in fit by difference

• Decay-time bias model

• Decay time calibration parameters varied in 1σ bounds

Source	$\sigma(S)$	$\sigma(C)$
Fitter validation	0.0004	0.0006
$\Delta \Gamma_d$ uncertainty	0.0055	0.0017
FT calibration portability	0.0053	0.0001
FT $\Delta \epsilon_{tag}$ portability	0.0014	0.0017
Decay-time bias model	0.0007	0.0013

Analysis results

Combined fit result

$$\begin{split} S^{\text{Run 2}}_{\psi K^0_{\text{S}}} &= 0.716 \pm 0.013 \, (\text{stat}) \pm 0.008 \, (\text{syst}) \\ C^{\text{Run 2}}_{\psi K^0_{\text{S}}} &= 0.012 \pm 0.012 \, (\text{stat}) \pm 0.003 \, (\text{syst}) \end{split}$$

Analysis results

Combination of LHCb (S, C) measurements

Combination strategy

- Combinations of Run 1 and Run 2 single measurements are performed
- Input parameter systematics Δm_d , $\Delta \Gamma_d$, α assumed to be correlated

New total LHCb combination

$$S_{\psi \kappa_{\rm S}^0}^{{
m Run}\,1+2} = 0.723 \pm 0.014 \, ({
m stat} + {
m syst}) \ C_{\psi \kappa_{\rm S}^0}^{{
m Run}\,1+2} = 0.007 \pm 0.012 \, ({
m stat} + {
m syst})$$

Combination of $B^0 \rightarrow J/\psi \, K^0_{\rm S}$ modes

$$\begin{split} S^{\text{Run } 1+2}_{J/\psi \ K^0_{\text{S}}} = & 0.724 \pm 0.014 \, \text{(stat+syst)} \\ C^{\text{Run } 1+2}_{J/\psi \ K^0_{\text{S}}} = & 0.013 \pm 0.012 \, \text{(stat+syst)} \end{split}$$

Summary and preliminary HFLAV 2023 combinations

- This measurement is the most precise single measurement of sin(2β) to date
- The statistical uncertainty is still the limiting factor

Summary and preliminary HFLAV 2023 combinations

- This measurement is the most precise single measurement of sin(2β) to date
- The statistical uncertainty is still the limiting factor

V. Jevtic, P. Li

 $\sin 2\beta$ and ϕ_i

Measurement of CP violation in $B^0_s o J\!/\psi\, K^+K^-$

LHCb-Paper-2023-016 (In preparation)

$B_s^0 - \overline{B}_s^0$ oscillations

- Oscillation much faster than $B^0~(\Delta m_s \gg \Delta m)$
 - Precise determination of time resolution is crucial
- Non-zero $\Delta\Gamma_s$

$B_s^0 - \overline{B}_s^0$ oscillations

• Most precise measurement at LHCb $\Delta m_s = (17.7656 \pm 0.0057) \text{ ps}^{-1} \text{ Nat. Phys. 18(2022)1-5}$

- $B_s^0 \to D_s^- \pi^+$ - $\overline{B}_s^0 \to B_s^0 \to D_s^- \pi^+$ - Untagged $\begin{array}{c} (\overset{\textbf{sd}}{\text{ps}} 2500 \\ 2000 \end{array} \end{array}$ Decays / 15001000 LHCb 500 $6\,{\rm fb}^{-1}$ 0 2 8 4 6 $t \, [ps]$

CP violation in B_s^0 mixing and decays

- Mixing-induced CPV phase ϕ_s in B^0_s decays through $b o c \bar{c} s$ transitions
 - highly suppressed compared to the B^0 system ($eta\sim 22^\circpprox$ 0.39 rad)
 - CKM global fit: $\phi_s^{\text{tree}} \approx -2\beta_s = (-0.0368^{+0.0006}_{-0.0009}) \text{ rad}^1$
 - UT fitter: $-2\beta_s = -0.0370 \pm 0.0010$ rad

¹Ignoring penguin contribution

25 / 44

CP violation in B_s^0 mixing and decays

- Sensitive to physics beyond the SM, up to $> {\rm TeV}$ scale
 - can enter in internal loops
 - can lead to sizable modification to ϕ_s

$$\phi_{s} = \phi_{s}^{\text{tree}} + \delta \phi_{s}^{\text{penguin}} + \delta \phi_{s}^{\text{NP}}$$

