Valence and sea parton correlations in double parton scattering from data

Edgar Huayra

in collaboration with:

Emmanuel Gräve de Oliveira João Vitor C. Loyato

Universidade Federal de Santa Catarina, UFSC Florianopolis, Brazil

Conclusion

Table of Contents

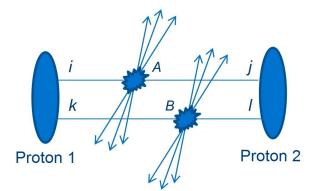
- Introduction
- 2 Problem
- 3 Theoretical background
- 4 Results
- **6** Conclusion
- 6 Future research

Introduction: General case

• In general, the inclusive σ_D for hadrons h, h' is

[Nuovo Cim. A 70, 215 (1982). JHEP 03, 089 (2012). JHEP 03, 005 (2010). Eur. Phys. J. C 72, 1963 (2012)]

$$\sigma_{D}^{hh'} = \frac{N}{2} \sum_{ij;k'l'} \int dx_1 dx_2 dx'_1 dx'_2 d^2 r \times
\times \Gamma_{ii}^h(x_1, x_2, \mathbf{r}) \hat{\sigma}_{ik'}^A(x_1, x'_1) \hat{\sigma}_{il'}^B(x_2, x'_2) \Gamma_{k'l'}^{h'}(x'_1, x'_2, \mathbf{r}).$$
(1)



Introduction

Introduction: uncorrelated case

• Considering the scenario where there is no correlation between x and r.

$$\Gamma_{ij}(x_1, x_2, \mathbf{r}) = f_i(x_1)f_j(x_2) F(\mathbf{r}) \theta(1 - x_1 - x_2)(1 - x_1 - x_2)^n, (2)$$

- Here, $f_{i,i}$ are usual PDFs and F contain the geometrical information entering $\sigma_{\rm D}$.
- Note: that the function F doesn't depend on flavour i, j.
- The n > 0 is a parameter to be fixed phenomenologically, introduces the natural kinematical constraint $x_1 + x_2 \le 1$.
- But this is important only if we consider large rapidity values.

Future research

Introduction: Pocket formula

Introduction

000

• So, to simplify, we used the following ansatz

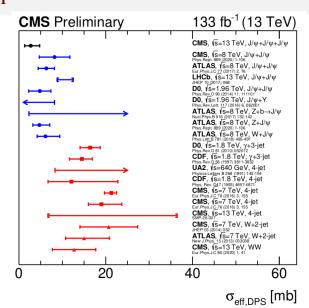
$$\Gamma_{ij}(x_1, x_2, \mathbf{r}) = f_i(x_1) f_i(x_2) F(\mathbf{r}). \tag{3}$$

Substituting this into the equation 1, we get the famous

Pocket formula $\sigma_{p_1p_2}^{\text{DPS}} = \frac{N}{2} \frac{\sigma_A^{\text{SPS}} \sigma_B^{\text{SPS}}}{\sigma_B^{pp}}$

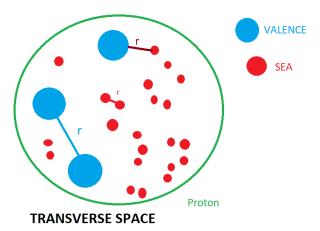
• The σ_{eff} is known as **effective cross section** and it contain all information about the transverse hadron structure.

Problem



Problem

• This can be due the fact that we are neglecting all correlations.



• Let us introduce a parton–kind (valence or sea) dependence!

Theoretical background

• Neglecting again longitudinal—transverse correlations but including parton kind dependence:

$$\Gamma_{ij}(x_1, x_2, \mathbf{r}) = f_i(x_1) f_i(x_2) F_{ii}(\mathbf{r}), \ i, j \in \{s, v\}.$$
 (4)

• Then, the DPS cross section Eq. 1 is

[A. Del Fabbro and D. Treleani, Phys. Rev. D 63, 057901 (2001)]

$$\sigma_{\mathrm{D}}^{hh'} = \frac{N}{2} \sum_{ij;k'l'} \sigma_{ik'}(A) \sigma_{jl'}(B) / \sigma_{k'l',\mathrm{eff}}^{ij}, \tag{5}$$

where the geometrical coefficients

$$\left(\sigma_{k'l',\text{eff}}^{ij}\right)^{-1} = \Theta_{k'l'}^{ij} = \int d^2r \, F_{ij}(\mathbf{r}) F_{k'l'}(\mathbf{r}),\tag{6}$$

are weighted differently depending on the final state.

Theoretical background

• The effective DPS cross section for each final state AB is

$$\sigma_{\text{eff}}^{\text{Theory}}(AB) = \frac{\sum_{i,k'} \sigma_{ik'}(A) \sum_{j,l'} \sigma_{jl'}(B)}{\sum_{ijk'l'} \sigma_{ik'}(A) \sigma_{jl'}(B) / \sigma_{k'l',\text{eff}}^{ij}}.$$
 (7)

• The $\sigma_{ik'}(X)$ values were obtained with PYTHIA 8.3 [C. Bierlich et al., SciPost Phys. Codebases 8, (2022)]

Results – Fit

- The free parameters are the $\sigma_{\nu'\nu'}^{ij}$ eff
- By symmetry, only 6 are independent: $\sigma_{\text{sv,eff}}^{ss}$, $\sigma_{\text{sv,eff}}^{ss}$, $\sigma_{\text{vv,eff}}^{ss}$, $\sigma_{\text{sv,eff}}^{sv}$, $\sigma_{\text{vv,eff}}^{sv}$, $\sigma_{\text{vv,eff}}^{vv}$, $\sigma_{\text{vv,eff}}^{vv}$, .
- We minimize the χ^2 using Minuit2. [F. James and M. Winkler, MINUIT User's Guide (CERN, Geneva, 2004).]
- Current data is only sensitive to $\sigma_{ss \text{ eff}}^{ss}$ and $\sigma_{sv \text{ eff}}^{ss}$.
- The others are fixed to 38 mb but this value does not really matter.

