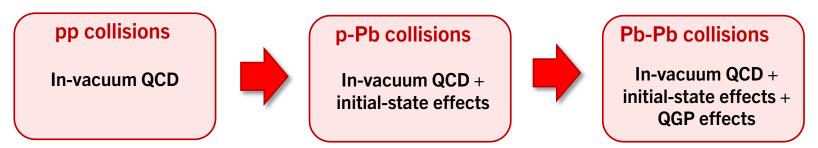
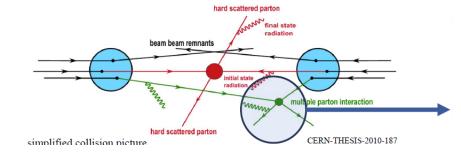
WG3 – High multiplicities and small systems Experimental review


Christian Bierlich, Fabio Colamaria

14° edition of MPI@LHC, 24/11/2023


MPI@LHC 2023 24/11/2023

THE PARADIGM OF SMALL SYSTEMS

Old paradigm: reference systems for larger systems for isolating QGP effects in Pb-Pb

- Very different reality: pp already a very complex system
 - Multi-parton interactions, collective-like effects, strangeness enhancement... but no significant jet quenching!
 - Substantially different from e⁺e⁻ collisions (not just "many independent scatterings")

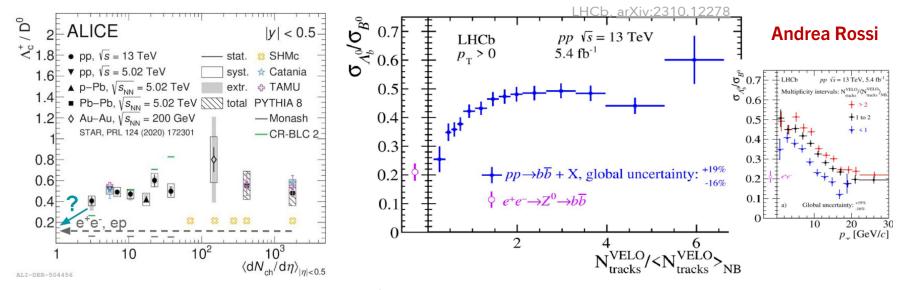


Let's go through a few (selected) topics discussed at the workshop that confirm this idea

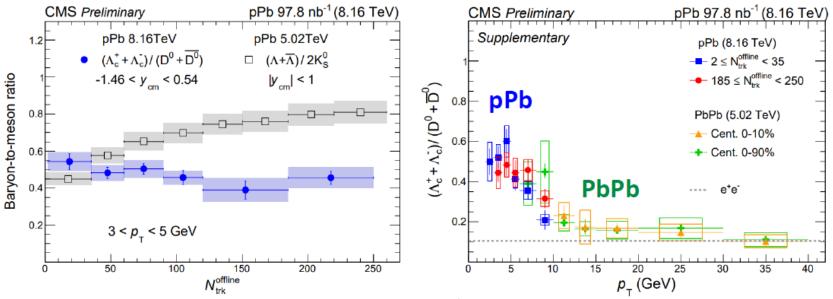
Hadronisation in the (heavy) baryon sector

MPI@LHC 2023 24/11/2023

c AND b BARYON HADRONISATION IN pp


- Significant enhancement of charm baryon-to-meson ratios at low/intermediate pT w.r.t. e+e- collisions
 - Needs modified hadronisation (CR BLC, coalescence), or augmented feed-down from higher charm baryon resonances
 - Even larger enhancement measured for charm-strange baryons (more difficult to be caught by models)
 - Similar behaviour observed in beauty sector

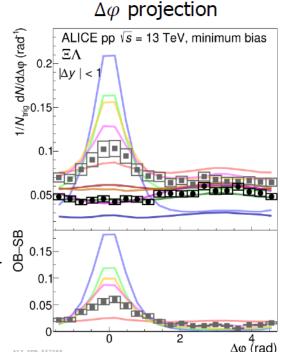
c AND b BARYON HADRONISATION IN pp VS MULTIPLICITY


- Hierarchy from low to high multiplicity for Λ_c^+/D^0 ratios in $1 < p_T < 12$ GeV/c by ALICE
 - Follows what observed in LF sector
- Similar hierarchy observed also for Λ_c+/D⁰ at forward rapidity by LHCb
 - Common mechanism at play for c and b?