- Golden channel: $B_s^0 \rightarrow J/\psi \phi$
 - A small fraction of S-wave component \rightarrow making it possible to determine the sign of $\Delta\Gamma_s$ LHCB-PAPER-2011-028
 - Measurements of Γ_s , $\Delta\Gamma_s$, Δm_s , strong phases & polarisation fractions

Rev.Mod.Phys. 88(2016)045002

Experimental measurements

- First results from CDF and D0 with big uncertainties
- Combined result from CDF, D0, ATLAS, CMS & LHCb: $\Delta\Gamma_s = (0.082 \pm 0.005) \text{ ps}^{-1} \text{ [HFLAV]}$ $\phi_s^{J/\psi KK} = 0.070 \pm 0.022 \text{ rad}, \quad \phi_s^{c\bar{c}s} = -0.049 \pm 0.019 \text{ rad}$

• Including measurements from $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$, $B_s^0 \rightarrow J/\psi(e^+e^-)K^+K^-$, $B_s^0 \rightarrow \psi K^+K^-$, $B_s^0 \rightarrow D_s^+D_s^-$, etc by LHCb

Measuring ϕ_s

$$A_{CP}(t) = \frac{\Gamma(\bar{B}^0_s \to J/\psi KK) - \Gamma(B^0_s \to J/\psi KK)}{\Gamma(\bar{B}^0_s \to J/\psi KK) + \Gamma(B^0_s \to J/\psi KK)} = \eta_f \cdot \sin \phi_s^{\rm obs} \cdot \sin(\Delta m_s t)$$

• CP eigenvalue of the final state $\eta_f = (-1)^L$

Measuring ϕ_s

$$A_{CP}(t) = \frac{\Gamma(\bar{B}_{s}^{0} \to J/\psi KK) - \Gamma(B_{s}^{0} \to J/\psi KK)}{\Gamma(\bar{B}_{s}^{0} \to J/\psi KK) + \Gamma(B_{s}^{0} \to J/\psi KK)} = \eta_{f} \cdot \sin \phi_{s}^{\text{obs}} \cdot \sin(\Delta m_{s}t)$$

- CP eigenvalue of the final state $\eta_f = (-1)^L$
- A mixture of CP-even & CP-odd components \rightarrow angular analysis

Measuring ϕ_s

$$A_{CP}(t) = \frac{\Gamma(\bar{B}^0_s \to J/\psi KK) - \Gamma(B^0_s \to J/\psi KK)}{\Gamma(\bar{B}^0_s \to J/\psi KK) + \Gamma(B^0_s \to J/\psi KK)} = \eta_f \cdot \sin \phi_s^{\rm obs} \cdot \sin(\Delta m_s t)$$

- *CP* eigenvalue of the final state $\eta_f = (-1)^L$
- A mixture of CP-even & CP-odd components \rightarrow angular analysis

Experimentally:

$$\mathcal{A}_{CP}(t) \propto \eta_{f} \cdot e^{-rac{1}{2}\Delta m_{s}^{2}\sigma_{t}^{2}} \cdot (1-2\omega) \cdot \sin \phi_{s}^{\mathrm{obs}} \cdot \sin(\Delta m_{s}t)$$

- Probability of mis-tagging the B_s^0 flavor at production, ω
- Excellent decay-time resolution $\sigma_t \sim 42 \text{ fs}$
- Model for decay-time and angular efficiencies

V. Jevtic, P. Li

Candidates selection

Clean signatures of signals: $B_s^0 \rightarrow J/\psi K^+ K^-$ around $\phi(1020)$ vicinity

- Hardware trigger (L0) depends on high p_T from Calo/Muon detector
- Full event reconstruction in software trigger stages
 - time unbiased: $m(\mu^+\mu^-) > 2.7 \text{ GeV}/c^2$
 - *time biased*: significant displacement from PV or a good-quality di-muon secondary vertex
- Boosted Decision Tree to suppress combinatorial background

