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Introduction
▶ Double parton scattering processes (DPS), e.g. Double Drell-Yan (DDY), are

important standard model contributions in LHC experiments, especially after
high-luminosity upgrade, e.g. for the description of W ++/−− production

▶ Fundamental description by double parton distributions (DPDs) :

dσDPS,i1 i2,j1j2
dx1dx2dx ′

1dx ′
2

∝
∫

d2y Fi1 i2 (x1, x2, y)Fj1j2 (x ′
1, x ′

2, y)

▶ DPDs are non-perturbative objects, unknown from experiments so far, but can be
accessed via lattice simulations

▶ Results for the pion [arXiv:1807.03073], [arXiv:2006.14826]
▶ Results for flavor diagonal case published in [arXiv:2106.03451]
▶ Possible interferences w.r.t. flavor, color and fermion number which are in general

considered to be supressed but lattice simulations allow model testing

This talk:
▶ Ensemble dependency of the results, based on lattice data obtained from the

H102 and S400 ensemble
▶ Invariant functions and their ratios compared to the SU(6) model
▶ Factorization test and comparison of flavor diagonal and interference cases

2 / 21
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Double Parton Distributions
▶ Light cone coordinates: xµ: x± = (x0 ± x3)/

√
2, x = (x1, x2)

▶ Proton rapidly moving in 3-direction, i.e. p+ ∼ Q ≫ Λ ∼ m, p = 0, p− ∼ Λ2/Q

Definition of proton DPDs for quarks [arXiv:1111.0910]

Fab(x1, x2, y) := 2p+
∫

dy−

[ ∏
j=1,2

∫ dz−
j

2π
e ixj p+z−

j

]
×

× 1
2

∑
λ

⟨p, λ| Oa(y , z−
1 )Ob(0, z−

2 ) |p, λ⟩
∣∣
y+=0

3 / 21



Double Parton Distributions
▶ Light cone coordinates: xµ: x± = (x0 ± x3)/

√
2, x = (x1, x2)

▶ Proton rapidly moving in 3-direction, i.e. p+ ∼ Q ≫ Λ ∼ m, p = 0, p− ∼ Λ2/Q

Definition of proton DPDs for quarks [arXiv:1111.0910]

Fab(x1, x2, y) := 2p+
∫

dy−

[ ∏
j=1,2

∫ dz−
j

2π
e ixj p+z−

j

]
×

× 1
2

∑
λ

⟨p, λ| Oa(y , z−
1 )Ob(0, z−

2 ) |p, λ⟩
∣∣
y+=0

3 / 21



Double Parton Distributions
▶ Light cone coordinates: xµ: x± = (x0 ± x3)/

√
2, x = (x1, x2)

▶ Proton rapidly moving in 3-direction, i.e. p+ ∼ Q ≫ Λ ∼ m, p = 0, p− ∼ Λ2/Q

Definition of proton DPDs for quarks [arXiv:1111.0910]

Fab(x1, x2, y) := 2p+
∫

dy−

[ ∏
j=1,2

∫ dz−
j

2π
e ixj p+z−

j

]
×

× 1
2

∑
λ

⟨p, λ| Oa(y , z−
1 )Ob(0, z−

2 ) |p, λ⟩
∣∣
y+=0

Light cone operators

Oa(y , z−) = q̄(y − z
2 )Γaq(y + z

2 )
∣∣
z=0,z+=0

▶ q̄, q quark operators for certain flavor (light-like distance z−)
▶ Γa quark polarization
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y+=0

Twist-2 components: Quark polarizations
operators twist-2 comp. polarization

V µ
q = q̄γµq V +

q = Oq q : q↑ + q↓ (unpolarized)
Aµ

q = q̄γµγ5q A+
q = O∆q ∆q : q↑ − q↓ (longitudinal)

T µν
q = q̄iσµνγ5q T +j

q = Oj
δq δqj : q↑,j − q↓,j (transverse)
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y

amplitude c.c.

Joint probability to find quark a with momentum x1p+ and quark b with momentum
x2p+ at transverse distance y (|x1| + |x2| ≤ 1)
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Double Parton Distributions
Interference distributions

Fduud(x1, x2, y) := 2p+
∫

dy−

[ ∏
j=1,2

∫ dz−
j

2π
e ixj p+z−

j

]
×

× 1
2

∑
λ

⟨p, λ| Odu(y , z−
1 )Oud(0, z−

2 ) |p, λ⟩
∣∣
y+=0

u dd u

Flavor changing operators

Oud(y , z−) = ū(y − z
2 )Γad(y + z

2 )
∣∣
z=0,z+=0

Odu(y , z−) = d̄(y − z
2 )Γau(y + z

2 )
∣∣
z=0,z+=0
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Double Parton Distributions: Factorization