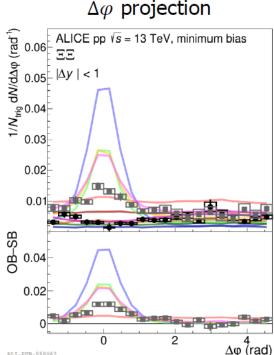
c AND b BARYON HADRONISATION IN pp VS MULTIPLICITY

- Hierarchy from low to high multiplicity for Λ_c^+/D^0 ratios in $1 < p_T < 12$ GeV/c
 - Follows what observed in LF sector
- Similar hierarchy observed also for Λ_c^+/D^0 at forward rapidity
 - Common mechanism at play for c and b?
 - > Though p_T-integrated trends across multiplicities seem to differ... (but different rapidity, different x scale)

c AND b BARYON HADRONISATION IN p-Pb VS MULTIPLICITY



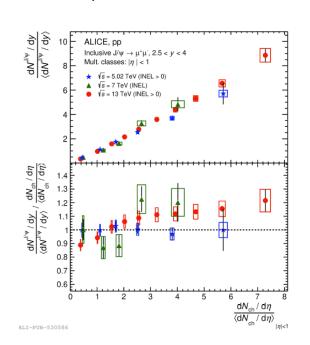
- In p-Pb collision, scarce multiplicity dependence on Λ_c^+/D^0 ratio observed by CMS
 - Similarity to LF is broken
 - Saturation effect for charm baryon production at large multiplicities?
 - Is there a common mechanism at play for all hadronic collision systems?


Georgios Krintiras

WHAT ABOUT STRANGE-BARYON PRODUCTION?

- Strange-charged particle and strangestrange correlation studies
 - Increase the sensitivity to different mechanisms modelling strangeness production in small systems
 - Strings, junctions/ropes, cluster hadronization, core/corona, ...
- No model currently catching data
 - It is only a matter of tuning, or novel sproduction scenarios should be considered?
- Good perspectives for addressing Ω (sss) correlations with Run3 data in ALICE

Roman Nepeivoda

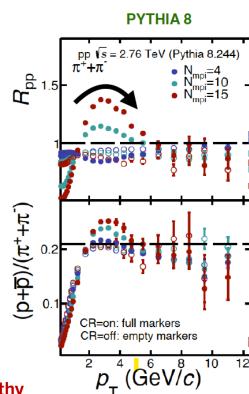

Particle production and multiplicity dependence

MPI@LHC 2023 24/11/2023

HF PRODUCTION VS CHARGED-PARTICLE MULTIPLICITY

- Several studies of HF production as a function of charged-particle multiplicity at the LHC
 - > Assess the role of MPI for hard parton production
 - Study the interplay between soft and hard processes

 $d^2N/dp_{T}dy / \langle d^2N/dp_{T}dy \rangle_{\substack{|NEL>\underline{Q}\\ \underline{Q}}}$ ALICE pp, $\sqrt{s} = 13 \text{ TeV}$ $c,b \rightarrow e$ Data PYTHIA 8.2 (Monash) $< p_{-} < 3 \text{ GeV/}c$ $p_{-} < 12 \text{ GeV}/c$ Data/MC 1.5 $dN_{ch}/d\eta$ / $\langle dN_{ch}/d\eta$ I-PUB-559765