Candidates selection

Clean signatures of signals: $B_s^0 \rightarrow J/\psi K^+ K^-$ around $\phi(1020)$ vicinity

- Hardware trigger (L0) depends on high p_T from Calo/Muon detector
- Full event reconstruction in software trigger stages
 - time unbiased: $m(\mu^+\mu^-) > 2.7 \text{ GeV}/c^2$
 - *time biased*: significant displacement from PV or a good-quality di-muon secondary vertex
- Boosted Decision Tree to suppress combinatorial background
- Tight particle identification and mass requirements to veto peaking backgrounds
 - $B^0 \rightarrow J/\psi K^+ \pi^-$ negligible after veto
 - $\Lambda_b^0 \rightarrow J/\psi p K^-$ is subtracted with negative weights from simulation

Mass fit

- Splot technique to subtract backgrounds
 - Double-sided Crystall-ball for signal, with width parametrised as a function of σ_m to reduce correlation with $\cos \theta_\mu$
 - $B^0
 ightarrow J/\psi K^+ K^-$ shares signal shape except for the mean of mass
 - Exponential function for combinatorial background
 - Separate fits in six m(K⁺K⁻) bins, two trigger categories and 4 years (15-18)

 \rightarrow Signal candidates: 349000

Flavour tagging calibration OS tagging

- Calibration channel: $B^+ \rightarrow J/\psi K^+$
- Counting correct/mis-tagged events according to *K* charge

SSK tagging

- Calibration channel: $B_s^0
 ightarrow D_s^- \pi^+$
- Fit to the time distribution in 8 bins of the predicted mistag probability η

Flavour tagging calibration OS tagging

- Calibration channel: $B^+ \rightarrow J/\psi K^+$
- Counting correct/mis-tagged events according to K charge

SSK tagging

- Calibration channel: $B_s^0
 ightarrow D_s^- \pi^+$
- Fit to the time distribution in 8 bins of the predicted mistag probability η

• Linear calibration: $\omega = p_0 + p_1(\eta - \langle \eta \rangle)$

Tagging power of combined OS and SSK taggers

Decay-time resolution

$$\mathcal{G}(t-\mu|\sigma_{ ext{eff}})$$

• Decay time resolution dilutes oscillations, $\mathcal{D} = exp(-\frac{1}{2}\sigma_{\text{eff}}^2\Delta m_s^2)$

$$\begin{split} \delta_t^2 &\approx (\frac{m}{p})^2 \sigma_L^2 + (\frac{t}{p})^2 \sigma_p^2 \\ \sigma_L &\sim 200 \, \mu\text{m}, \sigma_p/p \sim 0.5\% \end{split}$$

Decay-time resolution

$$\mathcal{G}(t-\mu|\sigma_{ ext{eff}})$$

• Decay time resolution dilutes oscillations, $\mathcal{D} = exp(-\frac{1}{2}\sigma_{\mathrm{eff}}^2\Delta m_s^2)$

• Prompt $J/\psi KK$ events with all tracks coming from *pp* collision (PV)

• $t = 0 \pm \sigma_t$, where σ_t reflects resolution effect of the detector

- Effective Gaussian resolution, with width parameterised as $\sigma_{\rm eff} = p_0 + p_1 \delta_t \rightarrow 42$ fs in average, $\mathcal{D} \sim 0.75$
- Small bias (~ 5 fs) due to tiny misalignment in VELO is corrected by adding as mean μ of the Gaussian resolution model

Decay-time efficiency

- Reconstruction and selection introduce non-uniform efficiency
- Data-driven method using control channel $B^0 o J/\psi K^{*0}(o K^+\pi^-)$
 - $au_{B^0} = (1.520 \pm 0.004)$ ps, $\Delta \Gamma_d = 0 \ {
 m ps}^{-1}$
 - B_s^0 ($\Delta\Gamma_s = 0$) and B^0 simulations to account for kinematic difference between signal and control mode

$$arepsilon_{ ext{data}}^{B_s^0}(t) = arepsilon_{ ext{data}}^{B_s^0}(t) imes rac{arepsilon_{ ext{sim}}^{B_s^0}(t)}{arepsilon_{ ext{sim}}^{B_s^0}(t)}$$