Definition of proton DPDs for quarks [arXiv:1111.0910]
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2

∑
λ

⟨p, λ| Oa(y , z−
1 )Ob(0, z−

2 ) |p, λ⟩
∣∣
y+=0

Factorization assumption I

⟨p| Oa(y , z1)Ob(0, z2) |p⟩ ≈
∫

d2p′dp′+

(2π)32p′+ ⟨p| Oa(y , z1) |p′⟩ ⟨p′| Ob(0, z2) |p⟩

⇒ Fab(x1, x2, y) ≈
∫

d2b fa(x1, b + y) fb(x2, b)

≈ ⊗
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Interference distributions
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Factorization assumption I (interference)
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∫
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Lattice QCD

⟨O[q, q̄, U]⟩ =
1
Z

∫ [∏
x∈Λ

dq̄(x)dq(x)dU(x)

]
O[q, q̄, U]e−SF [q̄,q,U]−SG [U]

Z =
∫ [∏

x∈Λ

dq̄(x)dq(x)dU(x)

]
e−SF [q̄,q,U]−SG [U])

▶ Reduce spacetime to a lattice
▶ Finite volume ⇒ IR regularization
▶ Finite lattice spacing ⇒ UV regularization
▶ Evaluate the fermionic part (Grassmann variables) using Wick’s theorem

⇒ Wick contractions (graphs)
▶ Euclidean spacetime: eiS → e−S suitable weight for Monte Carlo integration
▶ Evaluate gauge integral by Monte Carlo integration ⇒ gauge ensembles of N

configuration, statistical error ∝ N− 1
2 :∫ [∏

x

dU(x)

]
det{D[U]}e−S[U] O[q, q̄, U] →

ensemble∑
U∼P(U)

O[q, q̄, U],
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▶ Evaluate gauge integral by Monte Carlo integration ⇒ gauge ensembles of N

configuration, statistical error ∝ N− 1
2 :∫ [∏

x

dU(x)

]
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Lattice QCD
Reduce spacetime R4 to finite lattice with spacing a, extensions L3 × T :
▶ put fermions on the grid points
▶ replace derivatives by symmetric

differential quotient and integrals
by sums

▶ restore gauge invariance (gauge
links Uµ(x) ∼ e iaAµ(x))

▶ add pure gauge part, the
plaquette, β = 3g−2

ν

µ

..

S[q, q̄, U] =
∫

d4xq̄(x)Dq(x)

D = iγµ∂µ − m1
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Double parton distributions on the lattice
Accessible quantities

⟨p| Oa(y , z−
1 )Ob(0, z−

2 ) |p⟩

Fab(xi , y)

p+
∫ dy−

dz
−

i
e−

iz ix ip
+

y+
=0, twist-

2

accessible if y0 = 0

p+
∫ dy−

y+
=0, twist-

2

Mab(y)

∫
dxi

z−
i = 0

⟨p| Oa(y)Ob(0) |p⟩
decomposition(*)

Lorentz symmetry
Aab(py , y 2) · · ·

accessible for
−y2 > 0, py < |⃗p||⃗y |

∫ d(py
)

y+
=0, twist-

2

Iab(y2) · · ·
decomposition(*)

trans. rot. symmetry

fab(xi , y2) · · ·

∫
dxi

decomposition(*)
trans. rot. symmetry

Results for these quantities
(*) into basis tensors and scalar functions
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Two-current matrix elements on the lattice

Access via 4- and 2-point functions

C p⃗,ij
4pt(t, τ, y⃗) =

∑
x⃗

e−i p⃗(⃗z′−z⃗)
〈

tr
{

P+P p⃗ (⃗z ′, t) Oq1q2
i (⃗0, τ) Oq3q4

j (y⃗ , τ) P p⃗ (⃗z, 0)
}〉

C p⃗
2pt(t) =

∑
x⃗

e−i p⃗(⃗z′−z⃗)
〈

tr
{

P+P p⃗ (⃗z ′, t) P p⃗ (⃗z, 0)
}〉

with P+ = 1
2 (1 + γ4) and Proton interpolators:

P p⃗(x⃗ , t) = ϵabcua(x)
[
uT

b (x)Cγ5dc(x)
]∣∣ x4=t

P P⃗(x⃗ , t) = ϵabc
[
ūa(x)Cγ5d̄T

b (x)
]

ūc(x)
∣∣ x4=t

yielding the spin averaged matrix element:

Mij(p, y)|y0=0 = 1
2

∑
λ

⟨p, λ| Oi (y)Oj(0)|p, λ⟩ |y0=0 = 2V
√

m2 + p⃗2
C p⃗,ij

4pt(t, τ, y⃗)
C p⃗

2pt(t)