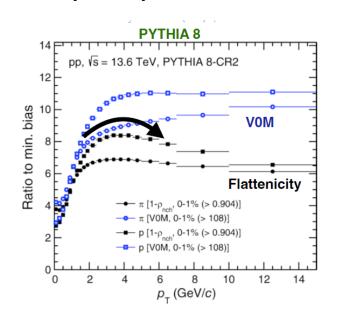


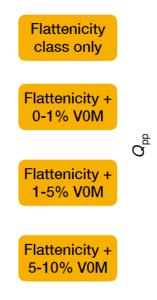
Yoshini Bailung Chi Zhang

- Stronger-than-linear increase observed for D-meson, HF-decay electrons, HF-decay muons, J/Ψ at midrapidity
- Well reproduced by PYTHIA8 or EPOS model with hydro contribution switched on
- Only linear increase for J/Ψ at forward rapidity

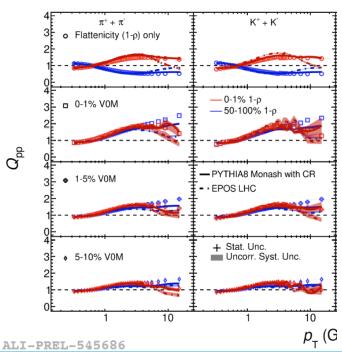
REMOVING EVENT SELECTION BIASES

- Multiplicity-based measurement anyway subject to biases
 - Selecting high-multiplicity events skewes the sample toward hard processes
 - Presence of auto-correlation
- Several observables proposed to better classify the events, in terms of their:
 - Topology, i.e. jetty vs isotropic (transverse spherocity)
 - Charged-particle uniformity (flattenicity)
 - Effective UE activity (R_T)
- Better suited to study the impact of MPI

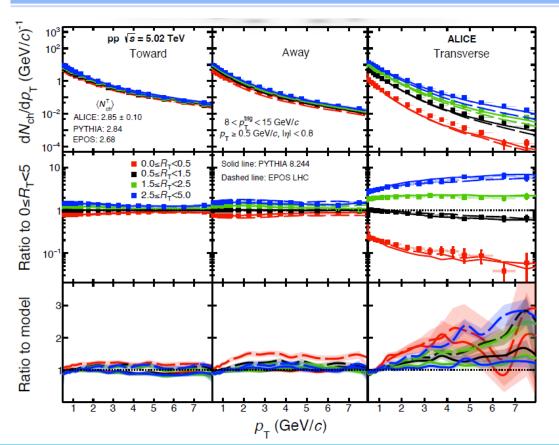



Sushanta Tripathy

FLATTENICITY CLASSIFIER


 Selection based on flattenicity rather than just on event multiplicity recovers, for isotropic events, the mid-p_⊤ «bump» observed in PYTHIA for large-MPI events $Q_{\rm pp} = \frac{\mathrm{d}^2 N^{1-\rho \, \, class}/(\langle \mathrm{d}N_{\rm ch}/\mathrm{d}\eta\rangle \mathrm{d}y \mathrm{d}p_{\rm T})}{\mathrm{d}^2 N^{\rm MB}/(\langle \mathrm{d}N_{\rm ch}/\mathrm{d}\eta\rangle \mathrm{d}y \mathrm{d}p_{\rm T})}$