✓ Validated by measuring the lifetime of B^0 and B^+ using $B^0 \to J/\psi K^{*0}$ and $B^+ \to J/\psi K^+$ data

V. Jevtic, P. Li

33 / 44

Angular efficiencies

- Detector geometry and selection criteria introduce non-uniform efficiency
- Estimated with $B^0_s
 ightarrow J/\psi\phi$ simulation
- Iterative procedure to correct the difference between simulation and data

✓ Validated by measuring the polarisation amplitudes of $B^0 \rightarrow J/\psi K^{*0}$

Fit results

- Simultaneous fit to 48 sub-samples: 4 years \times 2 trigger categories \times 6 m(KK)
- Tagging calibration parameters and spline coefficiencies of time acceptance are Gaussian constraint
- Extract physics parameters: ϕ_s , λ , $\Delta\Gamma_s$, $\Gamma_s \Gamma_d$, Δm_s

Systematic uncertainties

* Uncertainties (×0.01) Dominant sys.

Sub-dominant sys.

Stat. limited

Source	$ A_0 ^2$	$ A_{\perp} ^2$	ϕ_s [rad]	$ \lambda $	$\delta_{\perp} - \delta_0$ [rad]	$\delta_{\parallel} - \delta_0 \ [ext{rad}]$	$\Gamma_s - \Gamma_d$ $[ps^{-1}]$	$\Delta\Gamma_s$ [ps ⁻¹]	Δm_s [ps ⁻¹]
Mass parametrization	0.04	0.03	0.03	0.02	0.15	0.12	0.02	0.04	0.03
Mass: shape statistical	0.04	0.04	0.05	0.09	0.62	0.33	0.02	0.01	0.11
Mass factorization	0.11	0.10	0.42	0.19	0.54	0.60	0.12	0.16	0.18
B_c^+ contamination *	0.04	0.05	_	0.02	_	0.17	(0.07)	(0.03)	_
D–wave component	0.04	0.04	0.02	_	0.07	0.13	0.01	0.03	0.02
Ghost tracks	0.07	0.04	0.02	0.10	0.18	0.18	0.02	_	0.01
Multiple candidates	0.01	_	0.27	0.22	0.90	0.41	0.01	0.01	0.24
Particle identification	0.06	0.09	0.27	0.27	1.31	0.51	0.05	0.15	0.46
$C_{\rm SP}$ factors	-	0.01	0.01	0.03	0.73	0.41	_	0.01	0.04
DTR model portability	-	_	0.08	0.03	0.26	0.09	_	_	0.09
DTR calibration	-	_	0.03	0.02	0.11	0.07	-	_	0.05
Time bias correction	0.04	0.05	0.06	0.05	0.77	0.11	0.03	0.05	0.44
Angular efficiency	0.05	0.14	0.25	0.32	0.42	0.44	0.01	0.02	0.13
Angular resolution	0.01	0.01	0.02	0.01	0.02	0.08	_	0.01	0.02
Kinematic weighting	0.24	0.09	0.01	0.01	0.98	0.86	0.02	0.03	0.31
Momentum uncertainty	0.08	0.04	0.04	-	0.07	0.11	0.01	_	0.13
Longitudinal scale	0.07	0.04	0.04	-	0.10	0.09	0.02	_	0.31
Neglected correlations	-	_	-	-	4.20	4.96	-	-	-
Total sys. unc.	0.32	0.24	0.6	0.5	4.8	5.2	0.14	0.24	0.9
Stat. unc.	0.17	0.23	2.2	1.1	7.5	6.0	0.14	0.44	3.3

*The uncertainty of the B_c^+ contamination for $\Delta\Gamma_d^{\varsigma}$ and $\Delta\Gamma_s$ is included in the fit to data and does not contribute to the quoted total systematic uncertainty.

