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Quark-Gluon Plasma and QCD

• Extreme state of matter in which

quarks and gluons can move freely

over distances comparable to the

size of hadrons
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• Phase diagram of Quantum Chromodynamics



Nature of QCD phase transitions
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• QCD phase diagram of strongly interacting 

nuclear matter can be explored in 

ultrarelativistic heavy-ion collisions.

• The state of quark–gluon plasma (QGP) is 

probed as a function of temperature and 

baryon chemical potential.

• What is the nature of phase transitions in 

QCD phase diagram (smooth crossover,      

1st or 2nd order phase transition, etc.)?

• Existence of critical point?

F. Gross et al., “50 Years of Quantum Chromodynamics”, 2212.11107

https://arxiv.org/abs/2212.11107


Event-by-event (EbyE) physics

• Physical quantities are expected to display a qualitatively different behaviour in case of a 

phase transition, and can be signalled by anomalous fluctuations and correlations in a 

number of observables.         H. Heiselberg Phys.Rept. 351 (2001) 161-194

• EbyE fluctuations of multiplicity, net-charge, mean transverse momentum, etc., can be used 

to probe dynamical fluctuations due to production QGP.

5



ALICE detector in Run 2
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• Time Projection Chamber (TPC)

• Main tracking detector

• Particle identification (PID) via 𝑑𝐸/𝑑𝑥

• Inner Tracking System (ITS)

• 6 layers of silicon detectors 

(SPD, SDD, SSD)

• Primary vertex reconstruction

• Tracking and PID via 𝑑𝐸/𝑑𝑥

• V0 detectors

• Centrality estimator

• Trigger

• Time-Of-Flight

• PID via particle velocity  
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Recent EbyE publications in ALICE



Antideuteron number fluctuations

Higher order cumulants and Pearson 
correlation coefficient
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ALICE Collaboration, “First measurement of antideuteron number fluctuations at energies available at the Large

Hadron Collider”, Phys. Rev. Lett. 131 (2023) 041901, 2204.10166

• Ratio of the second to the first order cumulant for

antideuterons is found to be consistent with unity within

uncertainties as expected from a Poisson distribution.

• Measurements consistent with statistical hadronisation

models (SHM).

• Deviations from coalescence models.

https://arxiv.org/abs/2204.10166


Antideuteron number fluctuations

Higher order cumulants and Pearson 
correlation coefficient
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• A significant negative correlation between antiprotons 

and antideuterons is observed in all collision centralities.

• CE version of SHM with correlation volume for baryon

number conservation of 𝑉𝑐 = 1.6 𝑑V/𝑑y captures data.

ALICE Collaboration, “First measurement of antideuteron number fluctuations at energies available at the Large

Hadron Collider”, Phys. Rev. Lett. 131 (2023) 041901, 2204.10166

https://arxiv.org/abs/2204.10166


Net-baryon fluctuations

• Fluctuations of conserved charges are sensitive probes for the equation of state and are related to the 

thermodynamic susceptibilities – calculable in the framework of LQCD:
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ALICE Collaboration,“Closing in on critical net-baryon fluctuations at LHC energies: cumulants up to 

third order in Pb−Pb collisions”, Phys. Lett. B 844 (2023) 137545, 2206.03343

• Transition from chiral crossover to a second-order transition – signs of criticality expected to show up 

starting only with the 6th order cumulants of net-charge distributions.

• Currently available in terms of statistics: 2nd and 3rd order cumulants of net-proton distributions:

http://arxiv.org/abs/2206.03343


Net-baryon fluctuations

• Deviation from Skellam baseline (i.e. statistically 

independent Poisson limit) is consistent with baryon 

number conservation:
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• As a function of the width of the pseudorapidity interval, 

the fluctuations are increasingly reduced

o Larger interval – increasing relevance of baryon number 

conservation;

o Narrowest interval – statistically independent Poisson limit.

ALICE Collaboration,“Closing in on critical net-baryon fluctuations at LHC energies: cumulants up to 

third order in Pb−Pb collisions”, Phys. Lett. B 844 (2023) 137545, 2206.03343

http://arxiv.org/abs/2206.03343


Net-baryon fluctuations

• Comparison to models: EPOS and HIJING.

• ALICE data suggest long-range correlations, 

Δ𝑦 = ±2.5 unit or longer → earlier in time.

A. Dumitru et al., Nucl. Phys. A 810 (2008) 91
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• EPOS agrees with ALICE data but HIJING 

deviates significantly.

• Event generators based on string fragmentation 

(HIJING) conserve baryon number over Δ𝑦 = ±1 

unit.