∣∣∣∣∣
0≪τ≪t
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Two-current matrix elements on the lattice
Connection between Mellin Moments and matrix elements:

M(1,1)
ab (ζ, y) = 2(p+)−1

∫
dy−e−iζp+y−

Mba(p, y)| y+=0

Connection between matrix elements and invariant functions for leading twist:

M++
VV ,qq′ (p, y) = 4Mqq′ = 2(p+)2Aq′q(py , y 2)

M++
AA,qq′ (p, y) = 4M∆q∆q′ = 2(p+)2A∆q′∆q(py , y 2)

Mj++
TV ,qq′ (p, y) = 4Mj

δqq′ = 2(p+)2y jmAq′δq(py , y 2)

M+j+
VT ,qq′ (p, y) = 4Mj

qδq′ = 2(p+)2y jmAδq′q(py , y 2)

Mj+l+
TT ,qq′ (p, y) = 4Mjl

δqδq′ = 2(p+)2 [
δjlAδq′δq(py , y 2)−(2y jy l + δjly 2)m2Bδq′δq(py , y 2)

]
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Two-current matrix elements on the lattice
Wick contractions

Cij
1,q1...q4

=

Oq1q2
i

Oq3q4
j

Cij
2,q =

Oq′q
j

Oqq′
i

Sij
1,q =

Oqq
i

Oj

Sij
2 = Oi

Oj

Dij =

Oi

Oj

Physical matrix elements
⟨p| Ouu

i (⃗0)Odd
j (y⃗) |p⟩ = C ij ,⃗p

1,uudd (y⃗) + S ij ,⃗p
1,u (y⃗) + S ji ,⃗p

1,d (−y⃗) + Dij ,⃗p(y⃗)

⟨p| Ouu
i (⃗0)Ouu

j (y⃗) |p⟩ = C ij ,⃗p
1,uuuu(y⃗) + C ij ,⃗p

2,u (y⃗) + C ji ,⃗p
2,u (−y⃗) + S ij ,⃗p

1,u (y⃗) + S ji ,⃗p
1,u (−y⃗)

+ S ij ,⃗p
2 (y⃗) + Dij ,⃗p(y⃗)

⟨p| Odd
i (⃗0)Odd

j (y⃗) |p⟩ = C ij ,⃗p
2,d (y⃗) + C ji ,⃗p

2,d (−y⃗) + S ij ,⃗p
1,d (y⃗) + S ji ,⃗p

1,d (−y⃗) + S ij ,⃗p
2 (y⃗) + Dij ,⃗p(y⃗)

⟨p| Odu
i (⃗0)Oud

j (y⃗) |p⟩ = C ij ,⃗p
1,duud (y⃗) + C ij ,⃗p

2,u (y⃗) + C ji ,⃗p
2,d (−y⃗) + S ij ,⃗p

2 (y⃗)
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Lattice Setup
CLS ensembles (nf = 2 + 1, Wilson fermions, order-a improved [arXiv:1411.3982]):

id β a[fm] L3 × T κl/s mπ/K [MeV] mπL conf. used
H102 3.4 0.0856 323 × 96 0.136865 355 4.9 2037 990

0.136549339 441
S400 3.46 0.076 323 × 128 0.136984 354 4.4 2873 1000

0.136702387 442

Renormalization for β = 3.4, including conversion to MS at µ = 2GeV
[arXiv:2012.06284]:

β V A T
Z 3.4 0.7128 0.7525 0.8335
Z 3.46 0.7220 0.7594 0.8470
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▶ Calculations done for Momenta up to

|⃗p| =
√

122π
La ≈

1.57 GeV(H102)
1.76 GeV(S400)

▶ Point source at tsrc =

48a(H102)
64a(S400)

(spatial positions randomly selected)
▶ Source sink separation

t = tsnk − tsrc =


S400

13a p⃗ = 0⃗
11a p⃗ ̸= 0⃗

H102

12a p⃗ = 0⃗
10a p⃗ ̸= 0⃗

▶ Insertion time τ ∈ [tsrc + 3a, tsnk − 3a] fitted for C1

▶ Other contractions: τ = tsrc + t/2 fixed
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Results for A(py = 0, y 2): Polarization dependence

Invariant functions A(py = 0, y 2), connected graphs only (notation y =
√

−y 2,
y 2 = yµyµ):
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▶ Signal of good quality for most channels
▶ ud : Clear contributions from all polarized channels (large for δud , δdu)
▶ uu: Polarization effects suppressed, but visible for δuu
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Results for Aduud(py = 0, y 2): Polarization dependence
Invariant functions A(py = 0, y 2), connected graphs only (notation y =