Results

Parameters	Values ²		
ϕ_s [rad]	$-0.039 \pm 0.022 \pm 0.006$		
$ \lambda $	$1.001\pm 0.011\pm 0.005$		
$\Gamma_s - \Gamma_d [\mathrm{ps}^{-1}]$	$-0.0056^{+0.0013}_{-0.0015}\pm 0.0014$		
$\Delta\Gamma_s [ps^{-1}]$	$0.0845 \pm 0.0044 \pm 0.0024$		
$\Delta m_s \ [{ m ps}^{-1}]$	$17.743 \pm 0.033 \pm 0.009$		
$ A_{\perp} ^2$	$0.2463 \pm 0.0023 \pm 0.0024$		
$ A_0 ^2$	$0.5179 \pm 0.0017 \pm 0.0032$		
$\delta_{\perp} - \delta_0$ [rad]	$2.903 {}^{+ 0.075}_{- 0.074} \pm 0.048$		
$\delta_{\parallel} - \delta_0$ [rad]	$3.146 \pm 0.060 \pm 0.052$		

Run 1 result: $\phi_s = -0.058 \pm 0.049 \pm 0.006$ rad

- The most precise measurement of ϕ_s to date
- Compatible with the prediction from SM Global fits
- No evidence for *CP* violation

 $\sin 2\beta$ and ϕ

²The first uncertainty is statistical and the second systematic.

Polarisation-dependent fit

New physics effects can vary in different polarisation states

- Allow $|\lambda|$ and ϕ_s differ in polarisation states
- Shows no evidence for any polarisation dependence

Parameters	Values (stat. unc. only)
ϕ_s^0 [rad]	-0.034 ± 0.023
$\phi_s{}^{\scriptscriptstyle \parallel} - \phi_s^{\scriptscriptstyle 0}$ [rad]	-0.002 ± 0.021
$\phi_s^{\perp} - \phi_s^0$ [rad]	$-0.001 {}^{+ 0.020}_{- 0.021}$
$\phi_s{}^{S} - \phi_s^0$ [rad]	$0.022 {}^{+ 0.027}_{- 0.026}$
$ \lambda^0 $	$0.969 {}^{+ 0.025}_{- 0.024}$
$ \lambda^{\parallel}/\lambda^{0} $	$0.982 {}^{+ 0.055}_{- 0.052}$
$ \lambda^{\perp}/\lambda^{0} $	$1.107 {}^{+ 0.082}_{- 0.076}$
$ \lambda^S/\lambda^0 $	$1.121^{+0.084}_{-0.078}$

Combination with all measurements

- $\phi_s^{J/\psi KK} = -0.050 \pm 0.017$ rad \rightarrow improved by 23%
- $\phi_s^{c\bar{c}s} = -0.039 \pm 0.016$ rad \rightarrow improved by 15%
- Consistent with the prediction of Global fits assuming SM:³ $\phi_{\varsigma}^{\text{CKMfitter}} \approx (-0.0368^{+0.0006}_{-0.0000}) \text{ rad}, \phi_{\varsigma}^{\text{UTfitter}} = -0.0370 \pm 0.0010 \text{ rad}$

³Ignoring penguin contribution.

ϕ_s in $b \rightarrow s\bar{s}s$ transition

- Penguin dominated decay $B_s^0 \rightarrow \phi(\rightarrow K^+K^-)\phi(\rightarrow K^+K^-)$
- NP contributes to mixing and penguin processes

LHCb-Paper-2023-001

ϕ_s in $b \rightarrow s\bar{s}s$ transition

• Penguin dominated decay $B_s^0 \rightarrow \phi(\rightarrow K^+K^-)\phi(\rightarrow K^+K^-)$

• NP contributes to mixing and penguin processes

• Very similar analysis strategy as $B_s^0 \rightarrow J/\psi K^+ K^ \rightarrow$ Flavor-tagged time-dependent angular analysis

ϕ_s in $b \rightarrow s\bar{s}s$ transition

$$\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 \text{ rad} \\ |\lambda| = 1.004 \pm \pm 0.030 \pm 0.009$$

- The most precise mesurement of $\phi_s^{s\bar{s}s}$ in penguin dominated decays
- No CP violation is observed

