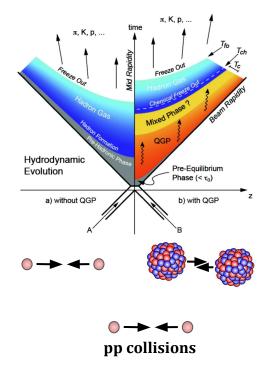


Medium-induced yield enhancement in small and large collision systems

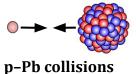
Mattia Faggin - University and INFN, Trieste (Italy)



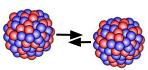
On behalf of the ALICE, ATLAS, CMS, LHCb Collaborations

14th International workshop on Multiple Parton Interactions at the LHC MPI@LHC 2023

22nd November 2023



- Reference for Pb–Pb collisions
- Test of pQCD calculations


- **Charm** and **beauty** quarks: $m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2$
- Produced in hard scattering processes among partons
- **Ultrarelativistic heavy-ion** collisions at the LHC: quark-gluon plasma (**QGP**)
 - \circ state of matter expected in the first $\sim 10 \, \mu s$ after the Big Bang
 - heavy quarks experience the **full evolution** of the system

Charm- and **beauty- quarks dynamics** tested via **measurements** of **charm-** and **beauty- hadron production**

Cold nuclear-matter effects

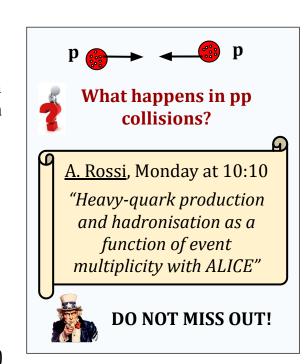
 Modification of parton distribution functions (PDFs) in bound nuclei

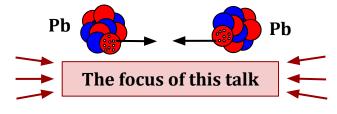
Pb-Pb collisions

Hot nuclear-matter effects

- Energy loss in the medium
- Collective motion
- <u>Hadronization</u> modified in QGP

Hadronization: a key ingredient in all collision systems!




- "Point-like" object interaction
- **Fragmentation** in the vacuum

Fragmentation

- Hard scattering: e⁺e⁻→qq
- Color string: $V_{Cornell}(r) \sim \kappa r$
- New qq pairs from multiple string breaking (confinement)

- **QGP**: complex system with **partonic d.o.f**
- Hadronization can be influenced by coalescence and strangeness enhancement

Coalescence

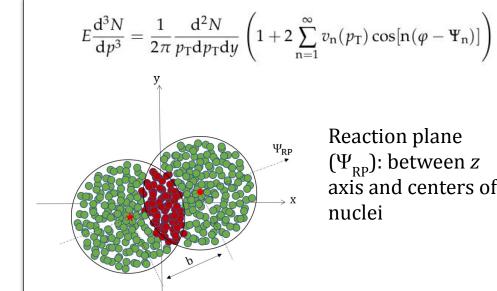
- Heavy quark recombinates with light quarks in the QGP
- Expected increase of hadrons at intermediate-low $p_{_{\rm T}}$
- QGP: interplay with fragmentation

mfaggin@cern.ch

4/20

1 Production spectra and R_{AA}

$$R_{\rm AA}(p_{\rm T},y) = \frac{1}{\langle N_{\rm coll} \rangle} \cdot \frac{\rm d^2 N_{\rm AA}/\rm d p_{\rm T} \rm d y}{\rm d^2 N_{\rm pp}/\rm d p_{\rm T} \rm d y}$$


2 Anisotropic flow

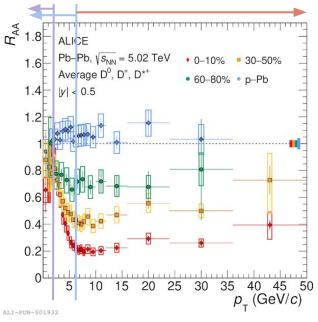
3 ... and particle ratios!

$$v_{n}(p_{T}) = \langle \cos[n(\varphi - \Psi_{n})] \rangle$$

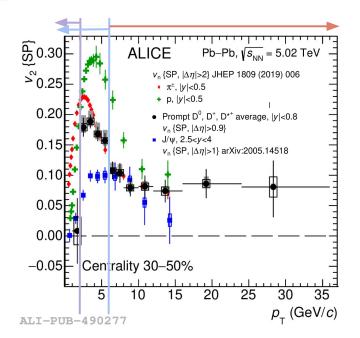
 $\langle N_{\rm coll} \rangle$: average number of binary nucleon-nucleon collisions

 R_{AA} = 1: no modifications $R_{AA} \neq 1$: nuclear effects

Reaction plane (Ψ_{RP}) : between z axis and centers of nuclei


mfaggin@cern.ch

5/20


Production spectra and R_{AA}

$$R_{\rm AA}(p_{\rm T},y) = \frac{1}{\langle N_{\rm coll} \rangle} \cdot \frac{\rm d^2 N_{\rm AA}/\rm d p_{\rm T} \rm d y}{\rm d^2 N_{\rm pp}/\rm d p_{\rm T} \rm d y}$$