ALICE Collaboration,“Closing in on critical net-baryon fluctuations at LHC energies: cumulants up to 

third order in Pb−Pb collisions”, Phys. Lett. B 844 (2023) 137545, 2206.03343

http://arxiv.org/abs/2206.03343


Net-baryon fluctuations
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• First results for 3rd order cumulants of net protons:

ALICE Collaboration,“Closing in on critical net-baryon fluctuations at LHC energies: cumulants up to 

third order in Pb−Pb collisions”, Phys. Lett. B 844 (2023) 137545, 2206.03343

http://arxiv.org/abs/2206.03343


Net-proton fluctuations: larger momenta and more peripheral

14I. Fokin, QM23 poster

• Can we measure the magnetic field produced 

in peripheral collisions?

• First measurement of net-proton cumulants 

above p = 2 GeV/c.

• Low momenta: weak centrality dependence 

(due to radial flow?)

• High momenta: significant increase towards 

peripheral collisions

o Magnetic field effect as expected by the LQCD?

o Proton clusters?

https://indico.cern.ch/event/1139644/contributions/5491625/


Net-𝚵 net-kaon correlation

• Event-by-event strangeness fluctuations – is thermalisation reached in all systems at LHC?

• Charged kaons and 𝚵 – negligible effects of heavy resonance decays.

• Net-particle fluctuations:

15M. Caccio, QM23 talk

• Net-particle correlation:

https://indico.cern.ch/event/1139644/contributions/5503045/


Net-𝚵 net-kaon correlation

• Continuity of correlation from small to large 

systems.

• Predictions from the Thermal-FIST canonical 

statistical model (CSM) describe the data well, 

across different colliding systems, while 

PYTHIA and HIJING fail.

• Large correlation length for strangeness 

(~3dV/dy) is observed.
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M. Caccio, QM23 talk

https://indico.cern.ch/event/1139644/contributions/5503045/


Net-𝚵 net-kaon correlation

• Continuity of correlation from small to large 

systems.

• Predictions from the Thermal-FIST canonical 

statistical model (CSM) describe the data well, 

across different colliding systems, while 

PYTHIA and HIJING fail.

• Large correlation length for strangeness 

(~3dV/dy) is observed.
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M. Caccio, QM23 talk

https://indico.cern.ch/event/1139644/contributions/5503045/


Net-charge fluctuations

• EbyE fluctuations of conserved quantities in a finite phase space window, like net charge, baryon 

number and strangeness, are considered to be sensitive indicators for de-confined phase transition.

• Dynamical net-charge fluctuations observable is defined as:

18

C. Pruneau et al., Phys. Rev. C 66, 044904 (2002)

• 𝑁+ and 𝑁− – number of charged particles in the phase space of interest.

• This observable measures deviation from Poissonian behaviour.

• Robust against detection efficiency losses.



Net-charge fluctuations

• Negative ⱱdyn[+,−] indicates the dominance of 

correlation between positive and negative 

charged particles.

• Smooth evolution with multiplicity across various 

collision systems.

• MC event generators show similar centrality 

dependence as data.
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S. Khan, PoS EPS-HEP2021 (2022) 319, proceedings

https://pos.sissa.it/398/319


Net-charge fluctuations

• Scaling of ⱱdyn[+,−] with respect to charged-

particle density at midrapidity.

• HIJING predicts no centrality dependence –

heavy-ion collisions are treated as superpositions

of independent nucleon-nucleon collisions.

• Significant contribution of net-charge fluctuations 

can arise due to the resonance decays.
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S. Khan, PoS EPS-HEP2021 (2022) 319, proceedings

https://pos.sissa.it/398/319


Event-by-event fluctuations of 𝒑𝐓
• 𝑝T is a proxy for the local temperature of the produced system in high-energy nuclear collisions.

• Analyses are performed in 2 different collision systems: Xe–Xe and Pb–Pb.

• Separation of statistical and dynamical fluctuations.

• Observable: two-particle correlator Δ𝑝TΔ𝑝T
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Credits: T. Tripathy

LHS – only trivial statistical fluctuations

RHS – dynamical fluctuations (mini jets, 

resonances, etc,)

G. Giacalone, F. G. Gardim, J. Noronha-Hostler, and J-Y. Ollitrault

Phys. Rev. C 103, 024910 (2021)

, where



Event-by-event fluctuations of 𝒑𝐓

• Evolution of the correlator strength 

with charged particle pseudorapidity

density as a function of

o beam energy;

o collision system size.

