WG5 Summary

Jack Holguin and Valentina Zaccolo

MPI@LHC 2023

From small to large nuclei

We had discussions on:

- light nuclei fixed target experiments
 - Chiara Lucarelli
- Collectivity(?) in small to large systems
 - Mattia Faggin, Austin Alan Baty, Ante Bilandzic
- Event generators for heavy ion collisions
 - Guilherme Milhano, Daniel Pablos Alfonso
- Jet Quenching in heavy ion collisions
 - Carlota Andres, Ezra Lesser, Jasmine Brewer

From small to large nuclei

We had discussions on:

- light nuclei fixed target experiments
 - Chiara Lucarelli
- Collectivity(?) in small to large systems
 - Mattia Faggin, Austin Alan Baty, Ante Bilandzic
- Event generators for heavy ion collisions
 - Guilherme Milhano, Daniel Pablos Alfonso
- Jet Quenching in heavy ion collisions
 - Carlota Andres, Ezra Lesser, Jasmine Brewer

Also... my comfort talking about these topics

Less

More

Disclaimer

A lot of interesting physics was discussed.

I have, maybe unfairly, reduced each talk to selected result(s).

Disclaimer

A lot of interesting physics was discussed.

I have, maybe unfairly, reduced each talk to selected result(s).

I will give some comments and observations at the end.

Helium fixed target at LHCb

LHCb fixed-target programme

- The System for Measuring Overlap with Gas (SMOG) can inject gas in LHC beam pipe around (±20 m) the LHCb IP.
- Originally conceived for precise luminosity measurements through Beam-Gas Imaging.
- For machine safety, only noble gases with a maximum pressure of 2x10⁻⁷ mbar (x100 nominal LHC vacuum) can be injected \rightarrow Luminosity: $\mathcal{L} \sim \mathcal{O}(10^{29} \ cm^{-2} s^{-1})$.

Since 2015, exploited for LHCb fixed-target physics programme

 \rightarrow Collected physics samples with different targets and different centre of mass energies.

JINST 9 (2014) P12005

Unique opportunities at the LHC:

- Collisions with targets of mass number A intermediate between p and Pb Reproduce CR interactions (pp, pHe)
- **Energy range** $\sqrt{s_{NN}} \in [30, 115]$ GeV for beam energy in [0.45, 7] TeV \rightarrow **Unexplored gap** between SpS and LHC/RHIC.

Chiara Lucarelli, 21/11/2023

Helium fixed target at LHCb

Application: Hypertriton

· Efficiency and acceptance corrections

Chiara Lucarelli, 21/11/2023

(Anti-)deuteron identification

Reconstructed tracks refitted to determine $\beta \rightarrow$ Iterative procedure rerunning Kalman fit with different β hypotheses

LHCb-FIGURE-2023-017

1. At least 15 OT hits required on each track

- 2. Change β following χ^2_{fit} decrease (gradient descent) without outliers removal $\rightarrow \chi^2_{\text{fit}} = \chi^2_{\text{track}} + [(t_{\text{M1}} - \langle \text{M1} \rangle)/\sigma_{\text{M1}}]^2$ 3. Fit around minimum to estimate β_{fit} and its uncertainty
- 4. If fit at minimum has outliers, removed and reiterate procedure

1.8 < p < 2.0 GeV ~10% of SMOG pHe $(\sqrt{s_{NN}} = 110 \text{ GeV}) \text{ dataset}$ Background suppression: $\sigma(\beta) < 0.02$, $\chi^2_{\text{OThits}}/\text{ndf} < 2$ 103 1.4 < p < 1.6 GeV/c First deuteron candidates observed in pHe data!

