

Six-jet production as a probe of triple parton scattering at the LHC

Marina Maneyro (UDELAR/CERN), David d'Enterria (CERN) marina.maneyro-questa@liverpool.ac.uk

MPI@LHC 2023, November 21st, 2023

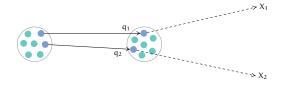
- Motivation and Objectives
- 2 Theoretical Setup
 - Double Parton Scattering
 - Triple Parton Scattering
 - For pA collisions
- Methodology

- 4 Results
 - pp
 - pPb
 - MVA for TPS event identification
- Conclusions and Outlook

Motivation and Objectives

- Why 6j?
 - multijets used for DPS studies
 - 4j by AFS (1987), UA2 (1991), CDF (1993)
 - $\gamma + 3j$ by CDF (1997), D0 (2020)
 - Large dijet cross sections for low to mid p_T
- Hard Triple Parton Scattering (TPS) studied for the 6-jet production case for the first time
- Focusing on current experimental capabilities at the LHC, for proton-proton and proton-nucleus collisions. Collision energies set at $\sqrt{s} = 14$ TeV for pp and $\sqrt{s} = 8.8$ TeV for pPb

Theoretical Setup Double Parton Scattering



■ If the probabilities of producing X_1 and X_2 are independent:

$$\sigma_{\mathrm{DPS}}^{pp\to X_1\,X_2} = \left(\tfrac{m}{2}\right)\,\frac{\sigma_{\mathrm{SPS}}^{pp\to X_1}\,\sigma_{\mathrm{SPS}}^{pp\to X_2}}{\sigma_{\mathrm{eff},\mathrm{DPS}}}$$

m: combinatorial factor to avoid double counting

$$m = 1 (2) \text{ if } X_1 = X_2 (X_1 \neq X_2)$$

Theoretical Setup Double Parton Scattering

- Purely geometric estimation: $\sigma_{\rm eff,DPS} = \left[\int d^2b \, T^2(\mathbf{b})\right]^{-1}$ Transverse overlap function for pp $\left(\int d^2b \, T(\mathbf{b}) = 1\right)$ $T(\mathbf{b}) = \int \rho(\mathbf{b_1}) \rho(\mathbf{b_1} - \mathbf{b}) d^2b_1$ where $\rho(\mathbf{b_1})$ is the transverse parton density of the proton
- Doesn't take into account correlations between partons \rightarrow Hereafter, we will use experimental "average" $\sigma_{\rm eff,DPS} \approx 15~\text{mb}$

Theoretical Setup Triple Parton Scattering

- $m = 1 \text{ if } X_1 = X_2 = X_3$
- = m = 3 for two different particles (i.e. $X_1 = X_2 \neq X_3$)
- $\mathfrak{m} = 6$ if all particles are different
- $\sigma_{\rm eff,TPS} = \left[\int d^2b \, T^3(\mathbf{b})\right]^{-1/2} = \kappa \, \sigma_{\rm eff,DPS}$ with $\kappa = (0.82 \pm 0.11)$, obtained by studying transverse parton overlaps (hard sphere, Gaussian, exponential, dipole fit). Then, $\sigma_{\rm eff,TPS} = 12.5 \pm 4.5$ mb (d'Enterria & Snigirev (2017))

- We're also interested in studying TPS for hadron-Nucleus interactions, in particular proton-lead
- Cross sections → proton-nucleon SPS + scaling procedure
- Single Parton Scattering:

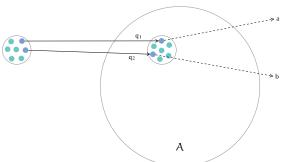
$$\sigma_{\mathrm{pA}\to X}^{SPS} = \sigma_{\mathrm{pN}\to X}^{SPS} \int d^2b \, T_{_{\mathrm{pA}}}(\mathbf{b}) = A \cdot \sigma_{\mathrm{pN}\to X}^{SPS}$$

- $T_{pA}(\mathbf{r})$: Standard nuclear thickness function
- Defined from nuclear density function $\rho_A(\mathbf{r})$

$$T_{_{\rm pA}}({\bf r})=\int \rho_A \big(\sqrt{r^2+z^2}\big)\,dz,$$
 with $\int T_{_{\rm pA}}({\bf r})\,d^2r=A$