Anisotropic flow

$$v_{\rm n}(p_{\rm T}) = \langle \cos[{
m n}(\varphi - \Psi_{
m n})] \rangle$$

Low $p_{\rm T}$

- Elastic scatterings
- Diffusion via Langevin dynamics
- nPDF and shadowing

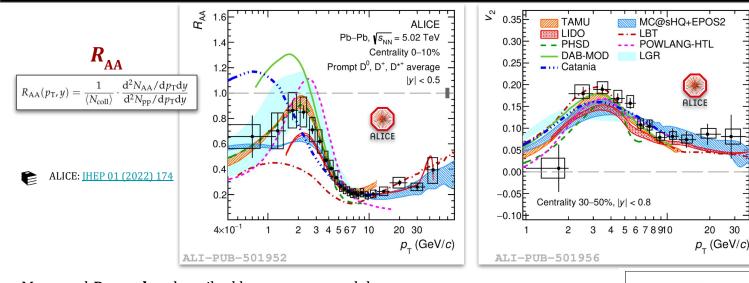
Intermediate $p_{_{\rm T}}$

Charm- and beauty-quark hadronization

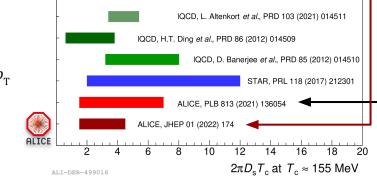
High $p_{_{\rm T}}$

- Radiative *E*-loss
- Quark-mass and path length dependent *E*-loss

R_{AA} and v_2 compared to transport models



v₂ only

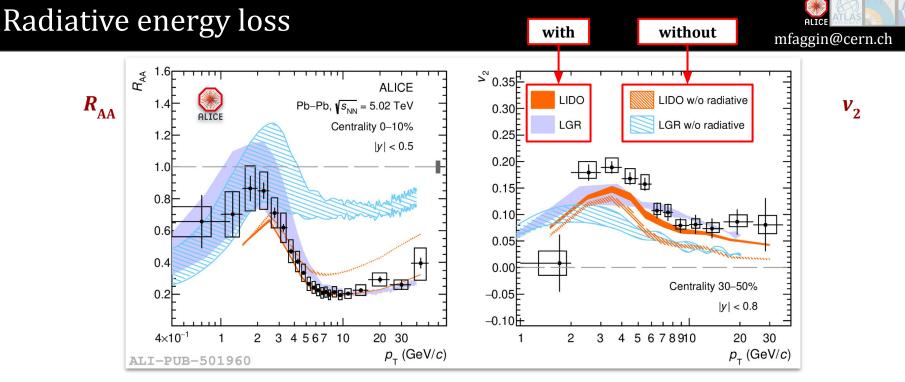


 $|v_{\rm n}(p_{\rm T}) = \langle \cos[{
m n}(\varphi - \Psi_{
m n})] \rangle$ $R_{\Delta\Delta}$ and v_2

Measured R_{AA} and v_2 described by transport models

- **understanding** of **relevant effects** in different p_{T} intervals (<u>next slides</u>)
- sensitivity to transport regime (and charm-quark thermalization) at low $p_{_{\rm T}}$
 - stronger constraint to the charm quark spatial diffusion coefficient based on data-to-model agreement

$$1.5 < 2\pi D_s T_c < 4.5 \leftrightarrow \tau_{charm} \approx 3-8 \text{ fm/}c$$


TAMU: PRL 124, 042301 (2020) DAB-MOD: PRC 96, 064903 (2017) POWLANG: EPJC 75 (2015) 3, 121 PHSD: PRC 93, 034906 (2016)

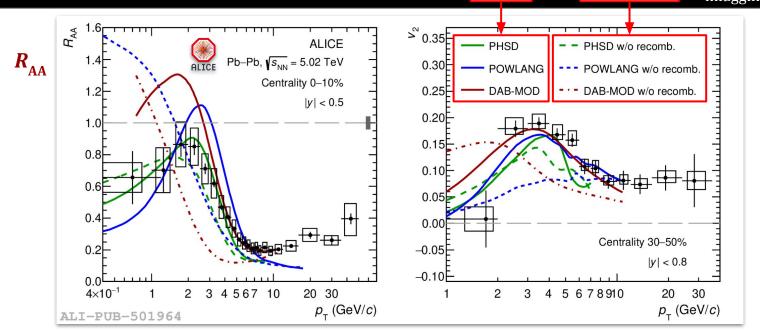
LBT: PLB 777 (2018) 255-259 MC@sHQ: PRC 91, 014904 (2015)

LIDO: PRC 98, 064901 (2018) LGR: EPJC 80 (2020) 7, 671

Catania: PRC 96, 044905 (2017)

6/20

Measured R_{AA} and v_2 compared to transport models to understand the relevant effects on charm-quark dynamics in QGP


Radiative energy loss important to describe the results at **high** $p_{\rm T}$, while it is less relevant at low $p_{\rm T}$

7/20

Hadronization via coalescence

 v_2

with

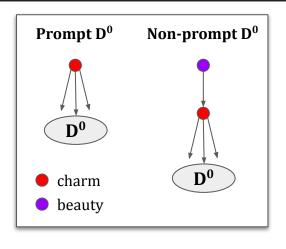
Measured R_{AA} and v_2 compared to transport models to understand the relevant effects on charm-quark dynamics in QGP

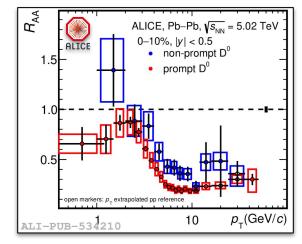
- Radiative energy loss important to describe the results at high $p_{_{\rm T}}$, while it is less relevant at low $p_{_{\rm T}}$
- **Hadronization** via coalescence important to describe the results at low and intermediate $p_{_{\rm T}}$

ALICE: JHEP 01 (2022) 174

without

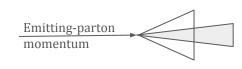
Beauty-quark dynamics from non-prompt D mesons



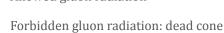


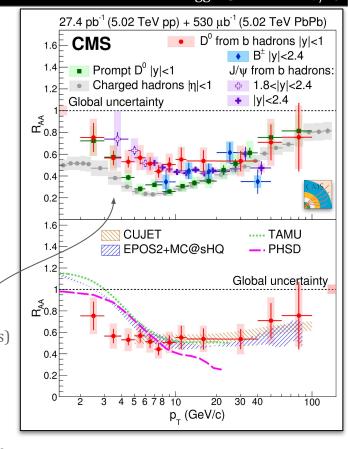
9/20

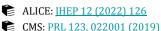
mfaggin@cern.ch



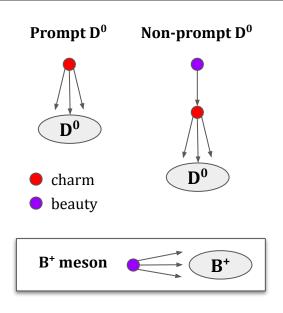
- $R_{\Lambda\Lambda}$ (non-prompt D⁰) described by models including radiative E-loss for $p_{\tau} > 5$ GeV/c
- The hierarchy

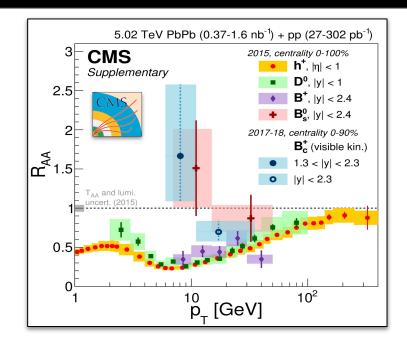

 $R_{\Delta\Delta}$ (non-prompt D⁰) ~ $R_{\Delta\Delta}$ (non-prompt J/ ψ) ~ $R_{\Delta\Delta}$ (B[±]) > $R_{\Delta\Delta}$ (prompt D) > $R_{\Delta\Delta}$ (ch. hadrons)