√
−y 2,

y 2 = yµyµ):
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▶ Clear contributions from all polarized channels except the Bδduδud function
▶ Clear signal for interference case despite this is not resolved in simple models
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Results for A(py = 0, y 2): Flavor dependence
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▶ Clear flavor dependence visible, behavior of uu and dd different from du
▶ Size of interference effects comparable to dd , sign change possible, signal as

clear as in the falvor diagonal case
▶ → Interference effects cannot be neglected
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Results for A(py = 0, y 2): a-dependence (unpolarized)
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▶ Differences between the quantities obtained from H102 and S400 are within one
sigma, no strong a - dependence visible
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Results for A(py = 0, y 2): a-dependence (one channel
transverse polarized)
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▶ Differences between the quantities obtained from H102 and S400 are within one
sigma, no strong a - dependence visible 18 / 21



Results for A(py = 0, y 2): Comparison with SU(6)-model
Using the following operators

Ouu=̂(ū↑u↑)(ū↑u↑) ± (ū↑u↑)(ū↓u↓) ± (ū↓u↓)(ū↑u↑) + (ū↓u↓)(ū↓u↓) (1)

Oud=̂(ū↑u↑)(d̄↑d↑) ± (ū↑u↑)(d̄↓d↓) ± (ū↓u↓)(d̄↑d↑) + (ū↓u↓)(d̄↓d↓)

Odd=̂(d̄↑d↑)(d̄↑d↑) ± (d̄↑d↑)(d̄↓d↓) ± (d̄↓d↓)(d̄↑d↑) + (d̄↓d↓)(d̄↓d↓)

Oduud=̂(d̄↑u↑)(ū↑d↑) ± (d̄↑u↑)(ū↓d↓) ± (d̄↓u↓)(ū↑d↑) + (d̄↓u↓)(ū↓d↓)

19 / 21



Results for A(py = 0, y 2): Comparison with SU(6)-model
Using the following operators
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Oud=̂(ū↑u↑)(d̄↑d↑) ± (ū↑u↑)(d̄↓d↓) ± (ū↓u↓)(d̄↑d↑) + (ū↓u↓)(d̄↓d↓)
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|p↑⟩ = 1
3
√

2
[
|u↑u↓d↑⟩ + |u↓u↑d↑⟩ − 2 |u↑u↑d↓⟩ + |u↑d↑u↓⟩ + |u↓d↑u↑⟩ −

−2 |u↑d↓u↑⟩ + |d↑u↑u↓⟩ + |d↑u↓u↑⟩ − 2 |d↓u↑u↑⟩
]

.
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yields the following ratios:

fduud

fud
= −1

2 ,
fduud

fuu
= −1

2 ,
f∆du∆ud

fud
= +5

6 ,
f∆u∆d

fud
= −2

3
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Results for A(py = 0, y 2): Comparison with SU(6)-model
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▶ C1 data for unpolarized quarks roughly coincides with SU(6) prediction (orange
line)

▶ Large deviations in particular for small y when considering all leading contractions
▶ No agreement for polarized channels
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Factorization tests
Factorization in terms of impact parameter distributions fq(x , b):

Fqq′ (x1, x2, y) ≈
∫

d2b fq(x1, b + y) fq′ (x2, b)

The invariant functions A(py , y 2) depend on the nucleon form factors F1(t) and F2(t)
:

Aqq′ (py = 0, y 2) ≈ 1
2π

∫ 1

−1
dζ

(1 − ζ/2)2

1 − ζ

∫
dr r J0(yr)×

×
[(

1 − ζ2

(2 − ζ)2

)
F q

1 (t) F q′

1 (t) + . . .

]
⇒ These can be obtained from the lattice
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Summary and Outlook
Achieved/Observed:
▶ Calculated two-current matrix elements on the lattice and extracted Lorentz

invariant functions with clear signals
▶ Clear signals for polarization and flavor dependence:

▶ Polarization effects clearly visible for ud and duud , suppressed for uu
▶ Flavor dependence evident

▶ Size of interference effects comparable to dd , sign change possible
▶ Model predictions and tests:

▶ SU(6) prediction: fails completely for polarized quarks. Interference effects
cannot be described.

▶ Factorization test: yields correct order of magnitude, deviations visible
▶ No strong a-dependence observed between H102 and S400

Future work / currently in progress:
▶ Repeat analysis for further ensembles to both study artifacts and to extrapolate

towards the physical masses and continuum limit. This can then be used as
basis for experimental data analysis. Precise lattice input is available, even
for interference cases.

Questions?
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