• Progressive dilution with multiplicity in 

all three systems  increase of 

number of correlated particle sources 

vs 𝑑𝑁ch/𝑑𝜂 .

• Deviation from HIJING suggests the 

presence of radial flow.
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B. Ali, T. Tripathy QM23 poster

https://indico.cern.ch/event/1139644/contributions/5491628/


Mean 𝒑𝐓 fluctuations

• Mean 𝑝T fluctuations in 13 TeV pp data:

o High-multiplicity pp data;

o Differential fluctuations of identified particles.

• Observable: Normalized two-particle transverse 

momentum correlator 𝐶𝑚/𝑀(𝑝T)
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B. Ali, T. Tripathy QM23 poster

https://indico.cern.ch/event/1139644/contributions/5491628/


Skewness and kurtosis of 𝒑𝐓 fluctuations

• Main idea: Fluctuations in temperature between different phases in QCD phase diagram are inscribed in 
event-by-event 𝑝T fluctuations of final-state particles.

• Two categories of fluctuations:
o Statistical – trivial, due to finite multiplicity;

o Dynamical – encode nontrivial physics.

• Main challenge: How to disentangle dynamical fluctuations from the ones which are non-thermodynamic 
in nature (fluctuations of initial positions of participating nucleons, etc.)?

• Higher moments of 𝑝T fluctuations: skewness and kurtosis

24

Standardized skewness Intensive skewness Kurtosis

G. Giacalone et al, Phys. Rev. C 103 (2021) 2, 024910, 2004.09799

https://arxiv.org/abs/2004.09799


Skewness and kurtosis of 𝒑𝐓 fluctuations

• Measurements performed in three different 
collision systems: Pb–Pb, Xe–Xe and pp.

• Common proxy for system size: 

• Main results for standardized skewness: 
o Positive standardized skewness of 𝑝T fluctuations in 

Pb–Pb, Xe–Xe and pp collisions – an essential 
consequence of hydrodynamic evolution;

o However, positive skewness of 𝑝T fluctuations also for 
small system size – difficult to reconcile with hydro;

o Hydro model MUSIC with Monte Carlo Glauber initial 
conditions qualitatively describes skewness;

o PYTHIA captures qualitatively the same measurements 
in pp collisions (colour reconnection (CR) mechanism 
plays a pivotal role).

25
ALICE Collaboration, “Skewness and kurtosis of mean transverse momentum fluctuations 

at the LHC energies”, Submitted to PLB, 2308.16217

https://arxiv.org/abs/2308.16217


Skewness and kurtosis of 𝒑𝐓 fluctuations

• Intensive skewness, as a function of 

system size and 𝑁part.

• Main results: 
o Positive intensive skewness of 𝑝T fluctuations 

in Pb–Pb, Xe–Xe and pp collisions, larger than 

the independent baseline;

o Neither version of PYTHIA (with and without 

color reconnection mechanism) can describe 

pp data;

o Only hydro-based models capture the sudden 

rise in most central collisions;

o Non-trivial system size dependence in Pb–Pb

and Xe–Xe, monotonic decrease in pp.
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ALICE Collaboration, “Skewness and kurtosis of mean transverse momentum fluctuations 

at the LHC energies”, Submitted to PLB, 2308.16217

https://arxiv.org/abs/2308.16217


Skewness and kurtosis of 𝒑𝐓 fluctuations

• Kurtosis as a function of system size 

• Main results: 
o Kurtosis of 𝑝T fluctuations in Pb–Pb, Xe–

Xe and pp collisions decreases as system 

size increases;

o Kurtosis approaches independent Gaussian 

baseline only in most central collisions;

o Only PYTHIA with color reconnection can 

qualitatively describe pp data;

o MC-Glauber+MUSIC captures Pb–Pb data 

in most central collisions; 

o HIJING overestimates the data.
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ALICE Collaboration, “Skewness and kurtosis of mean transverse momentum fluctuations 

at the LHC energies”, Submitted to PLB, 2308.16217

https://arxiv.org/abs/2308.16217


Intermittency analysis of charged-particle production

• The final distribution of particles in phase–space cells depends 
upon the dynamics of initial processes involving partons.

• Universal property of critical phenomena – existence of clusters 
of all sizes without characteristic scale.