Chiara Lucarelli, 21/11/2023

Under investigation:

- Some DATA/MC discrepancies in OT response
- Efficiencies and systematics studies
- Improve background suppression to expand momentum range where clean identification achievable 10

Collectivity or not in p-Pb? Charm-baryon production at the LHC - open points (1/2)

No significant dependence vs. multiplicity of the p_r -integrated Λ_a^+/D^0 ratio at mid-y across collision systems

2

LHCD

mfaggin@cern.ch 16/20

- Ratio described by Catania (fragmentation + coalescence) and TAMU (SHM+ROM + 4-momentum conserving coalescence in Pb-Pb)
- PYTHIA 8 CR-BLC prediction does not reproduce the trend vs. multiplicity in pp collisions

 \rightarrow Is the p_{τ} -differential Λ_c^+/D^0 enhancement just a consequence of radial flow and recombination?

Mattia Faggin

Collectivity or not in p-Pb?

- Significant increase vs. multiplicity of prompt D_s⁺/D⁺ ratio in p-Pb collisions
 o more pronounced for backward collisions
- In line with a scenario including hadronization via **coalescence** and **strangeness enhancement** in **high-multiplicity p-Pb** collisions

Collectivity in Pb-Pb

Previous Extractions of cs

- Extraction of c_s using ALICE data
- Comparison of 0-5% 2.76 and 5.02 TeV data
- Changing energy density at fixed volume

 $c_s^2(T_{eff}) = \frac{dP}{d\epsilon} = \frac{sdT}{Tds} \bigg|_{T_{eff}} = \frac{d\ln\langle p_T \rangle}{d\ln(dN_{ch}/d\eta)} = 0.24 \pm 0.04$

- Uncertainties limited by only having 2 energies
- Used available published ALICE data
- Energy dependence of p_T, N_{ch} not unique to AA

Austin Alan Baty

Enhancements between system sizes

Skewness and kurtosis of $\langle p_{\mathrm{T}} angle$ fluctuations

- Measurements performed in three different collision systems: Pb–Pb, Xe–Xe and pp.
- Common proxy for system size: $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5}^{1/3}$
- Main results for standardized skewness:
 - $\circ~$ Positive standardized skewness of $\langle p_{\rm T} \rangle$ fluctuations in Pb–Pb, Xe–Xe and pp collisions an essential consequence of hydrodynamic evolution;
 - $\circ~$ However, positive skewness of $\langle p_{\rm T}\rangle$ fluctuations also for small system size difficult to reconcile with hydro;
 - Hydro model MUSIC with Monte Carlo Glauber initial conditions qualitatively describes skewness;
 - PYTHIA captures qualitatively the same measurements in pp collisions (colour reconnection (CR) mechanism plays a pivotal role).

erc

25

ALICE Collaboration, "Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies", Submitted to PLB, 2308.16217

Ante Bilandzic

ТШ

ALICE

Enhancements between system sizes

- Xe-Xe, $\sqrt{s_{_{
m NN}}}$ = 5.44 TeV

Independent baseline Ph_Ph

10

Xo_Xo

HUING

-v-USPhydro

ALICE

 $0.2 < p_{_{T}} < 3.0 \text{ GeV}/c$

 $|\eta| < 0.8$

 10^{2}

 $\langle N_{\rm part} \rangle$

26

Vs = 5.02 Te

PYTHIA CR ON

PYTHIA CR OFF

10

 $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5}^{1/3}$

ALICE Skewness and kurtosis of $\langle p_{\rm T} \rangle$ fluctuations

چ 15 ع

10

HIJING

v-USPhydro

MC-Glauber+MUSIC

- · Intensive skewness, as a function of system size and N_{part}.
- Main results:

ПΠ

- Positive intensive skewness of $\langle p_{\rm T} \rangle$ fluctuations in Pb-Pb, Xe-Xe and pp collisions, larger than the independent baseline:
- Neither version of PYTHIA (with and without color reconnection mechanism) can describe pp data;
- Only hydro-based models capture the sudden rise in most central collisions;
- Non-trivial system size dependence in Pb–Pb and Xe-Xe, monotonic decrease in pp.

ALICE Collaboration, "Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies", Submitted to PLB, 2308.16217

Accessing higher point correlators appears as a strong discriminator between models.

