ALICE measurements of particle production as a function of event topology in small collision systems

Sushanta Tripathy (for the ALICE collaboration) CERN, Geneva, Switzerland Email: sushanta.tripathy@cern.ch

14th International Workshop on Multiple Parton Interactions at the LHC MPI@LHC 2023

University of Manchester 20–24 Nov 2023

 \clubsuit Measurements at the LHC have revealed that small collision systems exhibit behaviors formerly thought to be achievable only in heavy-ion collisions, where the data support the formation of QGP.

 \clubsuit Measurements at the LHC have revealed that small collision systems exhibit behaviors formerly thought to be achievable only in heavy-ion collisions, where the data support the formation of QGP.

Strangeness enhancement in high multiplicity

Can this behavior be characterized by other event

- pp and p-Pb are similar to Pb-Pb collisions
- properties other than a difference in multiplicity?
- suppressed strangeness production?

Is it possible to find high-multiplicity events with

Introduction and motivation

achievable only in heavy-ion collisions, where the data support the formation of QGP.

- **Strangeness enhancement** in high multiplicity pp and p-Pb are similar to Pb-Pb collisions
- Can this behavior be characterized by other event properties other than a difference in multiplicity?
- Is it possible to find high-multiplicity events with suppressed strangeness production?
- Similar features of **baryon-to-meson ratios** in pp, p-Pb and Pb-Pb collisions
- Is the origin the same in small and large collision systems?

 \clubsuit Measurements at the LHC have revealed that small collision systems exhibit behaviors formerly thought to be

• Measurements at the LHC have revealed that small collision systems exhibit behaviors formerly thought to be achievable only in heavy-ion collisions, where the data support the formation of QGP.

• Measurements at the LHC have revealed that small collision systems exhibit behaviors formerly thought to be achievable only in heavy-ion collisions, where the data support the formation of QGP.

• The origin of the QGP-like behavior in small systems is still unclear. One of the explanations is a multiple parton interactions (MPI) based picture with colour reconnection and ropes, however, MPI can not be

accessible directly in experiments.

MPI: strong interaction between strings overlapping on distance scales of O(1 fm)

Introduction and motivation

 N_{mpi} \rangle dyd p_{T})

 $\langle mpi, MB \rangle d\mathsf{y} d\rho_T$

$$
R_{\rm pp} = \frac{\mathrm{d}^2 N_{\pi}^{\rm mpi} / (\langle I \rangle)}{\mathrm{d}^2 N_{\pi}^{\rm MB} / (\langle N_{\rm r} \rangle)}
$$

PYTHIA 8 Ratio of yield in MPI-enhanced pp collisions to yield for minimum bias (MB) pp collisions:

20.11.2023 Sushanta Tripathy **7** Phys. Rev. D 102, 076014 (2020)

Up to 40% increase w.r.t. the binary partonparton scaling: "bump" structure in $p_T = 1-6$

Introduction and motivation

PYTHIA 8

GeV/c: The effect is driven by CR

MPI selection does not bias the high- p_T yield

20.11.2023 Sushanta Tripathy **8** A. Ortiz, A. Paz, J. D. Romo, S.Tripathy, E. A. Zepeda, I. Bautista, Phys. Rev. D 102, 076014 (2020)

 $N_{\text{mpi}}\rangle$ dyd p_{T})

 $_{\text{mpi, MB}}\rangle$ dyd p_{T})

$$
R_{\rm pp} = \frac{\mathrm{d}^2 N_{\pi}^{\rm mpi} / (\langle \mathbf{I} \rangle)^2}{\mathrm{d}^2 N_{\pi}^{\rm MB} / (\langle \mathbf{N}_{\rm r} \rangle)^2}
$$

Ratio of yield in MPI-enhanced pp collisions to yield for minimum bias (MB) pp collisions:

Introduction and motivation

$$
R_{\rm pp} = \frac{\mathrm{d}^2 N_{\pi}^{\rm mpi} / (\langle \mathbf{N}_{\rm r} \rangle)^2}{\mathrm{d}^2 N_{\pi}^{\rm MB} / (\langle \mathbf{N}_{\rm r} \rangle)^2}
$$

- and a selection bias is seen in high- p_T yield
- with reduced selection bias

The "bump" structure is not seen in measurements as a function of multiplicity

PYTHIA 8 DATA Ratio of yield in MPI-enhanced pp collisions $\begin{bmatrix} 0 & 0 \\ 0 & 10^6 \end{bmatrix}$ to yield for minimum bias (MB) pp collisions:

> Up to 40% increase w.r.t. the binary partonparton scaling: "bump" structure in $p_T = 1-6$