 More sensitive to soft particle production and less subject to a jet bias



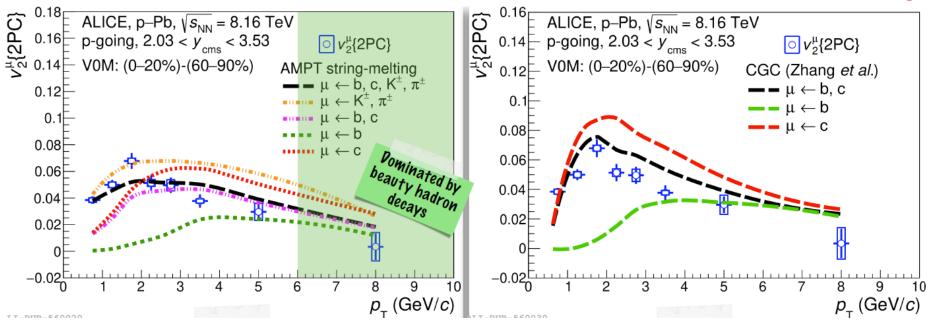
Sushanta Tripathy

RELATIVE TRANSVERSE ACTIVITY (R_T) CLASSIFIER

$$R_{\rm T} = \frac{N_{\rm ch}^{\rm TS}}{\langle N_{\rm ch}^{\rm TS} \rangle}$$

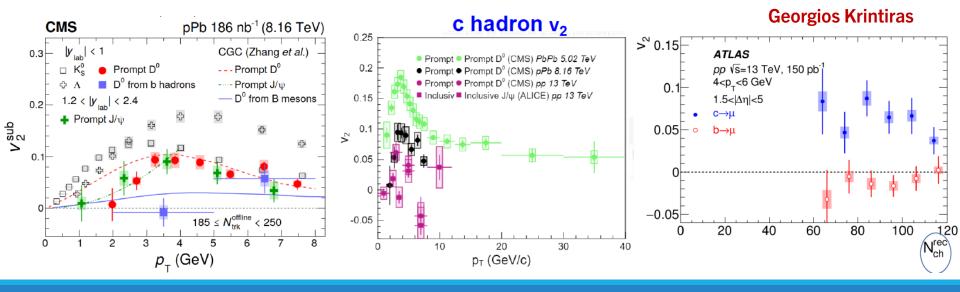
Paola Vargas

- Particle spectra for different R_T values
- Transverse region: strong dependence with R_T (autocorrelation effects)
- Towards and away side:
 - p_T < 4 GeV/c: some dependence of p_T spectra on R_T, possibly due to radial flow
 - ➤ Above 4 GeV/c, spectra are almost independent of R_T
- Very similar findings for p-Pb collisions


Collectivity in small systems

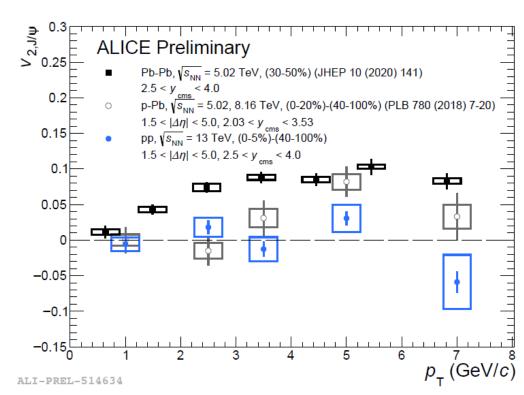
MPI@LHC 2023 24/11/2023

OPEN HF FLOW IN SMALL SYSTEMS - LHC


- Established observation of non-zero flow of light- and heavy-flavour particles in small systems
 - > For multiple particles, measurements by different collaborations
 - Origin still debated! MPIs with CR? Glasma diagrams within CGC? QGP droplets?

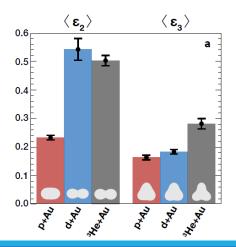
Yoshini Bailung

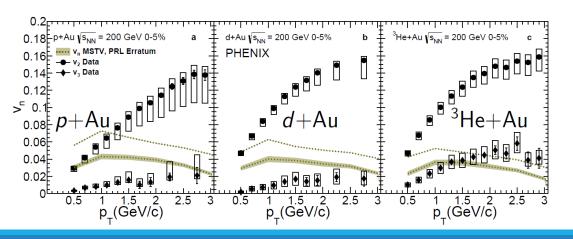
OPEN HF FLOW IN SMALL SYSTEMS - LHC


- Established observation of non-zero flow of light- and heavy-flavour particles in small systems
 - Apparent ordering for charm: $v_2(PbPb) > v_2(pPb) > v_2(pp)$
 - Different behaviour for beauty (not flowing at all in pPb and pp)
 - What's the lowest multiplicity limit for the onset of collectivity?
 - Can small-ion collisions (e.g. 0-0) help in understanding the underlying phenomena?