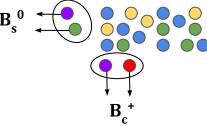

can be explained with the $m_h > m_c$ hierarchy and the **dead-cone effect**


 $\theta < \theta_0 = m/E$

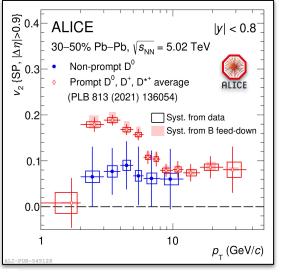
Allowed gluon radiation

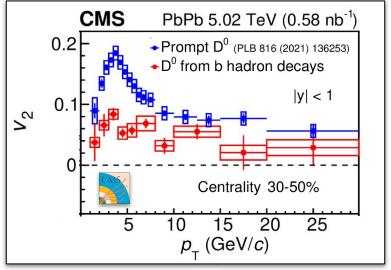



Beauty-quark hadronization from B mesons $R_{\rm AA}$

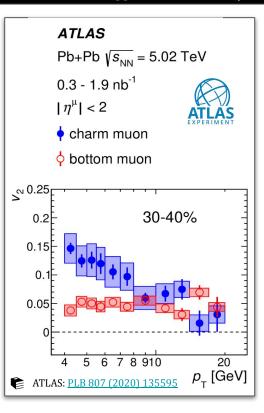

mfaggin@cern.ch

10/20





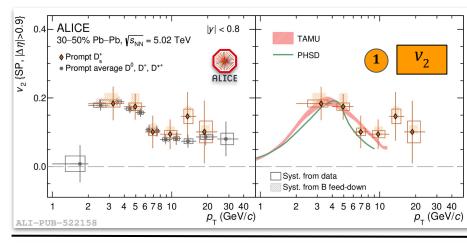
 $R_{\rm AA}$ of $B_{\rm s}^{\ 0}$ (bottom-strange) and $B_{\rm c}^{\ +}$ (bottom-charm) larger than that of other B mesons at intermediate $p_{\rm T}$


- B_s⁰: coalescence between b-quark and s-quark from the QGP
- B_c⁺: **recombination** between **c-quark and b-quark**, despite they are not thermally produced?
 - \circ B_c⁺: new particle to study the interplay between enhancement (hadronization at intermediate p_T) and suppression (*E*-loss at high p_T)

- **Flow larger than 0** for **non-prompt D**⁰ mesons (ALICE: 2.7σ)
 - Indication of strong interaction of b-quark with the QGP
- v_2 **lower than** that of **prompt** D mesons (ALICE: 3.2 σ)
 - **Different degree of participation** to the QGP collective motion between **charm** and **beauty quarks**
 - Consistent with the expectation of a **weaker interaction** for b-quark than c-quark 0

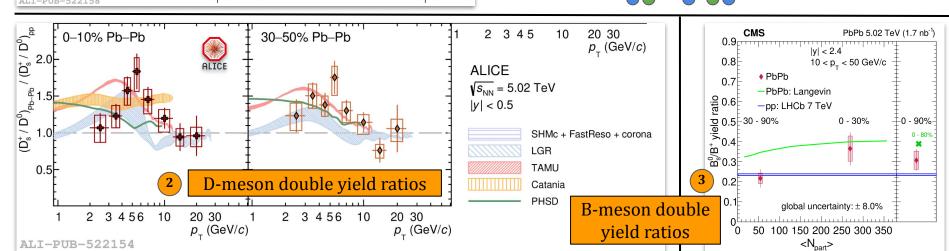
Heavy-strange-meson production

charm

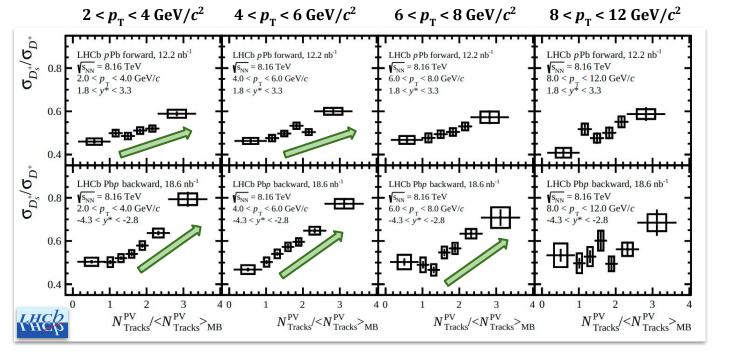

strange

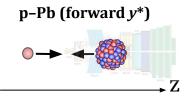
CMS: PLB 829 (2022) 137062

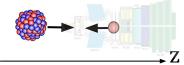
down

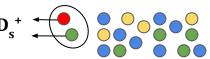

mfaggin@cern.ch 12/20

- Sensitivity to **coalescence** and **strangeness enhancement**
- v_2 described by models including charm-quark coalescence with strange quarks flowing in the QGP

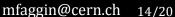

ALICE: PLB 827 (2022) 136986

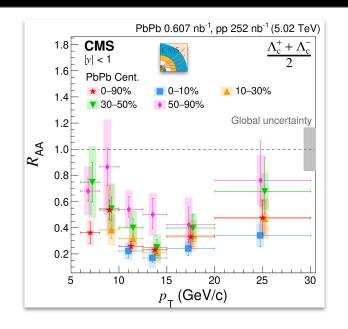

- Hint of higher D_s^+/D^0 ratio in Pb-Pb collisions than that in pp collisions (2.3-2.4 σ at intermediate p_{T})
- 3. Similar for B_s^0/B^+ , with a hint of dependence vs. centrality

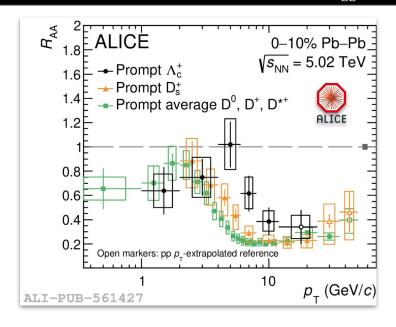




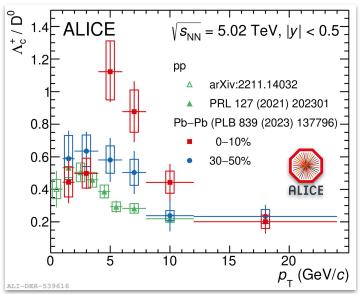
Pb-p (backward y^*)

