Extracting the speed of sound in the strongly interacting matter in ultrarelativistic nuclear collisions

Austin Baty On behalf of the CMS Collaboration

November 21 Manchester, UK **MPI@LHC 2023**

Introduction

- - **Deconfined 'perfect fluid'**
- Lattice QCD makes specific predictions of QGP degrees-of-freedom vs. T
 - Little *direct* experimental evidence testing these predictions
 - **Behavior in 'crossover' region very interesting!**

• In last 2 decades, have established clear experimental evidence of quark-gluon plasma

- . Speed of sound related to pressure and energy density via: $c_{\rm c}^2 =$ $d\epsilon$
- Longitudinal compression waves propagate in QGP medium Potential direct constraint on QGP Equation of State - but more data needed!

Speed of Sound

Other implications

- Similar efforts to constrain QCD EoS from astrophysical data (at lower T)
 - What is the matter at the center of a neutron star?

Other implications

- Similar efforts to constrain QCD EoS from astrophysical data (at lower T)
 - What is the matter at the center of a neutron star?
- Shockwave may form when color charge moves at v>cs
 - Is this an observable phenomenon?

Previous Extractions of Cs

- Extraction of C_s using ALICE data
 - Comparison of 0-5% 2.76 and 5.02 TeV data
 - Changing energy density at fixed volume

$$c_s^2(T_{eff}) = \frac{dP}{d\epsilon} = \frac{sdT}{Tds} \Big|_{T_{eff}} = \frac{d\ln\langle p_T \rangle}{d\ln(dN_{ch}/dt)}$$

- Uncertainties limited by only having 2 energies
 - Used available published ALICE data
- Energy dependence of p_T, N_{ch} not unique to AA

Meaning of leff

- Motivated from ideal hydro calculations
 - Larger than freeze-out Temp

Ultracentral Collisions (UCC)

- $b \approx 0$
- Centrality controls impact parameter (b) and geometry
- Experimentally determined by forward transverse energy sum
- Ultracentral collisions (0-1%) has ~fixed volume with b=0
- Energy deposition still fluctuates!

• QGP c_s extracted from measurements of $< p_T > v_S N_{ch} v_S$ centrality at same $\sqrt{s_{NN}}$

Centrality or # of charged particles

- Use fluctuations in b=0 collisions to vary energy density at fixed volume

New analysis method

• QGP c_s extracted from measurements of $< p_T > v_S N_{ch} v_S$ centrality at same $\sqrt{s_{NN}}$

Centrality or # of charged particles

Summary of target observables

- At b=0Observables in this analysis: $\langle p_T \rangle \\ \langle p_T \rangle^0 \sim \left(\frac{N_{ch}}{N_{ch}^0} \right)^{c_s^2}$ $\cdot \langle p_T \rangle^{norm} \left(= \frac{\langle p_T \rangle}{\langle p_T \rangle^0} \right) \text{ vs. } N_{ch}^{norm} \left(= \frac{N_{ch}}{N_{ch}^0} \right)$ $\cdot N_{ch}^{norm}$ distribution $\cdot \langle p_T \rangle^0$ (for estimating T_{eff}) $\langle p_T \rangle^0, N_{ch}^0$ chosen from the 0-5% centrality

Hydrodynamic predictions

- Two hybrid simulation models predict a rising slope
 - Gardim et. al. equation of state from 2+1 flavor lattice QCD
 - Trajectum model Bayesian analysis of available data
 - Has dip around 1.05 not understood yet!

a rising slope n 2+1 flavor lattice QCD of available data od yet!

The CMS Detector

SUPERCONDUCTING SOLENOID

MUON CHAMBERS

Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

> PRESHOWER Silicon strips ~ 16 m^2 ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

Tracks for <pt>, N_{ch}

Forward calorimeters for centrality

- Centrality defined with forward transverse energy sum (3< $|\eta|$ <5)
- Narrow 50 GeV binning to scan behavior at b=0

Measuring <pt>and <Nch>

• Different region than multiplicity measurement ($|\eta|$ <0.5) to avoid autocorrelations

- p_T and N_{ch} spectra corrected for detector inefficiencies
- Spectra extrapolated to 0 p_T with Hagedorn function
 - m is pion mass, β_T , n, T are free parameters

Simulation

Extrapolation to $p_T = 0$

$$\frac{dN_{\rm ch}}{dp_{\rm T}} = p_{\rm T} \left(1 + \frac{1}{\sqrt{1 - \langle \beta_{\rm T} \rangle^2}} \frac{\left(\sqrt{p_{\rm T}^2 + m^2} - \langle \beta_{\rm T} \rangle \right)}{nT} \right)$$