QUARKONIUM FLOW IN SMALL SYSTEMS - LHC

- Established observation of non-zero flow of light- and heavy-flavour particles in small systems
 - Hidden charm: hierarchy across collision systems is confirmed...
 - ...but no signal of flow in proton-proton collisions
- Different behaviour w.r.t. open charm!
 - Pick-up of flow from light quarks for D mesons?


Ida Storehaug



CHARGED PARTICLE FLOW IN SMALL SYSTEMS - RHIC

- Established observation of non-zero flow of light- and heavy-flavour particles in small systems
 - Also at lower energies (STAR and PHENIX), close connection of v₂ and v₃ to system eccentricity and triangularity
 - > PHENIX vs STAR discrepancy, under investigation: rapidity dependence seems to play a relevant role
 - > Initial state effects not enough to reproduce the measurements
 - Differently from LHC findings!

Ron Belmont

FULL LIST OF CONTRIBUTIONS

Thanks to all the speakers for their intriguing presentation and for the exciting material shown!

•	Heavy-quark	production and	hadronisation as	a function of	event multiplic	ity with ALICE
---	-------------	----------------	------------------	---------------	-----------------	----------------

- Updates on junction formation and charm production in PYTHIA
- ALICE measurements of particle production as a function of event topology in small systems
- Probing the Mechanisms of Strangeness Enhancement in Small Systems with ALICE
- Quarkonium production as a function of charged-particle multiplicity with ALICE: a probe for MPI in pp and p-Pb
- Recent heavy-flavour results in small systems with ATLAS and CMS
- Collectivity in Small Systems at RHIC
- Quark spin in string hadronization
- Searching collective-like effects for heavy-flavour in small systems with ALICE
- Investigating collective effects in small collision systems using PYTHIA8 and EPOS4 simulations
- Charged-particle production as a function of the relative transverse activity classifier in pp, pPb and PbPb
- Fitting a deep generative hadronization model
- Quarkonium as a probe of multiple parton interaction and collectivity in pp collisions with ALICE

Andrea Rossi

Javira Altmann

Sushanta Tripathy

Roman Nepeivoda

Chi Zhang

Georgios Krintiras

Ron Belmont

Albi Kerbizi

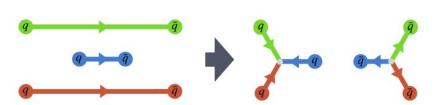
Yoshini Bailung

Alexandru Manea

Paola V. Torres

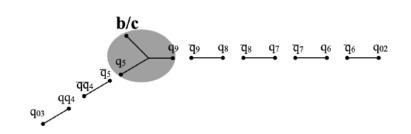
Andrzej K. Siodmok

Ida Storehaug


Backup slides

MPI@LHC 2023 24/11/2023

MODELING BARYON-TO-MESON RATIOS


- PYTHIA8 description of baryon-to-meson ratios: need junctions to enhance heavy baryon production
 - > 70% of heavy baryons produced by junctions
 - Continuous improvements on the junction modeling

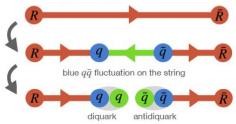
Javira Altmann

New treatment:

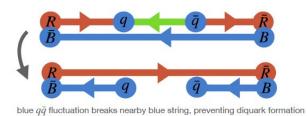
- Considers pull on junction over time and average over junction motion
- Includes pearl-on-a-string
- > Allow endpoint oscillations
- > No reliance on convergence