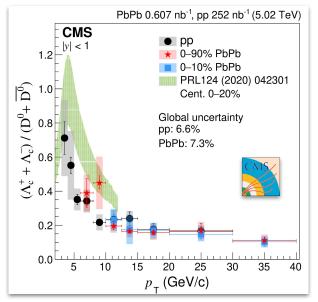



- Significant increase vs. multiplicity of prompt D_s⁺/D⁺ ratio in p-Pb collisions
 more pronounced for backward collisions
- In line with a scenario including hadronization via coalescence and strangeness enhancement in high-multiplicity p-Pb collisions

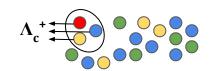


- Hint of $R_{\Lambda\Lambda}^{\text{central}}(\Lambda_c^+) < R_{\Lambda\Lambda}^{\text{peripheral}}(\Lambda_c^+) \rightarrow \text{sensitivity to different system size and energy density}$
- Minimum value of $R_{\Lambda\Lambda}^{\text{central}}(D^0)$ at around $p_{\pi} = 6-8 \text{ GeV}/c$, which is lower than that of $R_{\Lambda\Lambda}^{\text{central}}(\Lambda_c^+)$
- Hint of hierarchy $R_{AA}(\Lambda_c^+) > R_{AA}(D_s^+) > R_{AA}(\text{non-strange D})$ for $4 < p_T < 12 \text{ GeV}/c$ in most central collisions
 - Indication of larger enhancement for baryons due to **coalescence**
 - Interplay with **radial flow**?

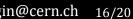


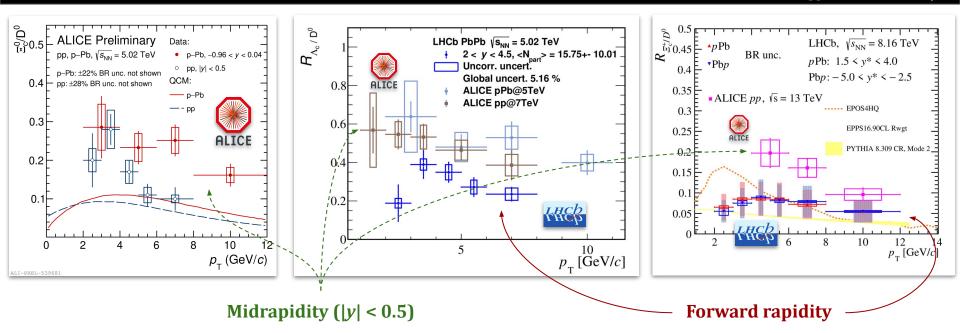


15/20


mfaggin@cern.ch

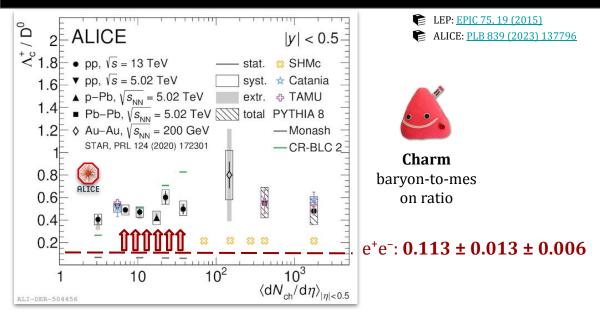
- Λ_c^+/D^0 baryon-to-meson ratio <u>at midrapidity</u> significantly **higher** (ALICE: 3.7 σ) in **central Pb-Pb** collisions than in **pp** collisions in the interval $4 < p_T < 8 \text{ GeV}/c$
 - Measurement in central Pb-Pb collisions described by **transport models** with **recombination**
- No significant collision-system and centrality dependence for $p_{\text{T}} > 12 \text{ GeV}/c$



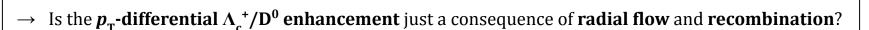


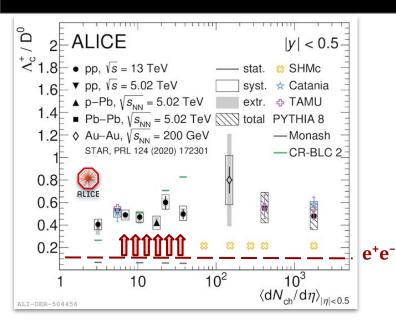
mfaggin@cern.ch

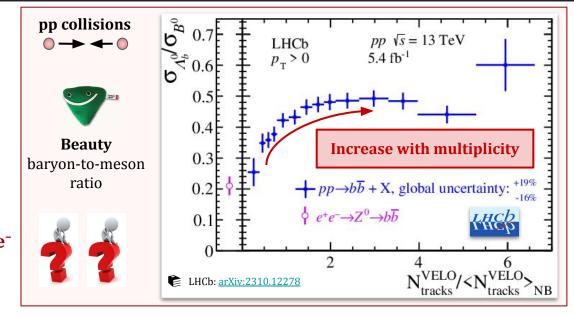



Baryon-to-meson ratio at midrapidity compatible in pp and p-Pb collisions \rightarrow hint of larger Ξ_c^0/D^0 in p-Pb collisions at $p_T > 4 \text{ GeV}/c$

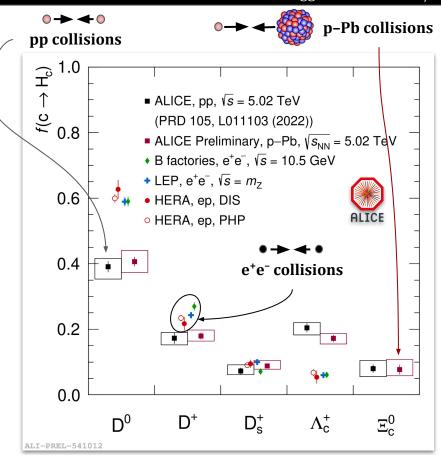
- LHCb: JHEP 06 (2023) 132 LHCb: https://arxiv.org/abs/2305.06711
- **Baryon-to-meson ratio** at **forward rapidity** systematically **lower** than those at **midrapidity** across collision systems
 - influence of different parton and/or heavy-flavour quark densities in different rapidity ranges?