- p_T and N_{ch} spectra corrected for detector inefficiencies
- Spectra extrapolated to 0 p_T with Hagedorn function
 - m is pion mass, β_T , n, T are free parameters

Simulation

Extrapolation to $p_T = 0$

Extrapolation to $p_T = 0$

- p_T and N_{ch} spectra corrected for detector inefficiencies
- Spectra extrapolated to 0 p_T with Hagedorn function
- 2 of 3 target observables measured

Effect of Multiplicity fluctuations

- Spread of multiplicities produced at a given b
- Cannot directly isolate events with exactly b=0
- Must account for the effects of a distribution of initial b at given N_{ch}

given b actly b=0 ribution of initial b at given N_{ch}

Multiplicity fluctuation correction

- Spread of multiplicities produced at a given b
- Cannot directly isolate events with exactly b=0
- Must account for the effects of a distribution of initial b at given N_{ch}

given b actly b=0 ribution of initial b at given N_{ch}

$$\langle p_{\rm T} \rangle^{\rm norm} = \left(\frac{N_{\rm ch}^{\rm norm}}{\langle \overline{N_{\rm ch}^{\rm knee}} | N_{\rm ch}^{\rm norm} \rangle} \right)^{c_{\rm s}^2}$$
$$\langle \overline{N_{\rm ch}^{\rm knee}} | N_{\rm ch}^{\rm norm} \rangle = N_{\rm ch}^{\rm norm} - \sigma \sqrt{\frac{2}{\pi}} \frac{\exp\left(-\frac{(N_{\rm ch}^{\rm norm} - \overline{N_{\rm ch}^{\rm knee}}}{2\sigma^2}\right)^2}{\exp\left(-\frac{(N_{\rm ch}^{\rm norm} - \overline{N_{\rm ch}^{\rm knee}}}{2\sigma^2}\right)^2}$$

2 Free parameters: σ , N_{ch}^{knee}

From PLB 809 (2020) 135749

Constraining with N_{ch} distribution

- Spread of multiplicities produced at a given b
- Cannot directly isolate events with exactly b=0 by cutting on N_{ch}
- Must account for the effects of a distribution of initial b at given N_{ch}

given b actly b=0 by cutting on N_{ch} ribution of initial b at given N_{ch}

$$\langle p_{\rm T} \rangle^{\rm norm} = \left(\frac{N_{\rm ch}^{\rm norm}}{\langle \overline{N_{\rm ch}^{\rm knee}} | N_{\rm ch}^{\rm norm} \rangle} \right)^{c_{\rm s}^2}$$
$$\langle \overline{N_{\rm ch}^{\rm knee}} | N_{\rm ch}^{\rm norm} \rangle = N_{\rm ch}^{\rm norm} - \sigma \sqrt{\frac{2}{\pi}} \frac{\exp\left(-\frac{(N_{\rm ch}^{\rm norm} - \overline{N_{\rm ch}^{\rm knee}}}{2\sigma^2}\right)^2}{\exp\left(-\frac{(N_{\rm ch}^{\rm norm} - \overline{N_{\rm ch}^{\rm knee}}}{2\sigma^2}\right)^2}$$

2 Free parameters: σ , N_{ch}^{knee}

From PLB 809 (2020) 135749

Reminder of hydro predictions

- Slope of data matches models closely!
- 'Dip' predicted by Trajectum also in the data!

Speed of Sound in QGP

PbPb (0.607 nb⁻¹) 5.02 TeV arXiv:2305.00015 Gardim et. al. PLB 809 (2020) 135749 1.05 1.2 1.1 1.15 $N_{ch}/N_{ch}^{0-5\%}$

- Slope of data matches models closely!
- 'Dip' predicted by Trajectum also in the data!

Speed of Sound in QGP

 $N_{ch}/N_{ch}^{0-5\%}$

- Slope of data matches models closely!

Speed of Sound in QGP

 $N_{ch}/N_{ch}^{0-5\%}$

Summary

- First measurement of the speed of sound in QGP using UCC collisions
- Good agreement with lattice QCD (2+1 flavors)
 - Constrains equation of state interesting to look at lower T (at RHIC?)
 - Confirms deconfined d.o.f.
- Origin of 'dip' still not understood fluctuations?

<u>CMS PAS HIN-23-003</u>