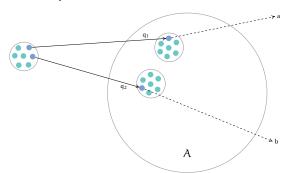
- For the DPS case: $\sigma_{\rm pA}^{\rm DPS} = \sigma_{\rm pA}^{\rm DPS,1} + \sigma_{\rm pA}^{\rm DPS,2}$
- Interactions between partons in the same nucleon:

$$\sigma^{DPS,1}_{\mathrm{pA}\rightarrow\alpha b}=A\cdot\sigma^{DPS}_{\mathrm{pN}\rightarrow\alpha b}$$



Partons from two different nucelons

$$\sigma_{\mathrm{pA} \rightarrow \alpha b}^{DPS,2} = \sigma_{\mathrm{pN} \rightarrow \alpha b}^{DPS} \cdot \sigma_{\mathrm{eff},\mathrm{DPS}} \cdot F_{\mathrm{pA}}$$



- $\mathbf{F}_{\mathrm{pA}} = \frac{A-1}{A} \int \mathsf{T}_{_{\mathrm{pA}}}^{2}(\mathbf{r}) \, \mathrm{d}^{2}\mathbf{r}$
- $\frac{A-1}{A}$ takes into account the number of pairs of nucleons vs. the number of pairs that are different
- For Lead A = 208, $F_{\rm pA}$ derived from Glauber Monte Carlo model with realistic Pb density profile $F_{\rm pA}\approx 29.5~\text{mb}^{-1}$

■ To summarize, total DPS cross section:

$$\sigma^{\text{DPS}}_{\text{pA}\rightarrow\alpha\,b} = \left(\tfrac{\textit{m}}{2}\right) \, \frac{\sigma^{\text{SPS}}_{\text{pN}\rightarrow\alpha} \cdot \sigma^{\text{SPS}}_{\text{pN}\rightarrow b}}{\sigma_{\text{eff},\text{DPS},\text{pA}}}$$

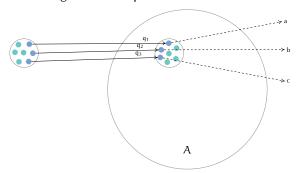
 $\sigma_{\rm eff,DPS,pA}$ includes the pN DPS effective factor, geometry of $F_{\rm pA}$ and dependence in A

 $\label{eq:sigma} \mbox{ For Lead, and for } \sigma_{\rm eff,DPS} \approx 15 \mbox{ mb, then } \sigma_{\rm eff,DPS,pA} = 22.5 \\ \pm 2.3 \mbox{ } \mu b \rightarrow \mbox{ larger DPS cross sections than } pp \mbox{ case}$

■ Fot TPS there are three different terms:

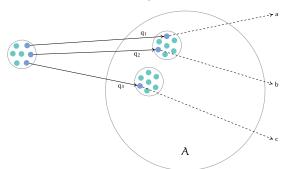
$$\sigma_{\mathrm{pA}}^{TPS} = \sigma_{\mathrm{pA}}^{TPS,1} + \sigma_{\mathrm{pA}}^{TPS,2} + \sigma_{\mathrm{pA}}^{TPS,3}$$

■ The first is again with all partons from the same nucleon



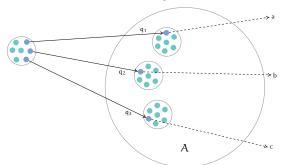
Partons from two different nucleons:

$$\sigma_{\mathrm{pA} \rightarrow \alpha bc}^{\text{TPS},2} = \sigma_{\mathrm{pN} \rightarrow \alpha bc}^{\text{TPS}} \cdot 3 \, \frac{\sigma_{\mathrm{eff},\mathrm{TPS}}^2}{\sigma_{\mathrm{eff},\mathrm{DPS}}} F_{\mathrm{pA}}$$



Partons from three different nucleons:

$$\begin{split} &\sigma_{\mathrm{pA}\to\mathrm{abc}}^{TPS,3} = \sigma_{\mathrm{pN}\to\mathrm{abc}}^{TPS} \cdot \sigma_{\mathrm{eff,TPS}}^2 \cdot C_{\mathrm{pA}} \\ &\text{with } C_{\mathrm{pA}} = \frac{(A-1)(A-2)}{A^2} \int d^2b \, T_{\mathrm{pA}}^3(\mathbf{b}) \end{split}$$