> Explore event classifier: sensitivity to MPI

20.11.2023 Phys. Rev. D 102, 076014 (2020) Sushanta Tripathy **ALIUE, EFU U OU (2020) 695** A. Ortiz, A. Paz, J. D. Romo, S.Tripathy, E. A. Zepeda, I. Bautista, Phys. Rev. D 102, 076014 (2020)

 $N_{\text{mpi}}\rangle{dydp_T}$ $_{\text{mpi, MB}}\rangle$ dyd p_{T})

GeV/c: The effect is driven by CR

MPI selection does not bias the high- p_T yield

 \blacktriangleright Measurements at the LHC have revealed that small collision systems exhibit behaviors formerly thought to be

- achievable only in heavy-ion collisions, where the data support the formation of QGP.
- picture with colour reconnection and ropes, however, MPI can not be accessible directly in experiments.
-
- can also isolate different physics regimes (soft and hard physics).
	- $\textsf{Transverse}\ \textsf{Spherosity}\ (S_{\mathit{O}}^{p_{\mathrm{T}}=1})$ *0*
	- Relative Transverse Activity Classifier (RT) \bullet
	- Charged particle flattenicity (*⍴*ch) (A new classifier -> discussed later in slides) \bullet

The origin of the QGP-like behavior in small systems is still unclear. One of the explanations is an MPI-based

Event selections based only on multiplicity have shown significant bias towards hard pp collisions (selection biases)

Based on MC studies, event topology classifiers have shown a significant reduction of the selection biases and one

A Large Ion Collider Experiment

Inner Tracking System (ITS)

Tracking, vertex and PID

Time Projection Chamber (TPC)

Tracking and PID (d*E*/dx)

Time of Flight (TOF) detector

PID via time-of-flight method

V0

Trigger, multiplicity/ centrality estimator, event classification based on amplitude

Tracking and kinematics

- ITS and TPC tracks
- $-$ |η|<0.8

Transverse Spherocity

Isotropic: soft-QCD process

Identified particle ratios vs $S_{0}^{p_T=1}$ *0*

Reduction of ratios relative to pion yields in jet-like events for all particle species -> significant strangeness suppression

Both PYTHIA Monash and Ropes fail to capture the absolute trends but the ratios to $S_{0}^{p_T=1}$ -integrated events are well explained by the models *0*

- **Proton yield is not modified with spherocity**
- Approximately 20% effect for Ξ
- [§] Strength is ordered in strangeness

- **Proton yield is not modified with spherocity**
- Approximately 20% effect for Ξ
- [§] Strength is ordered in strangeness
- PYTHIA Ropes predicts qualitative trends but not the ordering with increasing strangeness content **PYTHIA Monash is unable to capture the trend**

- **Proton yield is not modified with spherocity**
- Approximately 20% effect for Ξ
- [§] Strength is ordered in strangeness
- PYTHIA Ropes predicts qualitative trends but not the ordering with increasing strangeness content; also EPOS-LHC
- PYTHIA Monash is unable to capture the trend; also Herwig 7.2

ALICE, [arXiv:2310.10236](https://arxiv.org/abs/2310.10236)

- **Proton yield is not modified with spherocity**
- Approximately 20% effect for Ξ
- [§] Strength is ordered in strangeness
- PYTHIA Ropes predicts qualitative trends but not the ordering with increasing strangeness content; also EPOS-LHC
- PYTHIA Monash is unable to capture the trend; also Herwig 7.2

Enhanced strangeness production in highmultiplicity collisions seems to be the feature of isotropic events

$R_T = N_{ch}T / < N_{ch}T >$

20.11.2023 Sushanta Tripathy **18**

- Using *R*T, one can vary the magnitude of the underlying event (UE)
- *R*T→0: Events with less UE (dominated by jets)
- Higher *R*^T → Higher UE contribution
- \triangle A minimum threshold on leading particle p_T is applied to ensure no bias on spectra vs R_T measurements up to the minimum p_T of the leading particle

T. Martin, P. Skands, and S. Farrington, Eur. Phys. J. C 76 no. 5, (2016) 299

P. Vargas, Tuesday at 16:00 "Charged-particle production as a function of the relative transverse activity classifier in pp, p-Pb, and Pb-Pb collisions"

ALI-PUB-545303

ALICE, [JHEP 06 \(2023\) 027](https://doi.org/10.1007/JHEP06(2023)027)

Identified particle production vs. R_T

- For the transverse region, the ratio of *p*T spectra to the *R*T-integrated spectra rises with increasing R_T .
- Toward and away regions' high- p_T yields are independent of R_T (an artefact of the leading p_T requirement). However, at low- p_T , the R_T dependence is more evident.
- No "bump" structure seen in these $measurements \rightarrow selection bias$
- Explore event classifier to have sensitivity to MPI with reduced selection bias

Motivation: Search for observable highly sensitive to SOFT particle production (MPI) and CR effects without introducing a bias toward HARD production (multi-jets, high p_T yield)

