Evolution of colour dependent double parton distributions: a quantitative study

M. Diehl

Deutsches Elektronen-Synchrotron DESY

MPI@LHC 2023, Manchester, 22 November 2023

HELMHOLTZ

What this talk is about

the importance of colour correlations between the initial partons in double parton scattering

- with two hard scales e.g. like-sign W pairs, W plus dijets, two dijets, ...
- with one scale hard and another one less hard (but still perturbative) underlying event kinematics

DPS cross section formula:

$$
\frac{d\sigma_{\text{DPS}}}{dx_1 dx_1 dx_2 dx_2} = \frac{\hat{\sigma}_{a_1 b_1 \to A_1} \hat{\sigma}_{a_2 b_2 \to A_2}}{1 + \delta_{A_1 A_2}} \int d^2 \mathbf{y} \ F_{a_1 a_2}(x_1, x_2, \mathbf{y}) \ F_{b_1 b_2}(\bar{x}_1, \bar{x}_2, \mathbf{y})
$$

 \triangleright describe colour state of the partons in each DPD:

• project colour of each parton pair on $SU(N_c)$ representations

 $_{q_2}$ \sim $q_1 \sim$ x_2 \bar{x}_2

 $x_1 \int$ \bar{x}_1

- colour singlet: $\delta_{ij'} \delta_{kk'}$ summed over each parton's colour as in usual PDFs
- colour octet: $t_{jj'}^a t_{kk'}^a$ describes colour correlations
- for gluons have 8_A , 8_S , 10 , $\overline{10}$, 27

ightharpoontring notation: $R_1 R_2 F_{a_1 a_2}$ for parton a_i in colour representation R_i need $\dim(R_1) = \dim(R_2)$ for overall colour singlet of the 4 parton lines

DPS cross section formula:

$$
\frac{d\sigma_{\text{DPS}}}{dx_1 dx_1 dx_2 dx_2} = \frac{\hat{\sigma}_{a_1 b_1 \to A_1} \hat{\sigma}_{a_2 b_2 \to A_2}}{1 + \delta_{A_1 A_2}} \int d^2 \mathbf{y} \, F_{a_1 a_2}(x_1, x_2, \mathbf{y}) \, F_{b_1 b_2}(\bar{x}_1, \bar{x}_2, \mathbf{y})
$$

 \triangleright describe colour state of the partons in each DPD:

• project colour of each parton pair on $SU(N_c)$ representations

 $_{q_2}$ \sim $q_1 \sim$ x_2 \bar{x}_2

 $x_1 \int$ \bar{x}_1

- colour singlet: $\delta_{ij'} \delta_{kk'}$ summed over each parton's colour as in usual PDFs
- colour octet: $t_{jj'}^a t_{kk'}^a$ describes colour correlations
- for gluons have 8_A , 8_S , 10 , $\overline{10}$, 27
- ▶ colour non-singlet DPDs introduced by M Mekhfi, 1985 but neglected in almost all DPS studies — why?

DPS cross section formula:

$$
\frac{d\sigma_{\text{DPS}}}{dx_1 dx_1 dx_2 dx_2} = \frac{\hat{\sigma}_{a_1 b_1 \to A_1} \hat{\sigma}_{a_2 b_2 \to A_2}}{1 + \delta_{A_1 A_2}} \int d^2 \mathbf{y} \ F_{a_1 a_2} (x_1, x_2, \mathbf{y}) \ F_{b_1 b_2} (\bar{x}_1, \bar{x}_2, \mathbf{y})
$$

▶ soft gluon corrections

- infrared region cancels between real and virtual graphs for colour singlet DPDs
- but not for other colour channels \rightsquigarrow suppressed by Sudakov logarithms M Mekhfi, X Artru 1988

DPS cross section formula:

$$
\frac{d\sigma_{\text{DPS}}}{dx_1 dx_1 dx_2 dx_2} = \frac{\hat{\sigma}_{a_1 b_1 \to A_1} \hat{\sigma}_{a_2 b_2 \to A_2}}{1 + \delta_{A_1 A_2}} \int d^2 \mathbf{y} \ F_{a_1 a_2} (x_1, x_2, \mathbf{y}) \ F_{b_1 b_2} (\bar{x}_1, \bar{x}_2, \mathbf{y})
$$

