

Light-nuclei identification in LHCb for cosmic rays physics

<u>Chiara Lucarelli</u>

on behalf of the LHCb collaboration

MPI@LHC, 21 November 2023, Manchester

Light anti-nuclei in space

Antimatter fraction in Cosmic Rays is a sensitive indirect probe for Dark Matter or exotic sources.

- AMS-02 observed anti-Helium and anti-Deuteron candidates in CRs
- O(10) He candidates, O(1) d candidates, expected d/ ³He around 10³
 - → Needed knowledge of production processes.

Accelerator experiments can complement CRs investigations

- ALICE measures d and He production in *pp* interactions at $\sqrt{s} = 13$ TeV and central rapidity
- SpS fixed-target configuration covers $\sqrt{s_{NN}} < 27$ GeV and backward to central rapidity

CERN Colloquium 08/06/23

Large uncertainties on extrapolation models to intermediate energy ($E_{cr} \sim 10-100 \text{ GeV}$)

The LHCb experiment

The LHCb is a general-purpose experiment in the forward direction:

- Single-arm forward spectrometer: optimized for $b\overline{b}$ production, $2 < \eta < 5, \Theta \in [10, 250]$ mrad.
- Tracking: excellent vertexing, IP resolution: $15+29/p_T$ [GeV] µm, momentum resolution: $\Delta p/p = 0.5\% - 1.0\%$.

Particle Identification (PID):

excellent separation among K, π and p with momentum in [10, 110] GeV/c range.

- **Trigger:** flexible and versatile, bandwidth up to 15 kHz to disk.
- Its forward geometry is very well suited for <u>fixed-target physics.</u>

LHCb fixed-target programme

- The System for Measuring Overlap with Gas (<u>SMOG</u>) can inject gas in LHC beam pipe around (±20 m) the LHCb IP.
- Originally conceived for precise luminosity measurements through **Beam-Gas Imaging**.
- For machine safety, **only noble gases** with a maximum pressure of $2x10^{-7}$ mbar (x100 nominal LHC vacuum) can be injected \rightarrow Luminosity: $\mathcal{L} \sim \mathcal{O}(10^{29} \ cm^{-2} s^{-1})$.

Since 2015, exploited for LHCb fixed-target physics programme

→ Collected physics samples with different targets and different centre of mass energies.

Unique opportunities at the LHC:

- Collisions with targets of mass number A intermediate between p and Pb → Reproduce CR interactions (pp, pHe)
- Energy range $\sqrt{s_{NN}} \in [30, 115]$ GeV for beam energy in [0.45, 7] TeV \rightarrow Unexplored gap between SpS and LHC/RHIC.

Light nuclei identification technique

(Anti-)Helium identification

<u>Bethe-Bloch</u>: Z=2 particles deposits ~4 times the energy of Z=1 particles

ightarrow He: higher ADC counts and wider cluster size

Probability Density Distributions (PDD)

Define Likelihood discriminators based on cluster size and ADC counts:

$$\mathcal{L}^{X} = \left(\prod_{i=1}^{n} \text{PDD}_{i}^{X}\right)^{1/n}, X = \{\text{He, Bkg}\}$$

$$\Lambda_{\text{LD}} = \log \mathcal{L}^{\text{He}} - \log \mathcal{L}^{\text{Bkg}}$$
One discriminator for each subdetector:
$$\begin{array}{c} \bullet & \Lambda_{\text{LD}}^{\text{VELO}} \\ \bullet & \Lambda_{\text{LD}}^{\text{TT}} \\ \bullet & \Lambda_{\text{LD}}^{\text{TT}} \end{array}$$

Chiara Lucarelli, 21/11/2023

Prompt (anti-)Helium at LHCb

Selection:

Run2 data: *pp* collisions at $\sqrt{s} = 13$ TeV, \mathcal{L}_{int} =5.5 fb⁻¹

- All trigger lines
- Prompt tracks (compatible with PV) passing through VELO, TT, and T1->T3
- Good quality tracks ($\chi^2_{track} < 3$, N_{clusters X Si station} >2)
- p/|Z|>2.5 GV and $p_T/|Z|>0.3 \text{ GV}$
- Λ_{LD}^{VELO} >0 and Λ_{LD}^{TT} >-1; Λ_{LD}^{IT} >-1 for IT tracks
- Rejection of photon conversions

Performance:

- **MisID** probability: $\mathcal{O}(10^{-12})$
- Signal efficiency: ~ 50%

First (anti-)Helium candidates observed in *pp* in LHCb data!