 $\{ {\rm body} \blacktriangleright {\rm soft} \ p{\rm p} \ {\rm collisions} \}$ logy ♦ hard pp collisions

- Define a grid in the η-φ space covered by the V0 detector (10×8 cells) \mathcal{Q}
- The particle multiplicity per cell is measured and flattenicity is calculated \mathcal{S}

$$
\rho_{\rm nch} = \frac{\sqrt{\sum_i (N_{\rm ch}^{\rm cell,i} - \langle N_{\rm ch}^{\rm cell} \rangle)^2 / N_{\rm cell}^2}}{\langle N_{\rm ch}^{\rm cell} \rangle} \qquad \qquad \text{20 isotropic top} \\\text{1 jet-like topol}
$$

Charged-particle Flattenicity

A. Ortiz et. al, Rev.Mex.Fis.Suppl. 3 (2022) 4, 040911

To relate the types of events between Spherocity and Flattenicity, a change of variable is performed: $\rho \rightarrow 1 - \rho$

PYTHIA 8.303 (Monash 2013), pp \sqrt{s} = 13 TeV, N_{mol} =1, N_{ch} =235

 $1 - \rho \rightarrow 1$ Soft pp collision $1 - \rho \rightarrow 0$ Hard pp collision \bullet æa ð Θ 8

Event classification with charged particle flattenicity

Thus, events with large number of MPI are selected when $1 - \rho \rightarrow 1$

PYTHIA 8.303 (Monash 2013), pp \sqrt{s} = 13 TeV, N_{mo} = 24, N_{ch} = 325

Selection using flattenicity shows a **"bump" structure Peduced bias towards hard physics**

Event classification with charged particle flattenicity

A. Ortiz, A. Paz, J. D. Romo, S.Tripathy, E. A. Zepeda, I. Bautista,

Ratio of yields to MB: **• "Bump"** structure: development of a peak for isotropic events and more evident for

- protons (flattenicity class (I))
-

ALI-PREL-545666

• Mass dependency: the maximum of the peak shows a mass-dependent ordering

$$
Q_{\rm pp} = \frac{\mathrm{d}^2 N^{1-\rho \text{ class}}/(\langle \mathrm{d}N_{\rm ch} / \mathrm{d}\eta \rangle \mathrm{d}y \mathrm{d}p_{\rm T})}{\mathrm{d}^2 N^{\rm MB}/(\langle \mathrm{d}N_{\rm ch} / \mathrm{d}\eta \rangle \mathrm{d}y \mathrm{d}p_{\rm T})}
$$

Particle production vs charged particle flattenicity

• PYTHIA 8 Monash 2013 with MPI and CR effects describes the data; sensitive to event selection due to CR • EPOS LHC describes the data partially (low-to-mid p_T); opposite trend seen w.r.t. PYTHIA8 at high p_T

Particle production vs charged particle flattenicity

ALI-PREL-545686

- $Q_{\rm pp} =$ $d^2N^{1-\rho}$ class/($\langle dN_{ch}/d\eta \rangle$ dyd p_T) d2*N*MB/(⟨d*N*ch/d*η*⟩d*y*d*p*T)
-
-

• Jet-like events produce less strange hadrons than the average high-multiplicity event and the observed strangeness enhancement in high-multiplicity pp collisions is a feature of isotropic

• As suggested by MC studies, selections based on Flattenicity are sensitive to soft particle

-
- events.
- production and less sensitive to a (jet-) bias.
- Isotropic events develop a bump-like structure with increasing multiplicity similar to the behavior seen as a function of MPI where it is attributed to CR.

• Along with multiplicity, the event topology classifiers add a new dimension of separating jetlike and isotropic events for pp collisions. They significantly reduce the selection biases.

Outlook

20.11.2023 Sushanta Tripathy **26**

• Flattenicity is defined in the pseudorapidity regions covered by the new V0 and T0C detectors

- in Run 3 of LHC.
- Stay tuned for new results!

Outlook

20.11.2023 Sushanta Tripathy **27**

Thank you for your attention!

• Flattenicity is defined in the pseudorapidity regions covered by the new V0 and T0C detectors

- in Run 3 of LHC.
- Stay tuned for new results!

Backup

Integrated yield and mean transverse momentum vs $S_0^{p_T=1}$ *0*

PYTHIA 8

ALI-PUB-564123

Using mid-rapidity tracklets as an event classifier in conjunction with spherocity in MC shows a large shift in <*p*T> and a small change in <nMPI>.