- **No** significant **dependence vs. multiplicity** of the $p_{\rm T}$ -integrated Λ_c^+/D^0 ratio at mid-y across collision systems
- Ratio described by Catania (fragmentation + coalescence) and TAMU (SHM+RQM + 4-momentum conserving coalescence in Pb-Pb)
- PYTHIA 8 CR-BLC prediction does not reproduce the trend vs. multiplicity in pp collisions


- No significant dependence vs. multiplicity of the $p_{\rm T}$ -integrated $\Lambda_{\rm c}^{+}/{\rm D}^{0}$ ratio across collision systems
- **Significant dependence versus multiplicity** of the p_T -integrated $\Lambda_b^{\ 0}/B^0$ ratio at forward-y in pp collisions
 - o increase of about a factor 2 from low to high multiplicity
 - ightarrow Influence of different parton and/or heavy-flavour quark densities in different rapidity ranges?
 - \rightarrow Is the p_{π} -differential Λ_s^+/D^0 enhancement just a consequence of radial flow and recombination?

Baryon enhancement in all collision systems at the LHC compared to e⁺e⁻

- D mesons: $\downarrow\downarrow\downarrow$ × 1.4-1.6 with respect to e^+e^-
- Λ_c^+ baryon: $\uparrow \uparrow \uparrow \times \sim 3$ with respect to e^+e^-
- **No** significant **system dependence** of charm fragmentation fractions

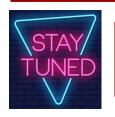
Modification of **hadronization** mechanisms **already** in pp and p-Pb collisions, i.e. without QGP formation? A. Rossi, Monday at 10:10 "Heavy-quark production and hadronisation as a function of event multiplicity with ALICE" **DO NOT MISS OUT!**

Conclusions

mfaggin@cern.ch

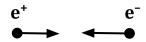
20/20

A lot of **experimental results** from the **ALICE**, **ATLAS**, **CMS** and **LHCb** Collaborations at the LHC to shed light on the **c-quark** and b-quark dynamics in the QGP

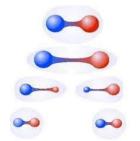


- c- and b-quark lose energy via gluon radiation
- indications of c- and b-quark **participation** to the collective motion
- **hadronization** via **recombination** crucial to explain the particle production hierarchy at intermediate $p_{_{\rm T}}$

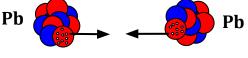
2021	2022	2023	2024	2025	2026	2027	2028	2029
J FMAMJ JASON	OJ FMAMJ J ASOND	JEMAMJJASOND Run 3	J F M A M J J A S O N D	J FMAMJ J ASOND		JFMAMJJASOND		J FMAMJ J ASOND


More results coming from Run 3 at the LHC!

"This work is **(partially)** supported by ICSC – Centro Nazionale di Ricerca in High Performance Computing, Big Data and Quantum Computing, funded by European Union – NextGenerationEU".


Backup

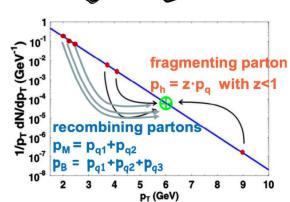
mfaggin@cern.ch 22/20


- "Point-like" object interaction
- **Fragmentation** in the vacuum

Fragmentation

- Hard scattering: $e^+e^- \rightarrow \overline{q}q$
- Color string: $V_{Cornell}(r) \sim \kappa r$
- New qq pairs from multiple string breaking (confinement)

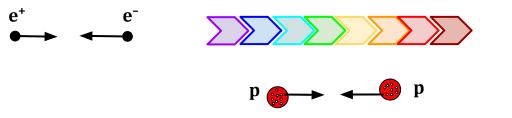
Hadronization: a key ingredient in all collision systems!



QGP: complex system with **partonic d.o.f**

Hadronization can be influenced by

coalescence and strangeness enhancement



Coalescence

- Heavy quark recombinates with light quarks in the QGP
- Expected increase of hadrons at intermediate-low $p_{_{\rm T}}$
- QGP: interplay with fragmentation

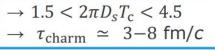
Charm and beauty hadronization from pp collisions

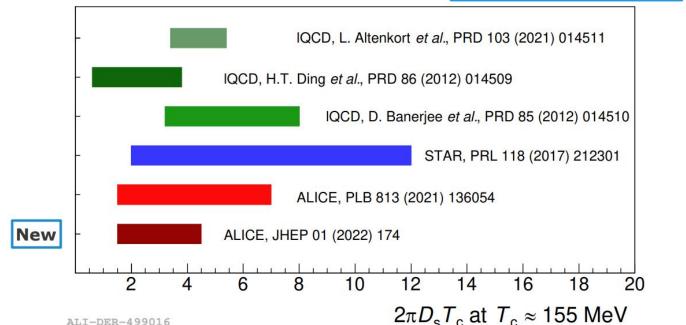
- Superposition of many "e⁺e⁻" collisions
- Changes in hadronization due to the surrounding color charges and those from MPI?
- Do the model calculations based on the factorization approach describe the experimental results?

A. Rossi, Monday at 10:10

"Heavy-quark production and hadronisation as a function of event multiplicity with ALICE"

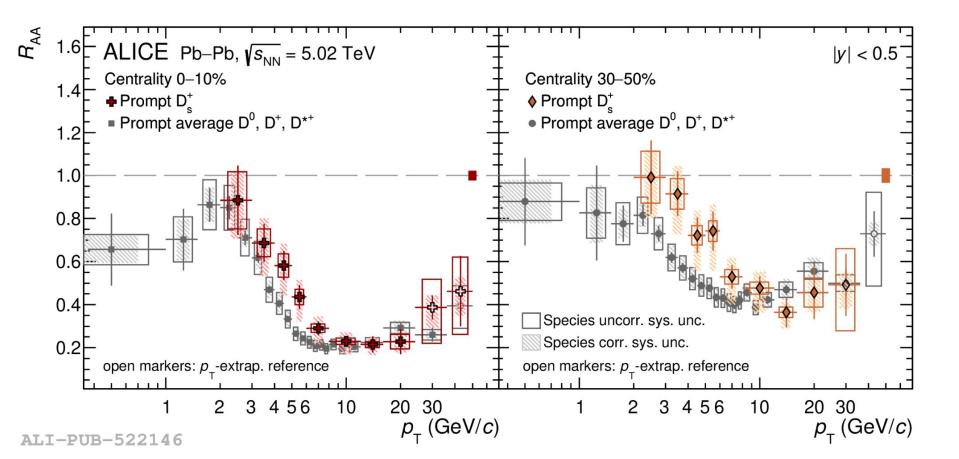
This talk: more focused on results in **heavy-ion** collisions