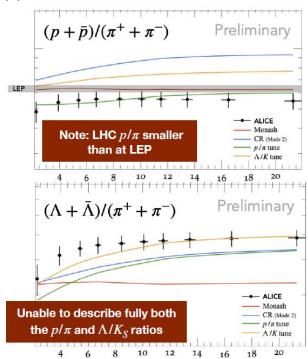


MODELING BARYON-TO-MESON RATIOS

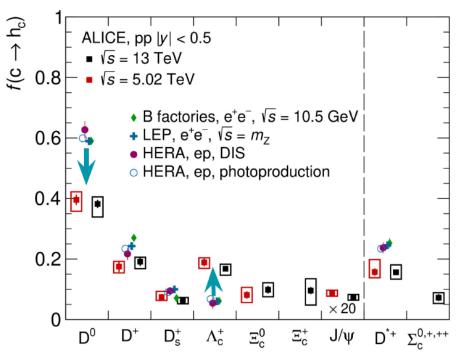

Work ongoing also for the strangeness description

Javira Altmann


Popcorn mechanism recovering p/ π ratios via diquark suppression



Diquark formation via successive colour fluctuations

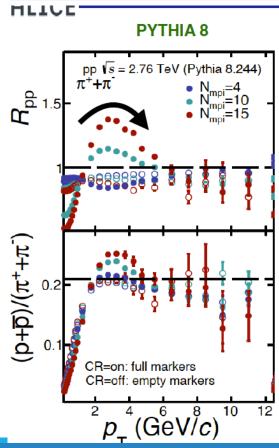

What if there's a blue string nearby?

Fragmentation fractions: pp vs. e⁺e⁻ collisions

ALICE, arxiv 2308.04877

Calculated from sum of cross sections of weakly decaying hadrons

Values for mesons significantly lower than in e⁺e⁻


About 30-40% of charm quarks hadronise to baryons

No evidence of energy dependence

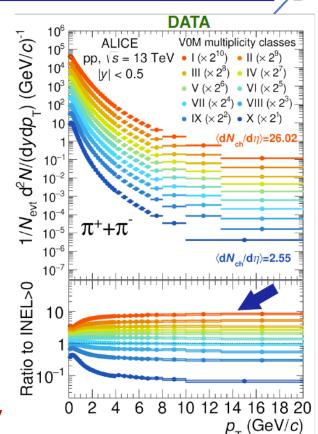
Lower $p_{\rm T}$ reach expected with Run 3 data will allow to further reduce extrapolation uncertainties

Andrea Rossi

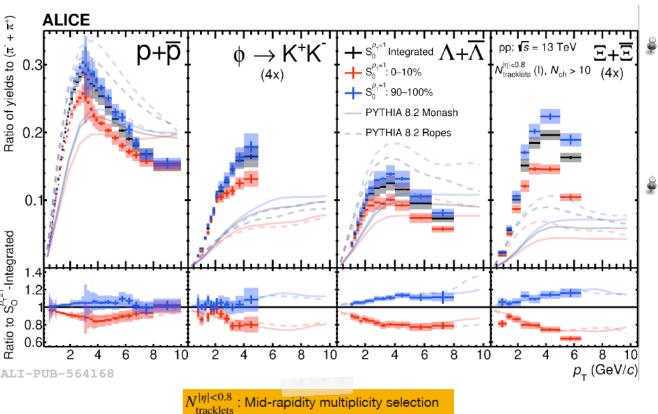
MPI AND COLOR RECONNECTION

Ratio of yield in MPI-enhanced pp collisions to yield for minimum bias (MB) pp collisions:

$$R_{\rm pp} = \frac{{\rm d}^2 N_\pi^{\rm mpi}/(\langle N_{\rm mpi}\rangle {\rm d}y {\rm d}p_{\rm T})}{{\rm d}^2 N_\pi^{\rm MB}/(\langle N_{\rm mpi,\,MB}\rangle {\rm d}y {\rm d}p_{\rm T})}$$


Up to 40% increase w.r.t. the binary partonparton scaling: "bump" structure in $p_T = 1-6$ GeV/c: The effect is driven by CR

MPI selection does not bias the high- p_T yield


The "bump" structure is not seen in measurements as a function of multiplicity and a selection bias is seen in high- p_T yield

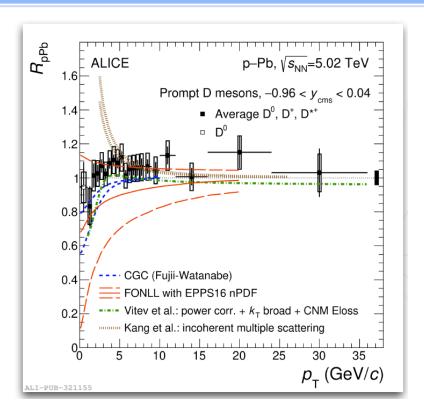
Explore event classifier: sensitivity to MPI with reduced selection bias