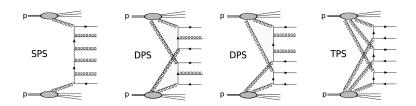


Summarizing the terms:

$$\sigma_{\mathrm{pA} \to \mathrm{abc}}^{\mathrm{TPS}} = \left(\frac{\mathrm{m}}{\mathrm{6}}\right) \; \frac{\sigma_{\mathrm{pN} \to \mathrm{a}}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN} \to \mathrm{b}}^{\mathrm{SPS}} \cdot \sigma_{\mathrm{pN} \to \mathrm{c}}^{\mathrm{SPS}}}{\sigma_{\mathrm{eff}, \mathrm{TPS}, \mathrm{pA}}^{\mathrm{eff}}}$$

- $F_{\rm pA}$ and $C_{\rm pA}$ derived from Glauber Monte Carlo. Again $\sigma_{\rm eff,TPS,pA}$ absorbs the dependence in A, $F_{\rm pA}$ and $C_{\rm pA}$, and $\sigma_{\rm eff,TPS}$
- \blacksquare For Lead, and for $\sigma_{\rm eff,DPS}\approx 15$ mb, $\sigma_{\rm eff,TPS,pA}=0.29\pm 0.04$ mb (also bigger TPS yields than for pp)

Methodology



- To study $pp \rightarrow 6j$ we looked at:
 - SPS: $pp \rightarrow 6j$ (LO)
 - DPS: from pp \to 2j (SPS, NLO) and pp \to 4j (SPS, LO), and also pp \to 3j (SPS,NLO) \times 2
 - TPS: from pp \rightarrow 2j (SPS,NLO) \times 3

Methodology

- Two MC generators used: Madgraph5_aMC@NLO and Alpgen
- Madgraph5: NLO generation for 2j, 3j (can't do 4j, 6j)
- Alpgen: Works for 4j,6j (albeit at LO)
- PDF: NNPDF4.0 NLO (LO for N≥4j)
- Scale variations: dynamical scale ($Q = \hat{H}_T$ or $\hat{H}_T/2$ chosen) & renorm/fact. scale variations: $\mu_{F,R} = Q/2$ -Q-2Q.

Results (pp \rightarrow 6j + X at \sqrt{s} =14 TeV)

■ MadGraph5 ($|\eta|$ < 5, $p_{T,j}$ > 35GeV)

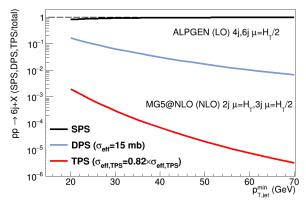
Process	σ^{LO}	$\sigma^{ m NLO}$
$pp \to jj$ (SPS) at $\sqrt{s} = 14$ TeV (\hat{H}_T)	66.7 μb +28.6%+1.34% -21.9%-1.34%	11.7 μb _{-205.5%}
$pp \to 3j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	4.30 μb +38.4% +0.746% -26% -0.746%	3.78 $\mu b_{-27.2\%}^{+2.7\%}$
$pp \to 4j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	0.71 μb ^{+55.9%} ^{+1.1%} _{-33.5%} ^{-1.1%}	
$pp \to 4j + 2j$ (DPS) at $\sqrt{s} = 14 \text{ TeV}$	3.85 nb	
$pp \to 3j + 3j$ (DPS) at $\sqrt{s} = 14 \text{ TeV}$	751 pb	581 pb
$pp \to 6j$ (TPS) at $\sqrt{s} = 14 \text{ TeV}$	486 pb	2.62 pb

■ Alpgen ($|\eta| < 5$, $p_{T,j} > 35 GeV$)

Process	σ^{LO}
$pp \to jj$ (SPS) at $\sqrt{s} = 14$ TeV (\hat{H}_T)	$73.8 \pm 0.023~\mu b$
$pp \to 3j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	5.05± 0.013 μb
$pp \to 4j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	0.92± 0.002 μb
$pp \to 6j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	31.5± 0.094 nb

LO and NLO results are consistent within scale uncertainties, except for the 2j case due to jets going below the $p_{T,iet}^{min}$ threshold

Results (pp \rightarrow 6j + X at \sqrt{s} =14 TeV)



Can we experimentally observe TPS contributions amounting to $\approx 10^{-3}$ (at $p_{T,jet}^{min}$ = 20 GeV), 10^{-5} (at $p_{T,jet}^{min}$ = 50 GeV)? Discriminating kinematic cuts can improve this. Moreover, values of $N_{evts}=\sigma L$ are very large, so the Signal counts are very large (relatively small statistical fluctuations)