Looking at Run 3 and beyond

Looking at Run 3 and beyond

Further precision improvement with more data

LHCb-PUB-2018-009, PoS(KMI2017)005, ATL-PHYS-PUB-2018-041, CMS-PAS-FTR-18-041

42 / 44

Looking at Run 3 and beyond

Further precision improvement with more data

LHCb-PUB-2018-009, PoS(KMI2017)005, ATL-PHYS-PUB-2018-041, CMS-PAS-FTR-18-041

• Great opportunities to search for NP indirectly, up to > TeV scale

V. Jevtic, P. Li

Controlling the penguin effects

- $\sigma(\phi_s) \sim 0.016$ comparable with the estimation of $\Delta \phi_s^{penguin} \sim 1^\circ \approx 0.017$ \rightarrow Better control of penguin effect necessary!
- Combined analysis of penguin contributions in ϕ_s and ϕ_d , using SU(3) flavor symmetry J.Phys.G 48 (2021) 6, 065002
- More experimental measurements come soon!

Summary

- Flag-ship time-dependent measurements of *CP* violation with the full LHCb Run 1 & 2 data sample, giving the most precise measurements:
 - $\sin 2\beta$ with $B^0 \rightarrow \psi K_S^0$

 $\sin(2\beta) = 0.716 \pm 0.013 \pm 0.008 \rightarrow \text{improving WA by 35\%}$

• ϕ_s with $B^0_s \to J/\psi K^+ K^-$

 $\phi_{s} = -0.039 \pm 0.022 \pm 0.006 ~\mathrm{rad} \rightarrow \mathrm{improving}$ WA by 15%

- $\phi_s^{s\bar{s}s}$ in penguin dominated decays $\phi_s^{s\bar{s}s} = -0.042 \pm 0.075 \pm 0.009 \text{ rad}$
- Still statistics limited, Upgrade I and II needed to further test the SM and search for NP indirectly

Thank you for your attention!

PDF for ϕ_s

Time-dependent angular fit EPJC79(2019)706 $\mathscr{P}(t,\theta_K,\theta_\mu,\phi_h|\delta_l) \propto \sum_{i=1}^{10} N_k h_k(t) f_k(\theta_K,\theta_\mu,\phi_h) \rightarrow \phi_s, \Delta m_s, \Delta \Gamma_s, \Gamma_s - \Gamma_d$ Angular amplitudes $\mathcal{P}(t, \Omega | \mathfrak{g}^{OS}, \mathfrak{g}^{SSK}, \eta^{OS}, \eta^{SSK}, \delta_t)$ C_{sp}^k account for the interference $\propto \sum_{k=1}^{10} C_{\rm SP}^k N_k f_k(\Omega) \varepsilon_{\rm data}^{B_s^0}(t)$ between P- and S- wave flavor tagging $\cdot \left\{ \left[\mathcal{Q} \left(\mathfrak{q}^{\mathrm{OS}}, \mathfrak{q}^{\mathrm{SSK}}, \eta^{\mathrm{OS}}, \eta^{\mathrm{SSK}} \right) h_k \left(t | B_s^0 \right) \right\} \right\}$ decav-time efficiency $+\bar{\mathcal{Q}}(q^{OS}, q^{SSK}, \eta^{OS}, \eta^{SSK}) h_k(t|\overline{B}_s^0) \otimes \mathcal{R}(t-t'|\delta_t)$ decay-time resolution $\frac{h_k(t|B_s^0)}{h_k(t|B_s^0)} = \frac{3}{4\pi} e^{-\Gamma t} \left(a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} \right) = \frac{k}{1 + 1 + 1 + 1} \frac{A_k}{4}$ $f_k(\theta_u, \theta_K, \varphi_h)$ $+c_k\cos(\Delta mt)+d_k\sin(\Delta mt)$, $h_k(t|\bar{B}_s^0) = \frac{3}{4\pi} e^{-\Gamma t} \left(a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} \right)$