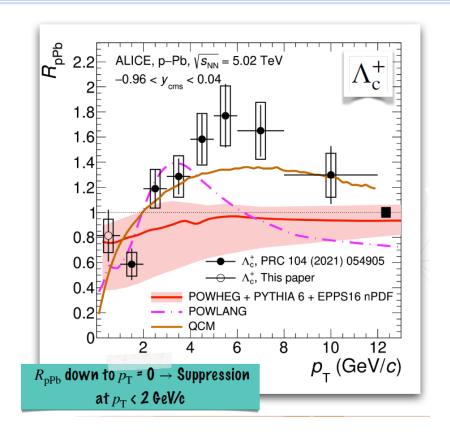
Sushanta Tripathy

STRANGENESS VS SPHEROCITY

Reduction of ratios relative to pion yields in jet-like events for all particle species -> significant strangeness suppression

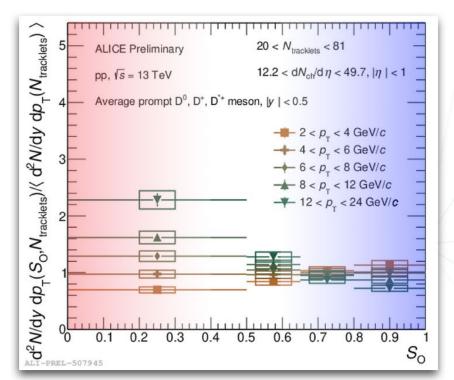
Both PYTHIA Monash and Ropes fail to capture the absolute trends but the ratios to $S_0^{p_T=I}$ -integrated events are well explained by the models