Results (pPb \rightarrow 6j + X at \sqrt{s} =8.8 TeV)

■ MadGraph5 ($|\eta|$ < 5, $p_{T,j}$ > 35GeV)

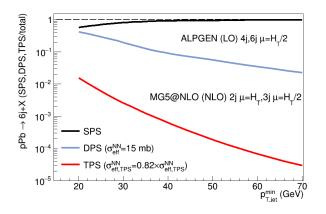
Process	σ^{LO}	$\sigma^{ m NLO}$
$\mathrm{pN} \to jj$ (SPS) at $\sqrt{s} = 14$ TeV (\hat{H}_T)	31.1 µb +25.6% +1.03% -19.7% -1.03%	8.41 μb ^{+73.2%} _{-140.0%}
$\mathrm{pN} \to 3j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	1.69 µb +42.1% +0.84% -27.7% -0.84%	1.54 μb _{-27.2%}
$\mathrm{pN} \to 4j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	235 nb +59.6% +1.41% -34.9% -1.41%	
$p-Pb ightarrow 4j+2j$ (DPS) at $\sqrt{s}=14$ TeV	323 nb	
$p-Pb \rightarrow 3j+3j$ (DPS) at $\sqrt{s}=14 \text{ TeV}$	632 nb	559 nb
$p-Pb\rightarrow 6j$ (TPS) at $\sqrt{s}=14\ \text{TeV}$	596 nb	1.18 nb

■ Alpgen ($|\eta| < 5$, $p_{T,j} > 35$ GeV)

Process	σ^{LO}
$\mathrm{pN} \to jj$ (SPS) at $\sqrt{s} = 14$ TeV (\hat{H}_T)	$34.8\pm0.010~\mu b$
$\mathrm{pN} \to 3j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	1.93± 0.004 μb
$\mathrm{pN} \to 4 \mathrm{j}$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	282± 0.494 nb
$\mathrm{pN} \rightarrow 6j$ (SPS) at $\sqrt{s} = 14$ TeV $(\hat{H}_T/2)$	5.56± 0.017 nb

$$\sigma_{p-Pb} = A \times \sigma_{\rm pN}$$

Results (pPb \rightarrow 6j + X at \sqrt{s} =8.8 TeV)



6j TPS in pPb amounts to 2% (10^{-4}) at $p_{T,jet}^{min} \sim 20$ GeV (50 GeV). Much larger DPS/TPS contributions than in pp collisions.

MVA for TPS event identification

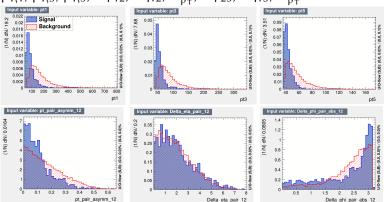
- MG5/Alpgen events showered using PYTHIA 8
- Jet reconstruction with anti- k_T algorithm and R = 0.4 (FastJet)
- Key kinematic variables identified to separate SPS, DPS and TPS events
- Jets ranked by decreasing p_{T,jet} value
- Variables (66 initially):
 - $p_{T,i}$ for i = 1, ..., 6
 - Δη_{ij} for all possible pairs (|η| < 5)
 - lacksquare $\Delta \phi_{ij}$ (absolute, between 0 and π)
 - $\blacksquare \ A_{p_T}^{ij} = |(p_{T,i}-p_{T,j})/(p_{T,i}+p_{T,j})|, \, p_T \text{ pair asymmetry}$
 - Invariant mass of the pairs

- The selected variables and the generated SPS, DPS (background) and TPS (signal) events were used in conjunction with TMVA
- Studied the relevance of the variables for separating background and signal using Boosted Decision Trees
- The MPI events were weighted according to their known proportion of each contribution

MVA for TPS event identification

Relevant discriminating variables include:

 $p_{T,1},\,p_{T,3},\,p_{T,5},\,\Delta\varphi_{12},\,\Delta\eta_{12},\,A_{\mathfrak{p}_{T}}^{12},\,\Delta\varphi_{23},\,\Delta\eta_{13},\,A_{\mathfrak{p}_{T}}^{56}$



- Preliminary results indicate BDT output with stat. significance $> 5\sigma$ for $L_{int} = 1$ fb. Ongoing MVA training/testing to obtain final significance soon.
- TPS 6-jets yields are large at the LHC: Observing TPS in pp and pPb promising, new σ_{eff} extraction at hand.