This is perhaps expected, they push models beyond their design.

Ante Bilandzic

ALICE Skewness and kurtosis of $\langle p_{\mathrm{T}} \rangle$ fluctuations

- Kurtosis as a function of system size
- Main results:

пm

- \circ Kurtosis of $\langle p_{\rm T} \rangle$ fluctuations in Pb–Pb, Xe– Xe and pp collisions decreases as system size increases:
- Kurtosis approaches independent Gaussian baseline only in most central collisions;
- Only PYTHIA with color reconnection can qualitatively describe pp data;
- MC-Glauber+MUSIC captures Pb–Pb data in most central collisions;
- HIJING overestimates the data

ALICE Collaboration, "Skewness and kurtosis of mean transverse momentum fluctuations at the LHC energies". Submitted to PLB, 2308,16217

Event generators for A-A

Guilherme Milhano's 5 lessons

lesson #1

vacuum like jet fragmentation very important driver of how much and how a jet ends up modified

learning about jet quenching from MC requires careful analysis

lesson #2

QGP sees and interacts with constituents of evolving shower

substructure modifications are a powerful tool to understand shower/QGP interaction

learning about jet quenching from MC requires careful analysis

lesson #3

QGP response to traversal by partons is an important component of jets in HI collisions

contribution extremely important for jet substructure

MC essential to identify the physical mechanisms involved in jet quenching

lesson #4

not all observed modifications of HI wrt pp can be attributed to jet quenching

MC essential to decide what is quenching and what is not

Event generators for A-A

Event generators for A-A

Daniel Pablos Alfonso

An example of complicating phenomena in the shower models, mini-jets...

Jet Quenching

Jet Quenching

There's much to learn from Pb-Pb substructure...

ALICE

 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

• Jet angularity & mass measurements:

 $\frac{d\sigma}{\Delta R_{axis}}$

1. Comparison to a vacuum baseline is essential for interpreting these results

🌒 pp

Pb–Pb 0–10%

- 2. Closely related observables can have very different physics sensitivities
- 3. Hard jet core is more strongly-quenched than wide-angle radiations
- Evidence for fully incoherent ($L_{res} = 0$) energy loss in the QGP using these models
- No evidence for elastic Molière scattering in the QGP using these models
- ALICE presents several substructure observables to constrain models
 - Improving models' pp baselines will improve AA predictive power

Jet Quenching

There's much to learn from Pb-Pb substructure...

ALICE

 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

• Jet angularity & mass measurements:

 $\frac{d\sigma}{\Delta R_{axis}}$

1. Comparison to a vacuum baseline is essential for interpreting these results

🌒 pp

Pb–Pb 0–10%

- 2. Closely related observables can have very different physics sensitivities
- 3. Hard jet core is more strongly-quenched than wide-angle radiations
- Evidence for fully incoherent ($L_{res} = 0$) energy loss in the QGP using these models?
- No evidence for elastic Molière scattering in the QGP using these models?
- ALICE presents several substructure observables to constrain models
 - Improving models' pp baselines will improve AA predictive power

Jet Quenching – new observables

Get kinematics of $g \rightarrow c\bar{c}$

Reweight each splitting by

$$w_{g \to c\bar{c}}^{med}(E_g, k_c^2, z) = 1 + \frac{\left(\frac{1}{Q^2} P_{g \to c\bar{c}}\right)^{med}(E_g, k_c^2, z)}{\left(\frac{1}{Q^2} P_{g \to c\bar{c}}\right)^{\text{vac}}(k_c^2, z)}$$

0.9475 $\frac{1}{O^2} P_{g \to c\bar{c}}$ 0.7900 $\kappa^2 \left[{\rm GeV}^2 \right]$ 0.6325 $\hat{\bar{q}}L = 4 | \text{GeV}^2$ 0.4750 0.3175 2 0.1600 0.00.1 0.2 0.3 0.4 0.5 0.0025 z

Jasmine Brewer

Jet Quenching – new observables

Carlota Andres

HF jets: filling the dead-cone

EEC sensitive to the dead-cone and its medium modifications

CA, Dominguez, Holguin, Marquet, I. Moult, 2307.15110

- We now have extensive lists of measured observables in nucleon collisions. Some give insight, some are overwhelmingly inclusive...
 - Successful observables are typically simple in at least either analysis or theoretical motivation.
 - Successful observables often give trivial 'null' results in pp.
 - For these simple observables, careful ratios are our friends.