 a_k, b_k, c_k, d_k involve strong and weak phases (δ, ϕ_s) of each component

 $-c_k\cos(\Delta mt) - d_k\sin(\Delta mt)$,

1	$ A_0 ^2$	$2\cos^2\theta_K\sin^2\theta_\mu$
2	$ A_{\parallel} ^2$	$\sin^2 \theta_k (1 - \sin^2 \theta_\mu \cos^2 \varphi_h)$
3	$ A_{\perp} ^2$	$\sin^2 \theta_k (1 - \sin^2 \theta_\mu \sin^2 \varphi_h)$
4	$ A_{\parallel}A_{\perp} $	$\sin^2 \theta_k \sin^2 \theta_\mu \sin 2\varphi_h$
5	$ A_0A_{\parallel} $	$\frac{1}{2}\sqrt{2}\sin 2\theta_k \sin 2\theta_\mu \cos \varphi_h$
6	$ A_0A_\perp $	$-\frac{1}{2}\sqrt{2}\sin 2\theta_k \sin 2\theta_\mu \sin \varphi_h$
7	$ A_{S} ^{2}$	$\frac{2}{3}\sin^2\theta_{\mu}$
8	$ A_S A_{\parallel} $	$\frac{1}{3}\sqrt{6}\sin\theta_k\sin 2\theta_\mu\cos\varphi_h$
9	$ A_S A_\perp $	$-\frac{1}{3}\sqrt{6}\sin\theta_k\sin 2\theta_\mu\sin\varphi_h$
10	$ A_S A_0 $	$\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$

Results for *S*-wave components

$$\begin{split} |A_S^1|^2 &= 0.472 \pm 0.024 \pm 0.027, \\ |A_S^2|^2 &= 0.042 \stackrel{+ 0.0013}{- 0.0009} \pm 0.010, \\ |A_S^3|^2 &= 0.0029 \stackrel{+ 0.0013}{- 0.0009} \pm 0.023, \\ |A_S^4|^2 &= 0.0037 \stackrel{+ 0.0025}{- 0.0019} \pm 0.032, \\ |A_S^5|^2 &= 0.0508 \stackrel{+ 0.0070}{- 0.0019} \pm 0.027, \\ |A_S^6|^2 &= 0.151 \pm 0.011 \pm 0.051, \\ \delta_S^1 - \delta_\perp &= 2.05 \stackrel{+ 0.12}{- 0.14} \pm 0.19 \text{ rad}, \\ \delta_S^2 - \delta_\perp &= 1.62 \stackrel{+ 0.19}{- 0.19} \pm 0.41 \text{ rad}, \\ \delta_S^3 - \delta_\perp &= 1.16 \stackrel{+ 0.37}{- 0.29} \pm 0.19 \text{ rad}, \\ \delta_S^4 - \delta_\perp &= -0.15 \stackrel{+ 0.12}{- 0.15} \pm 0.31 \text{ rad}, \\ \delta_S^5 - \delta_\perp &= -1.033 \stackrel{+ 0.074}{- 0.083} \pm 0.07 \text{ rad}. \end{split}$$