Results

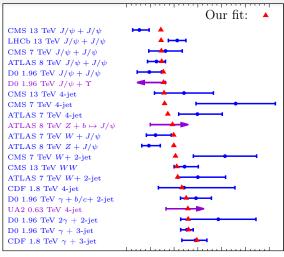
Introduction

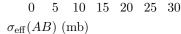
- The basic pocket formula gives $\sigma_{\rm eff} = 9.8 \pm 0.6 \, \rm mb$ with $\chi_{\text{dof}}^2 = 46.45/(18-1) = 2.73.$
- This gives a p-value of only 0.00015 and as such the null hypothesis is rejected with confidence level of 3.8σ .
- In our study, we find that sea–sea correlations are really different from sea-valence:

Effective cross section	Fit result (mb)
$\sigma_{ss, { m eff}}^{ss}$	6.5 ± 0.9
$\sigma^{ss}_{sv, { m eff}}$	27 ± 15

Table: σ_{eff} found in our fit with goodness $\chi_{\text{dof}}^2 = 1.70$. The notation $\sigma_{l'l'\text{ eff}}^{ij}$ means that i interacts with k' and j interacts with l'.

Results





Conclusion

• These results were published in JHEP, arxiv.org/abs/2305.11106 https://doi.org/10.1007/JHEP09(2023)177.

Valence and sea parton correlations in double parton scattering from data

Edgar Huayra, * João Vitor C. Lovato, † and Emmanuel G. de Oliveira ‡

¹Departamento de Física, CFM, Universidade Federal de Santa Catarina, C.P. 476, CEP 88.040-900 Florianópolis, Santa Catarina, Brazil Abstract

The effective cross section of double parton scattering in proton collisions has been measured by many experiments with rather different results. Motivated by this fact, we assumed that the parton correlations in the transverse plane are different whether we have valence or sea partons. With this simple approach, we were able to fit the available data and found that sea parton pairs are more correlated in the transverse plane than valence-sea parton pairs.

Conclusion

- We use the assumption that the transversal distributions of valence and sea parton kinds could be different in the proton to fit σ_{eff} to data on several processes and experiments.
- This hypothesis can be important since it affect the value of σ_{eff} and make it depend on the final state.
- The quality of the fit was not bad and the calculated values of the σ_{eff} are in good agreement with the data.
- Allowing transverse correlations between parton populations is an important improvement in the description of DPS.
- The sea-sea correlations are the larger than sea-valence ones.

Future research

Future research: x-dependence

• Now, in a simple scenario where there is correlation between x and **r**, the dPDF factorizate like

$$\Gamma_{ij}(x_1, x_2, \mathbf{r}) = f_i(x_1)f_j(x_2) F_{ij}(x_1, x_2; \mathbf{r}).$$
 (8)

- But this correlation prevents us from obtaining the formula 5.
- We are left with a term like

$$\sum_{i,j;k',l'} \int \Theta_{k'l'}^{ij}(x_1, x_2; x_1', x_2') f_i(x_1) f_{k'}(x_1') \hat{\sigma}_{ik'}(x_1, x_1') \times \\ \times \hat{\sigma}_{jl'}(x_2, x_2') f_j(x_2) f_{l'}(x_2') dx_1 dx_2 dx_1' dx_2', \tag{9}$$

where

Introduction

$$\Theta_{k'l'}^{ij}(x_1, x_2; x_1', x_2') = \int d^2r \, F_{ij}(x_1, x_2; r) F_{k'l'}(x_1', x_2'; r). \tag{10}$$

Future research

Future research: x-dependence

Introduction

• One way to introduce it is using ansatz

$$F_{ij}(x_1, x_2, r) = \int d\mathbf{s}_1 d\mathbf{s}_2 \ \delta^{(2)}(\mathbf{s}_2 - \mathbf{s}_1 - \mathbf{r}) \rho_i(x_1, \mathbf{s}_1) \rho_j(x_2, \mathbf{s}_2),$$
 (11) where the *x*-dependence comes from the **transverse density** $\rho_i(x, \mathbf{s}).$

• A possible profile that encapsulate this x-dependence is the gaussian approach

$$\rho_i(x,r) := \frac{1}{2\pi\delta(x)^2} \exp\left\{-\frac{r^2}{2\delta(x)^2}\right\}, \quad (12)$$

$$\delta(x) = w\sqrt{(1-x)\ln\frac{1}{x}}, \tag{13}$$

or
$$\delta(x) = B_0 + 2K_Q \ln\left(\frac{x_0}{x}\right)$$
. (14)

Future research: *x*-dependence

Introduction

• The last parameterization comes from the J/ψ -SPS data.

[L. Frankfurt, M. Strikman, and C. Weiss, Phys. Rev. D 83, 054012 (2011)]

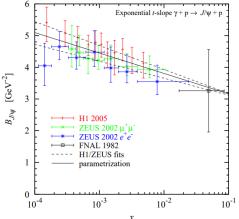


Figure: The exponential t-slope, $B_{J/\psi}$, of the differential cross section of exclusive J/ψ photoproduction measured in the FNAL E401/E458, HERA H1, and ZEUS experiments, as a function of $x = M_{J/\psi}^2/W^2$.

Acknowledgement

Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina

THANK YOU FOR YOUR ATTENTION!