- We now have extensive lists of measured observables in nucleon collisions. Some give insight, some are overwhelmingly inclusive...
 - Successful observables are typically simple in at least either analysis or theoretical motivation.
 - Successful observables often give trivial 'null' results in pp.
 - For these simple observables, careful ratios are our friends.

- We should be very careful to understand the physics models before drawing conclusions.
 - **Remember Guilherme's lessons**

Impact on η/s extraction

Quite different viscosities needed to get the same flow strength depending on mini-jets abundance.

Single rescaling of viscosity absorbs differences in differential v_2 , v_3 and v_4 .

DP, Singh, Gale, Jeon - 2202.03414

Very different physical processes can easily have overlapping signals in our benchmark observables.

- We should be very careful to understand the physics models before drawing conclusions.
 - Remember Guilherme's lessons

- Evidence for fully incoherent ($L_{\rm res}=0$) energy loss in the QGP using these models

 No evidence for elastic Molière scattering in the QGP using these models

These statements on JETSCAPE or physics?

I think links to 'core' physics and physics outside of collider applications are great.

LHCb fixed-target programme

- The System for Measuring Overlap with Gas (SMOG) can inject gas in LHC beam pipe around (±20 m) the LHCb IP.
- Originally conceived for precise luminosity measurements through Beam-Gas Imaging.
- For machine safety, **only noble gases** with a maximum pressure of **2x10**⁻⁷ **mbar** (x100 nominal LHC vacuum) can be injected \rightarrow Luminosity: $\mathcal{L} \sim \mathcal{O}(10^{29} \ cm^{-2} s^{-1})$.

Since 2015, exploited for LHCb fixed-target physics programme

→ Collected physics samples with different targets and different centre of mass energies.

Unique opportunities at the LHC:

- Collisions with targets of mass number A intermediate between p and Pb Reproduce CR interactions (pp, pHe)
- Energy range $\sqrt{s_{NN}} \in [30, 115]$ GeV for beam energy in [0.45, 7] TeV \rightarrow Unexplored gap between SpS and LHC/RHIC.

I think links to 'core' physics and physics outside of collider applications are great.

LHCb fixed-target programme

- The System for Measuring Overlap with Gas (SMOG) can inject gas in LHC beam pipe around (±20 m) the LHCb IP.
- Originally conceived for precise luminosity measurements through Beam-Gas Imaging.
- For machine safety, **only noble gases** with a maximum pressure of **2x10**⁻⁷ **mbar** (x100 nominal LHC vacuum) can be injected \rightarrow Luminosity: $\mathcal{L} \sim \mathcal{O}(10^{29} \ cm^{-2} s^{-1})$.

Since 2015, exploited for LHCb fixed-target physics programme

→ Collected physics samples with different targets and different centre of mass energies.

Unique opportunities at the LHC:

- Collisions with targets of mass number A intermediate between p and Pb Reproduce CR interactions (pp, pHe)
- Energy range $\sqrt{s_{NN}} \in [30, 115]$ GeV for beam energy in [0.45, 7] TeV \rightarrow Unexplored gap between SpS and LHC/RHIC.

(Hard) Questions for the future

- What core physics can we access in nuclei collisions?
- What do we need to do to meaningfully attribute observations to fundamental physics, rather than models?
 (Answer... sometimes maybe more than is currently possible?)
- Can we identify more observables in pp which could provide ideal baselines for pA or AA collisions?

Final Questions and Discussion

Thank you for coming to Manchester for MPI@LHC