• Scaled factorial moments – by definition, filter out statistical 
Poisson noise and isolate only dynamical fluctuations: 
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• If multiplicity distribution is Poissonian, 

for any bin size 𝛿 it follows:  𝑞 – order of moment

𝛿𝑑 – bin size in d-dimensional space 

𝑛 – bin multiplicity

R.C. Hwa, J. Pan, Phys. Lett. B 297, 35 (1992);  R.C. Hwa, C.B. Yang, Phys. Rev. C 85, 044914 (2012)



Intermittency analysis of charged-particle production

• Studying scaling behaviour of the spatial distributions of 

the produced particles – intermittency

o Power-law scaling behaviour:
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• First preliminary results on intermittency studies at LHC 

energies, ongoing discussion on their interpretation.

𝜑𝑞 – intermittency index (constant at any 𝑞)

𝑀 – number of bins

𝛿 = 1/M – bin resolution  

• 2nd order-phase transition is characterized by:

𝜈 – scaling exponent, universal quantity

R. Gupta, S. K Malik, S. Sharma, QM23 poster

https://indico.cern.ch/event/1139644/contributions/5456437/


Intermittency analysis of charged-particle production

• Power-law growth of 𝐹𝑞 with the increase in the 

number of bins (M) – scale-invariant pattern:

30R. Gupta, S. K Malik, S. Sharma, QM23 poster

• Qualitative and quantitative differences are 

observed between data and models:

https://indico.cern.ch/event/1139644/contributions/5456437/


Thanks!
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Event-by-event

hadron correlations

Antideuteron number fluctuations

Net-baryon fluctuations

Net-charge fluctuations

Event-by-event fluctuations of 𝑝T

Intermittency analysis



Backup slides
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Example #1: Transport properties of QGP

• Temperature dependence of QGP’s specific shear viscosity (η/s) is smallest of all

known substances

33

Bernhard, J.E., Moreland, J.S. & Bass, 

S.A. Nat. Phys. 15, 1113–1117 (2019),



• The mathematical foundation of cumulants is well established! 

34

Theorem: A cumulant 𝑋𝑖𝑋𝑗 … 𝑐 is zero if the elements 𝑋𝑖 , 𝑋𝑗 , … are divided in

two or more groups which are statistically independent.

Collorary: A cumulant is zero if one of the variables in it is independent of the

others. Conversely, a cumulant is not zero if and only if the variables in it are

statistically connected.

Kubo, Journal of the Physical Society of Japan, Vol. 17, No. 7, (1962)

• Careful reading is mandatory, one statement is not covered:

Cumulant can be trivially zero due to underlying symmetries!

A bit of math



Fluctuations, p.d.f., moments, cumulants

• Properties of random (stochastic) observable 𝑣 of interest are specified by functional form of 

probability density function (p.d.f.) 𝑓(𝑣)

• Different moments carry by definition independent information about the underlying p.d.f. f(𝑣𝑛)
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• Two completely different p.d.f.’s  f(𝑣𝑛) can have first moment 𝑣𝑛 to be the same, and all 

higher-order moments different

• Is it mathematically equivalent to specify functional form f(𝑣𝑛) and all its moments 𝑣𝑛
𝑘 ?

• A priori it is not guaranteed that a p.d.f. f(𝑣𝑛) is uniquely determined by its moments 𝑣𝑛
𝑘

o Necessary and sufficient conditions have been worked out only recently

Krein-Lin conditions (1997)

J. Stoyanov, Section 3 in ‘Determinacy of 

distributions by their moments’’, Proceedings 2006



Spherocity

• How to differentiate hard and soft processes? 

o Hard processes are “jetty” => back-to-back particle 

emission

o Absence of jets => soft QCD, isotropic particle 

emission

36

• Transverse spherocity 𝑆0



• Cumulants are alternative to moments to describe stochastic properties of variable

• If 2 p.d.f.’s have the same moments, they will also have the same cumulants, and vice 
versa
o True both for univariate and multivariate case
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• By definition, the 2nd term on RHS is 2-particle cumulant

• Cumulants cannot be measured directly, however:

2-particle cumulants in general

• Xi denotes the general i-th stochastic variable 

• The most general decomposition of 2-particle correlation is:



• The most general decomposition of  3-particle correlation is: 

38

• Or written mathematically:

• The key point: 2-particle cumulants were expressed independently in terms of measured 

correlations in the previous step!

3-particle cumulants in general



• Working recursively from higher to lower orders, we eventually have 3-particle 

cumulant expressed in terms of measured 3-, 2-, and 1-particle averages 
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• In the same way, cumulants can be expressed in terms of measurable averages for any 

number of particles

o The number of terms grows rapidly

3-particle cumulants in general



Intermittency analysis of charged-particle production
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• ALICE preliminary: 

• Results from STAR Collaboration

• Very challenging results and interpretation of results

2301.11062

https://arxiv.org/abs/2301.11062