Inputs for ϕ_s combination

Exp.	Mode	Dataset	$\phi_s^{c\overline{c}s}$	$\Delta\Gamma_s ~({ m ps}^{-1})$	Ref.
CDF	$J/\psi \phi$	$9.6{ m fb}^{-1}$	[-0.60, +0.12], 68% CL	$+0.068\pm0.026\pm0.009$	[2]
D0	$J\!/\psi\phi$	$8.0{ m fb}^{-1}$	$-0.55^{+0.38}_{-0.36}$	$+0.163^{+0.065}_{-0.064}$	[3]
ATLAS	$J\!/\psi\phi$	$4.9{ m fb}^{-1}$	$+0.12\pm 0.25\pm 0.05$	$+0.053\pm 0.021\pm 0.010$	[4]
ATLAS	$J\!/\psi\phi$	$14.3{ m fb}^{-1}$	$-0.110 \pm 0.082 \pm 0.042$	$+0.101\pm 0.013\pm 0.007$	[5]
ATLAS	$J\!/\psi\phi$	$80.5{ m fb}^{-1}$	$-0.081\pm0.041\pm0.022$	$+0.0607\pm0.0047\pm0.0043$	[1]
ATLAS	above 3	3 combined	$-0.087 \pm 0.036 \pm 0.021$	$+0.0657\pm0.0043\pm0.0037$	[1]
CMS	$J\!/\psi\phi$	$19.7{ m fb}^{-1}$	$-0.075\pm0.097\pm0.031$	$+0.095\pm0.013\pm0.007$	[6]
CMS	$J\!/\psi\phi$	$96.4\mathrm{fb}^{-1}$	$-0.011\pm0.050\pm0.010$	$+0.114\pm0.0014\pm0.0007$	[7]
CMS	above 2	2 combined	$-0.021\pm0.044\pm0.010$	$+0.1032\pm0.0095\pm0.0048$	[7]
LHCb	$J\!/\psi\phi$	$3.0{ m fb}^{-1}$	$-0.058 \pm 0.049 \pm 0.006$	$+0.0805\pm0.0091\pm0.0032$	[8]
LHCb	$J\!/\psi\pi^+\pi^-$	$3.0{ m fb}^{-1}$	$+0.070\pm0.068\pm0.008$	—	[9]
LHCb	$J/\psi K^+K^-$	$a 3.0 {\rm fb}^{-1}$	$+0.119\pm0.107\pm0.034$	$+0.066\pm 0.018\pm 0.010$	[10]
LHCb	$\psi(2S)\phi$	$3.0{ m fb^{-1}}$	$+0.23^{+0.29}_{-0.28}\pm0.02$	$+0.066^{+0.41}_{-0.44}\pm0.007$	[11]
LHCb	$D_s^+ D_s^-$	$3.0{ m fb}^{-1}$	$+0.02\pm 0.17\pm 0.02$	_	[12]
LHCb	$J\!/\psi \pi^+\pi^-$	$1.9{ m fb}^{-1}{}^{b}$	$-0.057\pm0.060\pm0.011$	_	[?]
LHCb	$J/\psi\phi$	$1.9{ m fb}^{-1}{}^{b}$	$-0.083 \pm 0.041 \pm 0.006$	$+0.077\pm0.008\pm0.003$	[13]
LHCb	above 7	7 combined	-0.042 ± 0.025	$+0.0813 \pm 0.0048$	[13]
LHCb	$J\!/\!\psi\phi^c$	$3.0{ m fb}^{-1}$	$+0.00\pm 0.28\pm 0.07$	$+0.115\pm 0.045\pm 0.011$	[14]
$B_s^0 \rightarrow J$	$\psi \phi \text{ combin}$	ied	-0.070 ± 0.022	$+0.074 \pm 0.006$	
All com	bined		-0.049 ± 0.019	$+0.077 \pm 0.006$	
$a m(K^+K^-) > 1.05 \text{ GeV}/c^2$ $b \text{ Run } 2$ $c J/\psi \rightarrow e^+e^-$					

Control of penguin effects

• Penguin effects estimated from $B_s^0 \to J/\psi K^{*0}$ and $B^0 \to J/\psi \rho^0$

$$\Delta \phi_{s, \perp}^{J/\psi \phi} = 0.000^{+0.009}_{-0.011} (\text{stat}) \ ^{+0.004}_{-0.009} (\text{syst}) \text{ rad} \\ \Delta \phi_{s, \perp}^{J/\psi \phi} = 0.001^{+0.010}_{-0.014} (\text{stat}) \ ^{\pm0.008}_{-0.009} (\text{syst}) \text{ rad} \\ \Delta \phi_{s, \perp}^{J/\psi \phi} = 0.003^{+0.010}_{-0.014} (\text{stat}) \ ^{\pm0.008}_{-0.008} (\text{syst}) \text{ rad} \\ \Delta \phi_{s, \perp}^{J/\psi \phi} = 0.003^{+0.010}_{-0.014} (\text{stat}) \ ^{\pm0.008}_{-0.008} (\text{syst}) \text{ rad} \\ \frac{\Delta \phi_{s, \perp}^{J/\psi \phi} = 0.003^{+0.010}_{-0.014} (\text{stat}) \ ^{\pm0.008}_{-0.014} (\text{stat}) \ ^{\pm0.014}_{-0.014} ($$

LHCB-PAPER-2015-034

Validation check of ϕ_s in sub-samples

- Stable results in validation fits of various sub-samples
 - Magnet polarity
 - Trigger categories
 - ✓ Separate years
 - ✓ Bins of $p_T(B_s^0)$
 - ✓ Bins of $\eta(B_s^0)$
 - Separate tagging methods
 - number of primary vertices
 - PID variables
 - ✓ Different L0 triggers
 - Bootstrapping

50 / 44