Long-lived Particles Experimental constraints

Karri Folan DiPetrillo University of Chicago IMCC Physics Meeting 6 July 2023

Long-lived particle reminder

Motivation

$$\tau^{-1} = \Gamma \sim y^2 \left(\frac{m}{\Lambda}\right)^n \Phi$$

y - small coupling m«Λ - scale suppression Φ - small phase space

How we've looked for LLPs at the LHC

Indirect Detection via decay products

Tracking

impact parameter secondary vertex

Calorimetry

shower shape

delay

Direct Detection of Charged long-lived particles

anomalous ionization

time of flight

infer decay via missing hits

Understanding sensitivity

Long-lived particle decay position follows an exponential with mean = $\beta\gamma c\tau$

Efficiency driven by everything else

- Detector technology
- Data Acquisition & Storage
- Reconstruction
- Standard Model Backgrounds
- Non-standard Backgrounds

Tracker tends to 'win' on acceptance & efficiency
All challenges connect to beam induced background

Following strategy of [2211.05720]

Consider a range of well motivated track-based LLP signatures Map challenges posed by beam induced background to signal sensitivity Assuming 3 TeV detector design as a baseline

This talk

Tracker geometry reminder

I'll mostly focus on the barrel for simplicity

	Vertex Detector	Inner Tracker	Outer Tracker
cell size	25x25 µm²	50 µm x 1 mm	50 µm x 10 mm
thickness	50 µm	100 µm	100 µm
σ _t	30 ps	60 ps	60 ps

Beam induced background reminder

~10⁸ low momentum particles per event Drives nearly every aspect of detector design

distributions depend on beam energy, nozzle, and magnets

Why the BIB is a problem (hit-level)

All the handles we use to reject hits from BIB can reject long-lived signal

A pointing requirement of $\Delta \phi < 2-3$ mrad at R = 30 mm Corresponds to $d_0 \leq 100 \ \mu m^*$

Most studies assume 1 ns integration window and $\pm 3\sigma$ time of arrivation

0.5

0.4

0.2

<u>2303.0853</u>3

Muons from IP: $\sigma_t = 60ps$ Muons from IP: $\sigma_t = 30$ ps

BIB: Inner + Outer Tracker

BIB: Vertex Detector

1.5

t_{hit} - TOF_{photon} [ns]

±3σ. time window

LLP hit efficiency

How do pointing, timing, and charge measurements impact LLP hit efficiency?

Example: meta-stable charged LLP pair production

$$p_{\rm max} = \sqrt{(\sqrt{s}/2)^2 - m_{LLP}^2}$$

Pointing: prompt high p_T isolated tracks

Slowly moving: m_{LLP} ≈ 1.5 TeV

Highly Ionizing: m_{LLP} ≈ 3.5 TeV

Obtain mass from delay or dE/dx, and track momentum

Massive long-lived particles arrive late with respect to prompt particles

$$t_{\text{delay}} = 30 \text{ ps} (1 - \beta^{-1}) \left(\frac{L}{10 \text{ mm}}\right)$$

To reconstruct tracks from massive LLPs, <u>need to extend timing windows</u> up to O(100 ps) in pixel and O(few ns) in Inner/Outer Tracker Challenging given beam induced background

Cluster charge & shape

Energy deposited by an incident particle (dE/dx) depends on $\beta \gamma$ Cluster shape depends on position, incident angle, etc

	Momentum	Mass	dE/dx
LLP	High	High	Moderate
BIB	Low	Low	Moderate
Prompt µ	High	Low	Low

<u>Cannot</u> reject high dE/dx clusters if shape is consistent with high p⊤ particles

Want coarse dE/dx information at hit or cluster level

Why the BIB is a problem (track-level)

nhit requirements determine fiducial volume for displaced and disappearing tracks

Karri Folan DiPetrillo

Direct Detection Acceptance

What is the minimum n_{hits} per track for meta-stable charged particles?

Assume two LLP decays at $\eta=0$, $\beta\gamma=5$, require ≥ 1 decay w/in detector volume 3 TeV Muon Collider Geometry,

Displaced Track Acceptance

What is the minimum n_{hits} needed for displaced tracks?

Assume two LLP decays at $\eta=0$, $\beta\gamma=5$, require ≥ 1 decay w/in detector volume 3 TeV Muon Collider Geometry,

14

Non-standard tracking

Most (all) studies have focused on prompt tracks Do we have any hope for displaced or unusual tracks?

Yes, many possible solutions

- Multiple iterations of tracking a la CMS: easiest to most difficult
- For displaced tracks: compensate for increased combinatorics with increased pT cut
- For slowly moving tracks: compensate for relaxed time windows with tighter pointing, p_T, and n_{hit} requirements, fit to velocity
- Seed regions of interest

Detector modeling

Need to make sure all custom reconstruction & selections are well modeled

Eg. validating displaced muon trigger efficiency with Cosmics

Eg. Calibrating dE/dx for $|\eta|$ and detector conditions with SM particles

Unusual backgrounds

Go as close to the interaction point as possible Reject as many displaced backgrounds as possible

Selection & Analysis Strategy

Past: achieve ~0 background with ~simple selections Now: sophisticated techniques to access lower masses and probe full lifetime range

Entries normalised to unit area FRVZ (m,, m)=(800, 0.4) GeV HAHM (m_, m_)=(125, 0.4) GeV 👬 QCD multi-jet MC 10^{-1} 10⁻² 10^{-3} 0.2 0.3 0.5 0.6 0.8 0 0.4 0.7 0.9 0.1

QCD Tagger Score

eg. Heavy neutral leptons Categorize in lepton flavor & charge Vertex Mass & displacement

> ATLAS-EXOT-2019-29 CMS: 2201.05578

eg. Displaced lepton jets input calorimeter cells/clusters into advanced Neural Networks

ATLAS Simulation Preliminary

FRVZ (m,, m,)=(125, 0.4) GeV

ATLAS-CONF-2022-001

Aux Detectors

Different physics than the LHC... We should think about how increasing distance or going forward could probe interesting phase space

- Tracker tends to be the most powerful detector volume for LLPs
- Many challenges posed by the beam induced background
- Optimistic we can overcome these challenges
- A lot of exciting work ahead!

Long-lived Particles Experimental constraints

Karri Folan DiPetrillo University of Chicago IMCC Physics Meeting 6 July 2023

Large radius tracking

Charged LLPs/Disappearing track

Cluster charge/shape

Cluster shapes

High p_T

Low p_T negative charge

Low p_T positive charge

MPV & shape shifts w/ detector thickness

 $MPV = 0.027 \times ln(d) + 0.126 \text{ [keV]}$ width = 0.31 × d^{0.81} [keV]

Karri Folan DiPetrillo

30 ps bunch length sets minimum time resolution (in MAP)

$$\left(\frac{\Delta m_{\rm ToF}}{m}\right)^2 = \left[\left(\frac{\Delta p_{\rm T}}{p_{\rm T}}\right)^2 + \left(\frac{1}{1-\beta^2}\right)^2 \left(\frac{\sigma_{t_{\rm hit}}}{t_{\rm hit}}\right)^2\right] \text{ Improves w/L}$$

Need good $\underline{p_T}$ resolution to improve S/B separation and measure mass in case of discovery