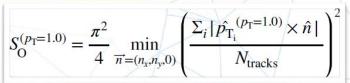

Sushanta Tripathy

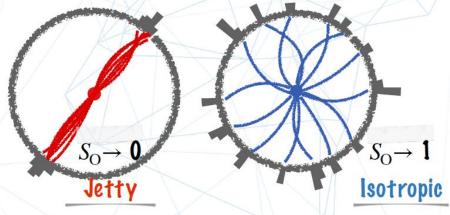

ALICE, arXiv:2310.10236

20.11.2023

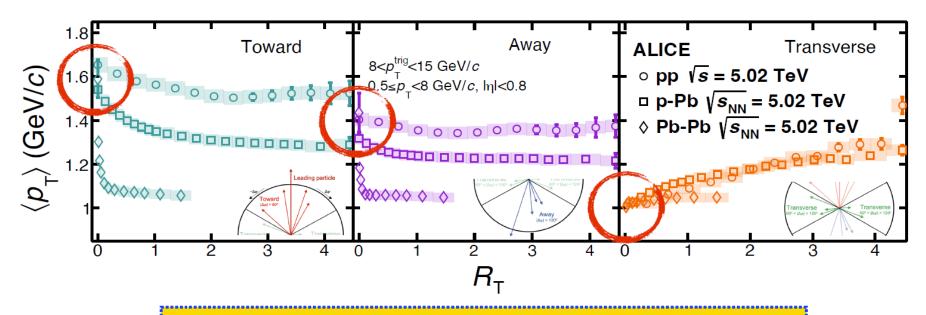
Sushanta Tripathy


RpPb OF CHARM MESONS VS CHARM BARYONS




Yoshini Bailung

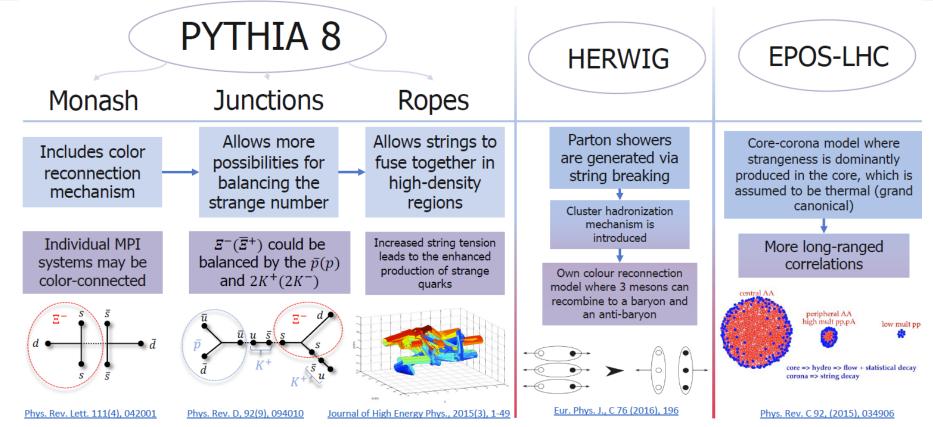
• Heavy-Flavour and Transverse Spherocity


Sensitive to initial hard scatterings and the "underlying event"

Yoshini Bailung

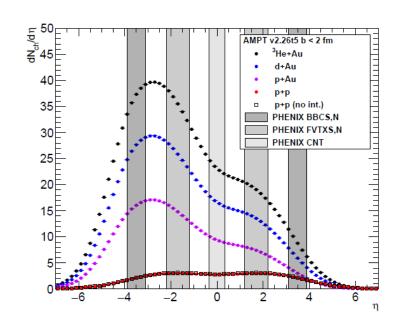
$\langle p_{\mathrm{T}} \rangle$ as a function of R_{T}

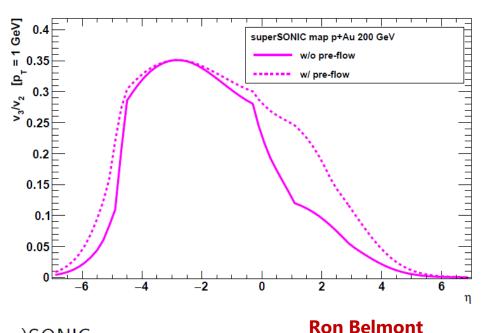
The jet contribution dominates at low $R_{\rm T}$, as expected for $R_{\rm T} \rightarrow 0$


Paola Vargas Torres

For large $R_{\rm T}$, the $\langle p_{\rm T} \rangle$ is dominated by bulk contribution and exhibits an ordering that depends on the system size

Explanation for the strangeness enhancement

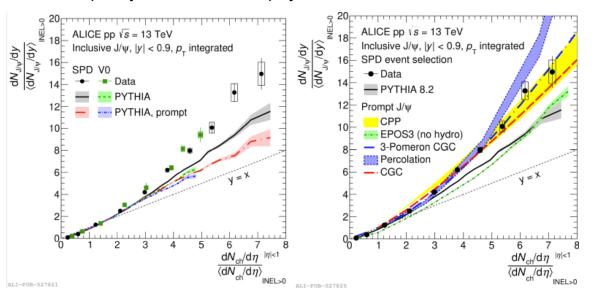


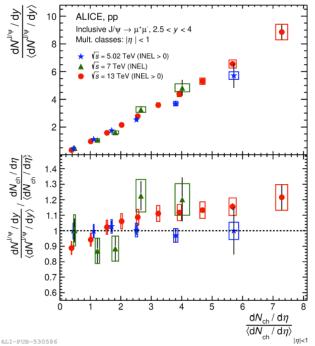


Pseudorapidity dependence in small systems

J.L. Nagle et al, Phys. Rev. C 105, 024906 (2022)

- $dN_{ch}/d\eta$ from AMPT, $v_3(\eta)$ from (super)SONIC
- The likely much stronger pseudorapidity dependence of v_3 compared to v_2 is an essential ingredient in understanding different measurements


HF PRODUCTION VS CHARGED-PARTICLE MULTIPLICITY


Similar behavour also for J/Ψ at midrapidity

Chi Zhang

 When probing larger rapidities, charmonium and bottomonium recover a linear trend with charged particle multiplicity

Models explain this via a relative reduction of charged particle multiplicity, due to several physics mechanisms