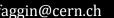

mfaggin@cern.ch

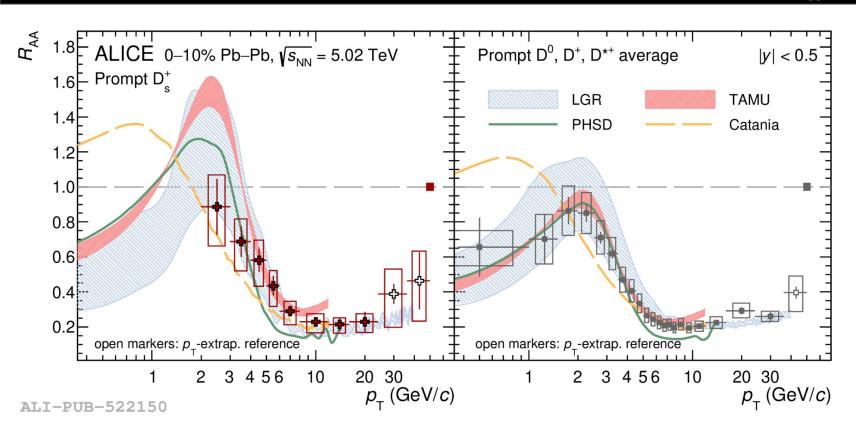


24/20

Constraining the spatial diffusion coefficient via the **data-to-model agreement**

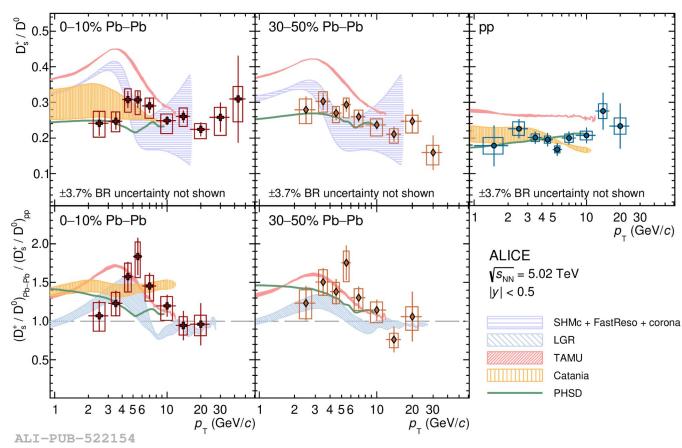

- \rightarrow Using R_{AA} (with $\chi^2/\text{ndf} < 5$) and v_2 (with $\chi^2/\text{ndf} < 2$) non-strange D measurements
- → TAMU, MC@sHQ, LIDO, LGR, and Catania "selected"