7

Application: Hypertriton

- Hypertriton life-time and binding energy gives access to hyperon-nucleon interaction
 - ightarrow Constrains on maximum mass of neutron stars

```
Search for 2-body decay into He:
{}^{3}_{\Lambda}H \rightarrow {}^{3}He \pi^{-} + cc
```

<u>Results</u>:

(Run2 *pp* collisions at $\sqrt{s} = 13$ TeV)

- Yields:
 - 61 ± 8 Hypertriton
 - 46 ± 7 anti-Hypertriton
- Statistical mass precision: 0.16 MeV

Under investigation:

- Systematic corrections on mass scale:
 - Charge-sign dependent energy-loss
 - Tracking corrections for Z=2
- Efficiency and acceptance corrections

Time-of-flight measurement at LHCb

Standard LHCb reconstruction (β =1) inefficient for light nuclei → Modified pattern recognition algorithm

Correct hits position to recover reconstruction efficiency

- Loop on $\beta \in \left[1/\sqrt{1+M_{max}^2/p^2},1\right]$
- For each β : hits position for β value and perform fit
- Select candidate with best $\chi^2_{\rm fit}$

(Anti-)deuteron identification

Reconstructed tracks refitted to determine $\beta \rightarrow$ Iterative procedure rerunning Kalman fit with different β hypotheses

- 1. At least 15 OT hits required on each track
- 2. Change β following χ^2_{fit} decrease (gradient descent) without outliers removal $\rightarrow \chi^2_{\text{fit}} = \chi^2_{\text{track}} + [(t_{\text{M1}} \langle \text{M1} \rangle) / \sigma_{\text{M1}}]^2$
- 3. Fit around minimum to estimate β_{fit} and its uncertainty
- 4. If fit at minimum has outliers, removed and reiterate procedure
- ~**10% of SMOG** *p*He ($\sqrt{s_{NN}} = 110$ GeV) dataset
- Background suppression: $\sigma(\beta) < 0.02$, $\chi^2_{OThits}/ndf < 2$

First deuteron candidates observed in *p*He data!

Under investigation:

- Some DATA/MC discrepancies in OT response
- Efficiencies and systematics studies
- Improve background suppression to expand momentum range where clean identification achievable

Conclusions

LHCb is now able to identify light nuclei in Run2 datasample

- (Anti-)Helium identified via dE/dx
- Time-of-flight based technique to identify (anti-)Deuteron

First (anti-)Helium and (anti-)Deuterons candidates observed in pp and SMOG pHe data in LHCb!

Promising start! Many interesting results in future:

- Measure properties of Hypertriton (binding energy and life-time)
- Measure prompt (anti-)Deuteron and (anti-)Helium production in fixed-target datasample
- Measure anti-helium production from $\bar{\Lambda}_b^0$ decay

Thanks for the attention!

Anti-nuclei production

- Main channels for indirect DM measurements are e^+ and \bar{p} but limited in accuracy by the knowledge of background from secondary production (e^+ , \bar{p}) and standard primary sources (e^+).
- Anti-nuclei production cross section (SM) scales with mass number A: $\sigma_{anti-N}/\sigma_{anti-p} = (10^{-3})^{A-1}$

 $\rightarrow \bar{d}$ and \bar{d} are ideal channels but it's necessary to predict with high precision the secondary flux.

Coalescence model:

An anti-nucleus is produced if the nucleons relative momenta in the center of mass frame are $(k_{Ni}-k_{Nj})/2 < p_{0}$, coalescence momentum.

- Experimental data suggest that p_0 depends on the **type of reaction** (*pp*, *p*A or AA) and on the **incident particle momentum** (p_{lab}).
- No comprehensive theoretical model that describes p₀ dependences
 → Different parametrizations possible (p₀ constant, p₀(p_{lab}), p₀(reaction), ...).

More direct measurements in the interesting system and energy range are needed.

Coalescence model

 \overline{d} formation is described via the coalescence of a \overline{p} - \overline{n} pair:

$$\gamma_{\bar{d}} \frac{d^3 N_{\bar{d}}}{d^3 k_{\bar{d}}} (\vec{k}_{\bar{d}}) = \frac{4}{3} \pi p_0^3 \cdot \gamma_{\bar{p}} \gamma_{\bar{n}} \frac{d^3 N_{\bar{p}} d^3 N_{\bar{n}}}{d^3 k_{\bar{p}} d^3 k_{\bar{n}}} \left(\frac{\vec{k}_{\bar{d}}}{2}, \frac{\vec{k}_{\bar{d}}}{2}\right) \quad (1)$$

Factorization hypothesis and *isospin invariance* hypothesis:

$$\gamma_{\bar{d}} \frac{\mathrm{d}N_{\bar{d}}}{\mathrm{d}^{3}k_{\bar{d}}}(\vec{k}_{\bar{d}}) = R_{n}(\sqrt{s + m_{\bar{d}}^{2} - 2\sqrt{s}E_{\bar{d}}}) \cdot \frac{4}{3}\pi p_{0}^{3} \cdot \left[\gamma_{\bar{p}} \frac{\mathrm{d}N_{\bar{p}}}{\mathrm{d}^{3}k_{\bar{p}}} \left(\frac{\vec{k}_{\bar{d}}}{2}\right)\right]^{2} \quad (2)$$

where R_n is associated to the reduction of the phase space after the production of the first nucleon.