▶ soft gluon corrections

• first quantitative estimate: A Manohar, W Waalewijn arXiv:1202:3794

here: logarithms built up between IR scale $\Lambda = 1.4 \,\text{GeV}$ and hard scale Q

DPD splitting: enter a third scale

 \rightsquigarrow three scales $\Lambda < 1/y < Q$

- \blacktriangleright at small y can distinguish between splitting and intrinsic part of DPD MD, J Gaunt, K Schönwald 2017
- $F_{b_1b_2}^{\rm spl}$ b¹ b¹ a¹ a¹ $F_{a_1a_2}^{\text{intr}}$
- from Λ to $1/y$: DGLAP evolution of PDF inside F_{sol}
- from $1/y$ to Q : evolution of DPDs, including Sudakov logarithms in colour non-singlet case
	- \rightsquigarrow Sudakov suppression reduced if $\Lambda \ll 1/y$

observed by B Blok, J Mehl, 2022 working in momentum representation (using Δ = Fourier conjugate of y)

Cross section formula including colour dependence:

$$
\frac{d\sigma_{\text{DPS}}}{dx_1\,d\bar{x}_1\,dx_2\,d\bar{x}_2}=\frac{\overline{R}_1\overline{R}_3\,\hat{\sigma}_{a_1b_1\rightarrow A_1}\,\overline{R}_2\overline{R}_4\,\hat{\sigma}_{a_2b_2\rightarrow A_2}}{1+\delta_{A_1A_2}}\ \, R_1R_2,R_3R_4\, \mathcal{L}_{a_1a_2,\,b_1b_2}
$$

with double parton luminosities

$$
R_1 R_2, R_3 R_4 \mathcal{L}_{a_1 a_2, b_1 b_2}
$$

= $\int d^2 \mathbf{y} R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta) R_3 R_4 F_{b_1 b_2}(\bar{x}_1, \bar{x}_2, y; \mu_1, \mu_2, \bar{\zeta})$

- $\hat{\sigma}$ becomes colour dependent
- for $ab \rightarrow$ colour singlet: ${}^{R\overline{R}'}\hat{\sigma}_{ab} = \pm \delta_{RR'}\, {}^{11}\hat{\sigma}_{ab}$
- colour labels of DPDs and $\hat{\sigma}$ s must match no "colour interference term" as proposed in B Blok, J Mehl, 2022

Evolution of colour dependent DPDs

variables:

- $\mu_1, \mu_2 \leftrightarrow$ cutoff on virtuality of first/second parton
	- $\zeta \leftrightarrow$ cutoff on soft gluon rapidities
		- $\bullet\,$ roughly: DPD includes rapidities between Y_p and $\ln\sqrt{s/\zeta}$ in collision c.m., $\sqrt{s} =$ c.m. energy, $Y_p =$ proton rapidity
		- colour singlet DPDs ^{11}F : soft gluon effects cancel between real and virtual graphs \rightsquigarrow no ζ dependence

more technical detail \rightarrow backup slides

Evolution of colour dependent DPDs

▶ Collins-Soper equation:

$$
\frac{d}{d\ln\sqrt{\zeta}} R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta)
$$

=
$$
R_1 J(y; \mu_1, \mu_2) R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta).
$$

with RGE
$$
\frac{d}{d \ln \mu_1} R J(y; \mu_1, \mu_2) = - R \gamma_J(\mu_1)
$$

- Collins-Soper kernel R_J depends on R only via $\dim(R)$ for colour singlet: $^1J=0$
- same form for TMDs and double TMDs (with different kernels)
- solution

$$
R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta)
$$

= $\exp\left[R_1 J(y; \mu_1, \mu_2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}\right] R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta_0)$

• simple in y space but not if use Fourier conjugate momentum Δ more on Δ representation \rightarrow backup slides