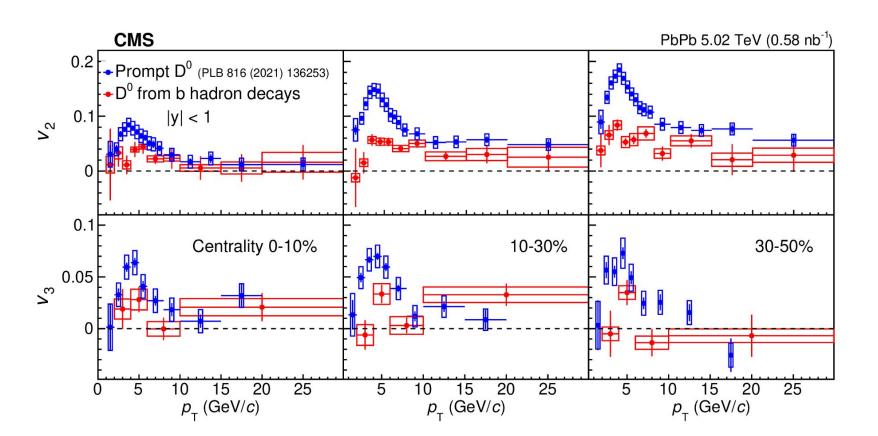


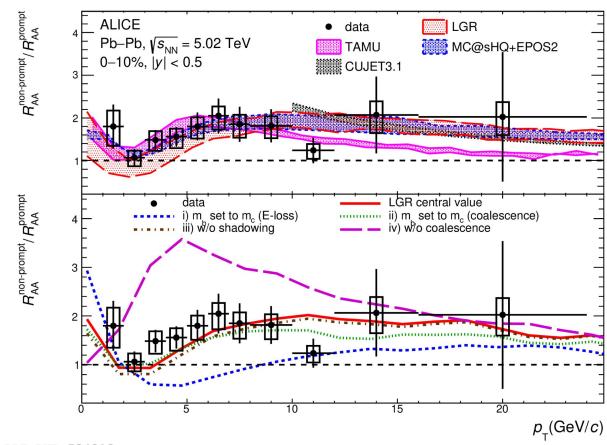


25/20

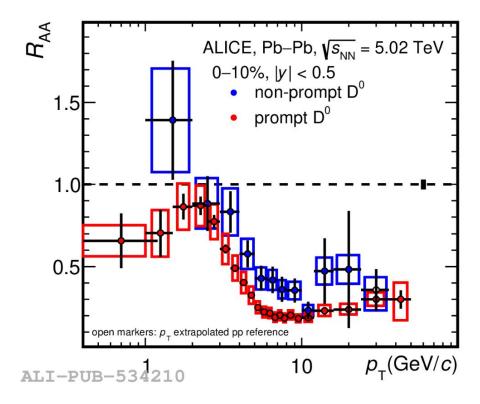
Prompt Ds+

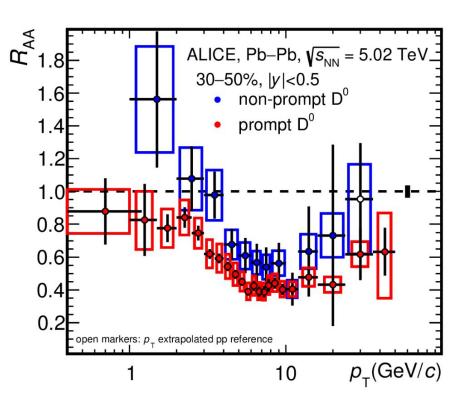


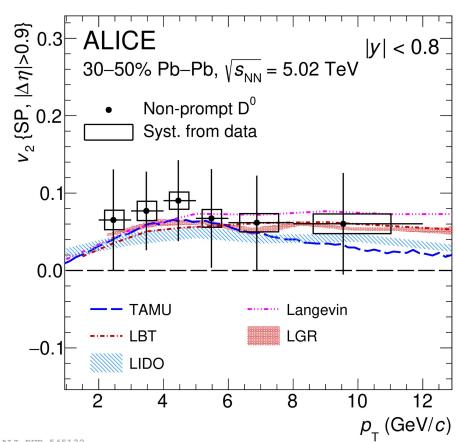


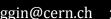

27/20

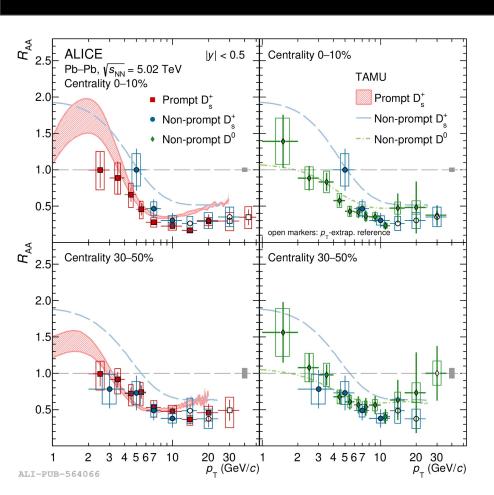
mfaggin@cern.ch

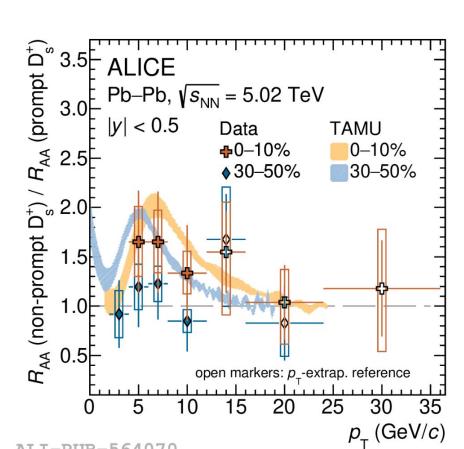


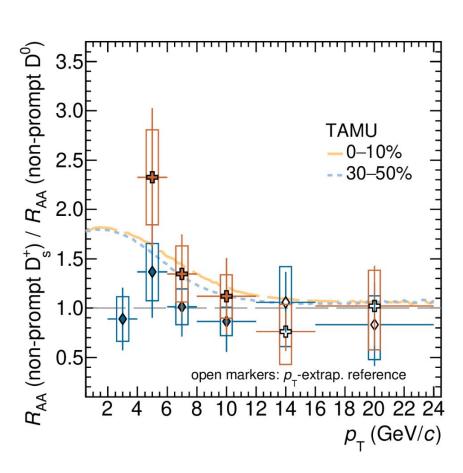


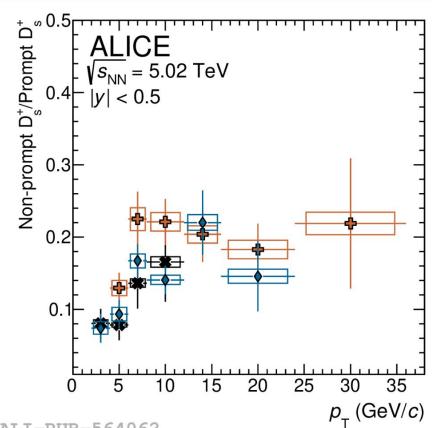


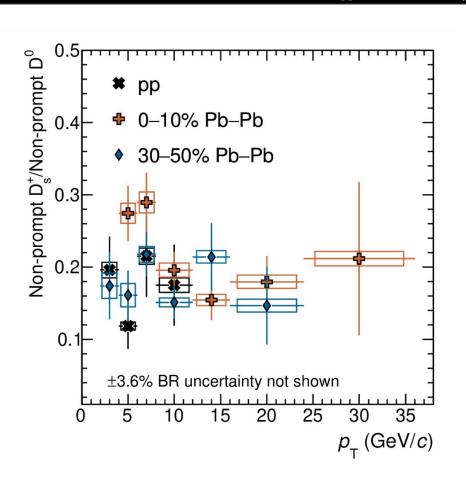







mfaggin@cern.ch 32/20





E-loss and transport models

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
CUJET 3.1	$\overline{\checkmark}$	▽	×	$\overline{\checkmark}$	V
DREENA-A	V	▼	×	▽	×
SCET _{M,G}	V	V	×	×	V

	Collisional en. loss	Radiative en. loss	Coalescence	Hydro	nPDF
TAMU	$\overline{\checkmark}$	×	V	V	V
LIDO	$\overline{\checkmark}$	$\overline{\checkmark}$	V	V	✓
PHSD	$\overline{\checkmark}$	×	V	V	V
DAB-MOD	$\overline{\checkmark}$	$\overline{\checkmark}$	~	V	×
Catania	$\overline{\checkmark}$	X	V	V	V
MC@sHQ+EPOS	$\overline{\checkmark}$	$\overline{\checkmark}$	V	$\overline{\mathbf{V}}$	V
LBT	$\overline{\checkmark}$	$\overline{\checkmark}$	~	~	V
POWLANG+HTL	$\overline{\checkmark}$	×	V	$\overline{\checkmark}$	$\overline{\checkmark}$
LGR	V	V	\checkmark	V	~

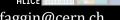
But more importantly: different **implementations** and **input parameters**.

36/20

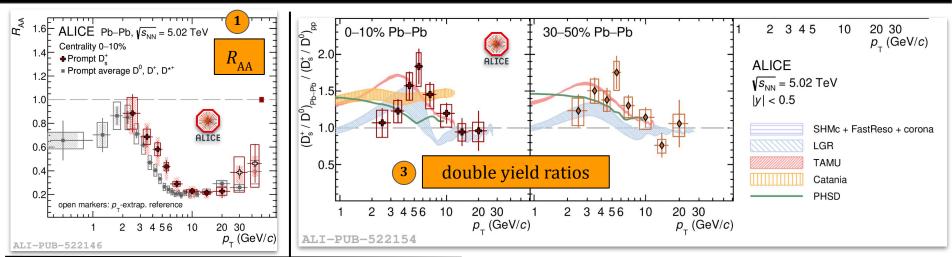
mfaggin@cern.ch

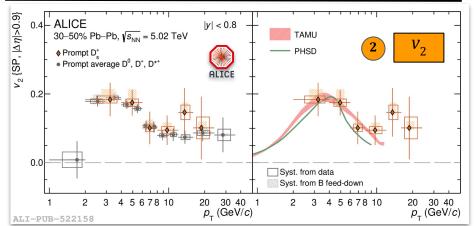
1 Production spectra and R_{AA}

$$R_{AA}(p_{T},y) = \frac{1}{\langle T_{AA} \rangle} \frac{d^{2}N_{AA}/dp_{T}dy}{d^{2}\sigma_{pp}/dp_{T}dy}$$