For an anti-nucleon with mass number A, under the same hypotesis:

$$\gamma_{A} \frac{\mathrm{d}N_{A}}{\mathrm{d}^{3}k_{A}}(\vec{k}_{A}) = R_{n}(\sqrt{s + m_{A}^{2} - 2\sqrt{s}E_{A}}) \cdot \left(\frac{4\pi}{3}p_{0}^{3}\right)^{(A-1)} \cdot \left[\gamma_{\bar{p}} \frac{\mathrm{d}N_{\bar{p}}}{\mathrm{d}^{3}k_{\bar{p}}}\left(\frac{\vec{k}_{A}}{A}\right)\right]^{A} \quad (3)$$

Alternative parameter:
$$B_A = \frac{A}{m_p^{A-1}} \left(\frac{4\pi}{3} p_0^3\right)^{A-1}$$

Expected anti-nuclei in SMOG dataset

EPOS-LHC for *p*He (Vs_{NN}= 110 GeV) + afterburner based on simplified analytic coalescence model (constant p_0) to obtain \overline{d} and $\overline{{}^{3}He}$ distribution for (1< p_p <100) GeV/c, p_T <3 GeV/c, 2< η <5.

- In the whole kinematic region, anti-He/anti-p ratio expected is around $2x10^{-6} \sim 5$ candidates expected \rightarrow Challenging \bigcirc
- In the whole kinematic region, <u>anti-d/anti-p ratio expected is around</u> <u>0.9x10⁻³</u> = 4500 candidates
- In TOF the kinematic region (2<p<10) GeV/c, <u>anti-d/anti-p ratio</u> reduces to 0.3x10⁻³ = 300 candidates

Expected anti-nuclei in SMOG dataset

Anti-nuclei distributions

×10⁻⁶

 $^{3}\overline{\text{He}}$ over \overline{p} candidates

25

20

15

10

5

0

 $\times 10^{-3}$

0.15 0.25 0.2 0.15 0.1 0.1 0.1 0.1 0.1 0.0 0.1

0

100

Minimum bias (anti-)Helium

LHCb-DP-2023-002

Candidates in IT acceptance

Prompt Helium and anti-Helium

Timing information from OT

Tracks with no IT info: OT information

- OT: straw-tube drift chambers detector
 - \rightarrow Hit position from ionization cluster t_{drift}
- TDC time measurement with constant threshold
 - \rightarrow No dE/dx information
 - → Time walk effect: Z=2 crosses threshold earlier

OT track time: delay of ionization cluster t_{drift} wrt t(r) from reconstructed track

Expected negative track time for Z=2 particles
 → Helium ID in full acceptance

Converted photons

Data and simulation comparison

LHCb-DP-2023-002

Kinematic dependence

LHCb-DP-2023-002

No strong dependence on kinematics for Λ_{LD}

Data preselection

Two independent preselections, each with \sim 50% efficiency (estimated on \sim 50 minimum bias candidates).

Preselection 2

Chiara Lucarelli, 21/11/2023

Preselection 1

Prompt (anti-)Helium at LHCb

Preselection 2

LHCb-DP-2023-002

Sources of helium

Chiara Lucarelli, 21/11/2023

Hypertriton life-time puzzle

He $^{3}_{\Lambda}\mathrm{H}$ Tension between STAR and ALICE results \rightarrow Hypertriton life-time puzzle

Application: Hypertriton

Candidates selection:

- Secondary ³He track, not compatible with PV: $\log(\chi^2_{IP})>2$
- Matching π track
- Well reconstructed secondary vertex: $\log(\chi^2_{vtx}) < 2$
- Prompt $^{3}_{\Lambda}$ H track: log(χ^{2}_{IP})<2

LHCb-CONF-2023-002 (submitted to EPS-HEP2023)

(Anti-)Hypertriton results

LHCb-CONF-2023-002 (submitted to EPS-HEP2023)

3 0

Hypertriton selection

LHCb-CONF-2023-002 (submitted to EPS-HEP2023)

OT Reconstruction with TOF

Modify the reconstruction algorithm to take into account β

Target: Correct hits position with right β to include all possible hits and improve χ^2

Add loop on possible β values and save track with best χ^2

- Add **PreLoop with no OT drift time**: hit position at center of straw, σ_{hit} = 2.5 mm
 - 1. If no candidate track, stop algorithm
 - 2. If no OT hit, run regular reconstruction
 - 3. If track with OT hit, use track momentum to set β range for loop: $\beta_{min} = 1/V(1+M_{max}^2/p^2)$, $M_{max} = maximum mass$ for candidate particle
- For each step in loop, correct hits position for beta value and perform fit
- Select candidate track with best χ^2
- If χ^2 doesn't improve for two consecutive steps, stop loop

Reconstruction efficiency

<u>MC sample:</u> crmc qgsjet for pHe + coalescence afterburner

(Anti-)deuteron identification

<u>MC sample:</u> **qgsjet** for *p*He + **coalescence afterburner** (1 coal x event)

Anti-Helium production via $\overline{\Lambda}_{b}^{0}$