Evolution of colour dependent DPDs

▶ DGLAP equations:

$$
\frac{d}{d\ln\mu_1} R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta)
$$
\n
$$
= - R_1 \gamma_J(\mu_1) \ln\left(\frac{x_1 \sqrt{\zeta}}{\mu_1}\right) R_1 R_2 F_{a_1 a_2}(x_1, x_2, y; \mu_1, \mu_2, \zeta)
$$
\n
$$
+ 2 \sum_{b_1, R'_1} \int_{x_1}^1 \frac{dz}{z} R_1 \overline{R}'_1 P_{a_1 b_1}\left(\frac{x_1}{z}; \mu_1\right) R'_1 R_2 F_{b_1 a_2}(z, x_2, y; \mu_1, \mu_2, \zeta)
$$

likewise for μ_2 dependence

- kernels $^{RR'}P$ known at NLO F Fabry, MD, A Vladimirov 2022
- term with $\gamma_J \rightsquigarrow$ exponentiated Sudakov logarithms
- quark-gluon mixing:

$$
{}^{SR_2}F_{g a_2} \longleftrightarrow {}^{8R_2}F_{q a_2} + {}^{8R_2}F_{\bar{q} a_2}
$$

$$
{}^{AR_2}F_{g a_2} \longleftrightarrow {}^{8R_2}F_{q a_2} - {}^{8R_2}F_{\bar{q} a_2}
$$

• solved numerically in CHILIPDF

MD, R Nagar, P Plößl, F Tackmann 2023; F Fabry, PhD thesis 2023

A quantitative study

MD, Florian Fabry, Peter Plößl arXiv:2310.16432

Collins-Soper kernel

▶ exact relation: ${}^{8}J(y; \mu, \mu) = K_g(y; \mu)$

 $K_a =$ Collins-Soper kernel for single-gluon TMDs A Vladimirov, 2016

▶ we assume Casimir scaling $K_a(b)/C_A = K_a(b)/C_F$ for all distances b holds at small b up to $\mathcal{O}(\alpha_s^3)$

and use a selection of recent fits of $K_a(b)$ to data

which agree reasonably well with determinations in lattice QCD

 \rightsquigarrow strong DPD suppression at large y from Collin-Soper evolution factor

$$
\exp\left[{^R J(y; \mu_1, \mu_2) \ln \frac{\sqrt{\zeta}}{\sqrt{\zeta_0}}}\right]
$$

for $\zeta \gg \zeta_0$

at large y have $\ln\sqrt{\frac{\zeta}{\zeta_0}}\sim\ln\frac{Q}{\Lambda}$

▶ for ${}^R J$ with $R = 10, 27$ assume Casimir scaling relative to ${}^8 J$

DPDs: initial conditions

▶ make ansatz

$$
{}^{R_1R_2}F_{{a_1}{a_2}} = {}^{R_1R_2}F_{{a_1}{a_2}}^{\rm spl} + {}^{R_1R_2}F_{{a_1}{a_2}}^{\rm intr}
$$

at initial scales $\mu_1 = \mu_2 = \mu_{y^*}$ and $\zeta_0 = \mu_{y^*}^2/(x_1 x_2)$

- μ_{y*} is $\sim 1/y$ at small y and saturates at large y
- \bullet $\mathbb{R}_1\mathbb{R}_2$ $F^{\mathsf{spl}}_{a_1a_2}$ = perturbative form (LO) \times Gaussian to suppress large y
- \bullet $^{11}F_{a_1a_2}^{intr}$ = product of two PDFs with further factors developed in MD, Gaunt, Lang, Plößl, Schäfer 2020 to approximately fulfil DPD sum rules
- for non-singlet channels assume

 ${^{R_1R_2}}F^{\text{intr}}_{a_1a_2}=\text{colour factor}\left(R_1,R_2\right)\times{^{11}}F^{\text{intr}}_{a_1a_2}$

such that positivity bounds in colour space are saturated T Kasemets, P Mulders 2014; MD, J Gaunt, P Pichini, P Plößl 2021 in a loose sense maximises colour correlation effects at initial scale

Evolved DPDs

- plot DPDs for $\mu_1 = \mu_2$ and $\zeta = \mu_1 \mu_2/(x_1 x_2)$
- bands: range of models for Collins-Soper kernel

Evolved DPDs

- large y : increasingly strong suppression of colour non-singlets
- small y: little evolution from μ_{y^*} to final $\mu_i \leadsto$ no suppression

Double parton luminosities

2v2:

▶ following plots show double parton luminosities separately for

 $+$ mirror graph

- ▶ luminosities are integrated over $y \ge b_0 / \min(Q_1, Q_2)$ $b_0 \approx 1.12$
- ▶ plotted vs. Y, where subsystems have rapidities $Y_1 = Y$ and $Y_2 = -Y$

Double parton luminosities: W^+ plus dijet in underlying-event kinematics

suppression of colour non-singlet DPDs:

• strong for 2v2

• moderate for $1v^2 + 2v^2$ and $1v^1$ (dominated by smaller y)

four-gluon luminosities \rightarrow backup slides

Double parton luminosities: W^+ plus dijet

suppression of colour non-singlet DPDs:

- strong for 2v2
- moderate or absent for $1v^2 + 2v^2$ and $1v^1$ (dominated by smaller y)

four-gluon luminosities \rightarrow backup slides

Double parton luminosities: W^+W^+

suppression of colour non-singlet DPDs:

- strong for 2v2
- moderate or absent for $1v^2 + 2v^2$ and $1v^1$ (dominated by smaller y)

four-gluon luminosities \rightarrow backup slides

Double parton luminosities: higher order corrections

• noticeable impact when including NLO in evolution (and PDFs) see effects up to 50% across all colour channels

Summary

- ▶ have theory description for DPS including colour correlations with colour dependent DPDs in y space
- \triangleright can systematically include higher-order corrections evolution kernels known up to NLO; NLO corrections seen to be important
- \blacktriangleright colour correlations
	- strongly suppressed for 2v2 large y cut away by Collins-Soper kernel
	- can remain important with $1 \rightarrow 2$ splitting in one or both protons contributions of $\mathcal{O}(10\%)$ or more, even at the electroweak scale
- \triangleright open questions/perspectives
	- size and shape of colour dependent DPDs \rightarrow next talk by R Rahn
	- compute colour dependent hard cross sections $\hat{\sigma}$ quite easy at LO, more work at NLO
	- include in DPS parton showers (e.g. dShower by J Gaunt et al) and event generators
		- \rightarrow improved underlying event description?

Backup slides

Soft gluons and factorisation

▶ can generalise factorisation proof from single to double Drell-Yan

- collinear factorisation $(k_T$ integrated) \rightarrow this talk and talk by P Plößl (Tuesday)
- TMD factorisation (identified k_T , for colour-singlet final states only) \rightarrow talk by O Grocholski (Monday)

MD, J Gaunt, D Ostermeier, P Plößl, A Schäfer 2015; M Buffing, T Kasemets, MD 2017; MD, R Nagar 2018; see also A Manohar, W Waalewijn 2012

Soft gluons and factorisation

▶ can generalise factorisation proof from single to double Drell-Yan

 \blacktriangleright steps include:

- decouple soft gluons from partons in protons/proton fragments \rightarrow DPS soft factor (vev of 4 Wilson line pairs)
- split soft factor into two parts, absorb one part into each DPD \rightsquigarrow DPDs depend on rapidity parameter ζ

 $\log \sqrt{\zeta} \; \leftrightarrow \;$ rapidity at which soft factor is split

• Collins-Soper kernel $=$ derivative of soft factor w.r.t. rapidity

Transverse momentum vs. distance in DPDs

▶ large (plus or minus) parton momentum components fixed by final state \rightsquigarrow equal in amplitude ${\cal A}$ and conjugate amplitude ${\cal A}^*$

- ▶ transverse parton momenta not equal in A and in A^* cross section $\propto \int d^2\boldsymbol{\Delta}\, F(x_i,\boldsymbol{k}_i,\boldsymbol{\Delta})F(\bar{x}_i,\bar{\boldsymbol{k}}_i,-\boldsymbol{\Delta})$
- ▶ Fourier trf. to impact parameter: $F(x_i, \mathbf{k}_i, \Delta) \rightarrow F(x_i, \mathbf{k}_i, \mathbf{y})$ cross section $\propto \int d^2\bm{y}\,F(x_i,\bm{k}_i,\bm{y})F(\bar{x}_i,\bar{\bm{k}}_i,\bm{y})$
- interpretation: $y =$ transv. dist. between two scattering partons $=$ equal in both colliding protons

Double parton luminosities: four gluons

four gluons, $Q_1 = Q_2 = 10 \,\text{GeV}$

subtraction term in lower right panel \rightarrow talk by P Plößl (Tuesday)

Double parton luminosities: four gluons

four gluons, $Q_1 = Q_2 = 80 \,\text{GeV}$

subtraction term in lower right panel \rightarrow talk by P Plößl (Tuesday)

Double parton luminosities: four gluons

four gluons, $Q_1 = 80 \,\text{GeV}$, $Q_2 = 10 \,\text{GeV}$

 $\tilde{\mathbf{Y}}$

1 S -4 $- - 27$