$$R_{\mathrm{AA}}(p_{\mathrm{T}}, y) = \frac{1}{\langle N_{\mathrm{coll}} \rangle} \cdot \frac{\mathrm{d}^2 N_{\mathrm{AA}} / \mathrm{d} p_{\mathrm{T}} \mathrm{d} y}{\mathrm{d}^2 N_{\mathrm{pp}} / \mathrm{d} p_{\mathrm{T}} \mathrm{d} y}$$

Anisotropic flow

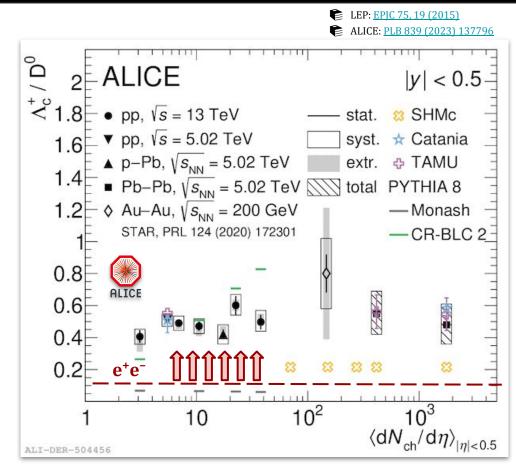

$$v_{\rm n}(p_{\rm T}) = \langle \cos[{\rm n}(\varphi - \Psi_{\rm n})] \rangle$$


Heavy-strange-meson production


mfaggin@cern.ch

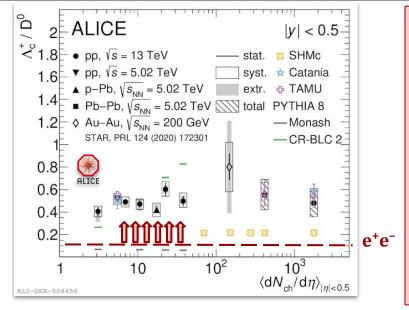
Sensitivity to coalescence and strangeness enhancement

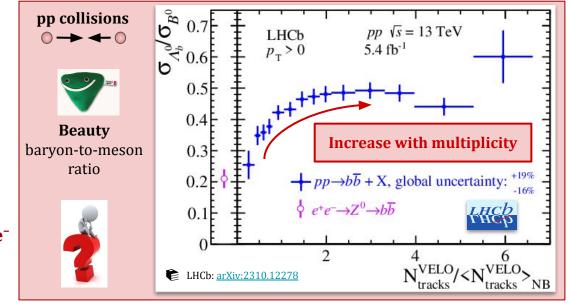
- hint of $R_{\Delta\Delta}(D_s^+) > R_{\Delta\Delta}(\text{non-strange D})$ at intermediate p_T
- v_2 described by models including charm-quark coalescence with strange quarks flowing in the QGP
- D_s^+/D^0 ratio in Pb-Pb collisions higher than that in pp collisions of about 2.3-2.4 σ at intermediate $p_{_{\rm T}}$



ALICE: PLB 827 (2022) 136986

Baryon enhancement in all collision systems at the LHC compared to e⁺e⁻


- No significant dependence versus multiplicity of the p_T -integrated Λ_c^+/D^0 ratio across collision systems
- Ratio described by Catania (fragmentation + coalescence) and TAMU (SHM+RQM + 4-momentum conserving coalescence in Pb-Pb)
- PYTHIA CR-BLC prediction does not reproduce the trend vs. multiplicity in pp collisions
- → Is the p_T -differential Λ_c^+/D^0 enhancement just a consequence of radial flow and recombination?



Charm-baryon production at the LHC - open points (2/2)

- No significant dependence versus multiplicity of the $p_{\rm T}$ -integrated $\Lambda_{\rm c}^{+}/{\rm D}^{0}$ ratio across collision systems
- Ratio described by Catania (fragmentation + coalescence) and TAMU (SHM+RQM + 4-momentum conserving coalescence in Pb–Pb)
- PYTHIA 8 CR-BLC prediction does not reproduce the trend vs. multiplicity in pp collisions
- \rightarrow Is the $p_{\rm T}$ -differential $\Lambda_c^+/{\rm D}^0$ enhancement just a consequence of radial flow and recombination?

- production yield and RAA
- flow
- ccbar cross section in p-Pb (?)

Topics:

- ratio Lc/D0 from pp to Pb-Pb \rightarrow confronto anche con LHCb in 60-80% e con CMS a mid-rapidity
- Lc Pb-Pb mid-rapidity
 (https://indico.cern.ch/event/1139644/contributions/5539868/attachments/2708392/4702520/Soumik Chandra Measurem
 ent of charm quark QM2023.pdf)
- RAA prompt e non prompt D mesons → anche da CMS
 (https://indico.cern.ch/event/1139644/contributions/5542698/attachments/2709279/4704316/MilanStojanovic D0 CMS QM 2023.pdf)
- Prompt and non-prompt Ds da pp a Pb-Pb
 - RAA ratio Ds here https://indico.uni-muenster.de/event/1409/contributions/2013/attachments/924/1867/VoelklHPnonPrompt.pdf
- RAA mesoni B CMS

(https://indico.cern.ch/event/1139644/contributions/5539863/attachments/2708556/4702825/qm2023_ta.pdf)

- bs, bc cms: https://indico.uni-muenster.de/event/1409/contributions/2022/attachments/988/2067/hp2023_qm.pdf
- RAA vs. v2 e spatial diffusion coefficient. Flow D0 di CMS
- ccbar e FF in p-Pb
- D0, Lc, Xic in p-Pb \rightarrow vedi talk Moriond e anche risultati Xic di LHCb
 - https://indico.cern.ch/event/1139644/contributions/5539922/attachments/2708428/4703445/0M2023 ChenxiGu.pdf
 - o per D0 p-Pb ALICE: https://indico.uni-muenster.de/event/1409/contributions/2001/
- Performance Xic in Pb-Pb(Jianhui)