High-multiplicity midrapidity measurements are biased towards jets -> Captured by jet-like events

² Reduced bias in isotropic events

Integrated yield and mean transverse momentum vs $S_0^{p_T=1}$ *0*

ALICE, [arXiv:2310.10236](https://arxiv.org/abs/2310.10236)

DATA

- Using mid-rapidity tracklets as an event classifier in conjunction with spherocity in data shows similar behavior as expected from studies as a function of <nMPI> in MC.
- High-multiplicity midrapidity measurements are biased \blacklozenge towards jets -> Captured by jet-like events
- Reduced bias in isotropic events

 : Mid-rapidity multiplicity selection *N*|*η*|<0.8 V0M: Forward-rapidity multiplicity selection tracklets

ALICE, [arXiv:2310.10236](https://arxiv.org/abs/2310.10236)

- $\mathbf{s}_{0}^{\rho_{\tau} = 1}$ Integrated $+ S_0^{p_{\tau} = 1}$: 0-10%
- $+$ $S_0^{p_{\tau} = 1}$: 90-100%
- PYTHIA 8.2 Monash
- $-$ PYTHIA 8.2 Ropes
- Particle production for jet-like events is suppressed at low- p_T but enhanced at high- p_T ; vice versa for isotropic events
- Indicates hardening of the spectra in Jet-like events
- p_{τ} (GeV/c) \approx Both PYTHIA Monash and Ropes describe the qualitative trends

Identified particle production vs $S_{0}^{p_T=1}$ *0*

Ratio of yields to MB:

$$
Q_{\rm pp} = \frac{\mathrm{d}^2 N^{1-\rho \text{ class}}/(\langle \mathrm{d}N_{\rm ch} / \mathrm{d}\eta \rangle \mathrm{d}y \mathrm{d}p_{\rm T})}{\mathrm{d}^2 N^{\rm MB}/(\langle \mathrm{d}N_{\rm ch} / \mathrm{d}\eta \rangle \mathrm{d}y \mathrm{d}p_{\rm T})}
$$

-
-
-

• "Bump" structure: clear development of a peak for isotropic events (flattenicity class (I), 0–1% 1-ρ) • Mass dependency: the maximum of the peak shows a mass-dependent ordering

Particle production vs charged particle flattenicity

Identified particle production vs. R_T

A. Ortiz, A. Paz, J. D. Romo, S.Tripathy, E. A. Zepeda, I. Bautista, Phys. Rev. D 102, 076014 (2020)

ALICE, [JHEP 06 \(2023\) 027](https://doi.org/10.1007/JHEP06(2023)027)

ALI-PUB-545303

No "bump" structure seen in these measurements → selection bias Explore event classifier: sensitivity to MPI with reduced selection bias

ALI-PUB-563329

CERI

Relative Transverse activity classifier, $R_T = N_{ch}$ Transverse /< N_{ch} Transverse>

ALI-PUB-563329

The contribution from the jets dominate at low R_T and the values are similar for all systems, as one would naively expect for $R_T→0$

Relative Transverse activity classifier, $R_T = N_{ch}$ Transverse /< N_{ch} Transverse>

20.11.2023 Sushanta Tripathy **35**

 \bullet For large R_T , the $\langle p_T \rangle$ approaches similar values in all three topological regions for a given system: dominant UE contribution

Relative Transverse activity classifier, $R_T = N_{ch}$ Transverse /< N_{ch} Transverse>

Hard scattering: perturbative QCD

Soft QCD processes: low transverse momenta → non-perturbative QCD

Hard scattering: perturbative QCD

Includes:

Underlying Event (UE)

Soft QCD processes: low transverse momenta → non-perturbative QCD

Includes:

- Underlying Event (UE)
	- Multiparton interactions (MPI)

Hard scattering: perturbative QCD

Soft QCD processes: low transverse momenta → non-perturbative QCD

Includes:

- Underlying Event (UE)
	- Multiparton interactions (MPI)
	- Initial- and final-state radiation

Hard scattering: perturbative QCD

Soft QCD processes: low transverse momenta → non-perturbative QCD

Includes:

- Underlying Event (UE)
	- Multiparton interactions (MPI)
	- Initial- and final-state radiation
	- Beam remnants

Hard scattering: perturbative QCD

Includes:

- Hard scattering: perturbative QCD
- Soft QCD processes: low transverse momenta → non-perturbative QCD

- Underlying Event (UE)
	- Multiparton interactions (MPI)
	- Initial- and final-state radiation
	- Beam remnants
- Hadronisation products
- Collective effects

To reduce the contribution from ISR and FSR, Transverse region is further sub-divided into two regions: Trans-min and Trans-max based on minimum and maximum number of charged particles

 $R_{\text{T,min}} = N_{\text{ch}}^{\text{T,min}} / < N_{\text{ch}}^{\text{T,min}}$ $R_{\text{T,max}} = N_{\text{ch}}^{\text{T,max}} / < N_{\text{ch}}^{\text{T,max}}$

G. Bencedi, A. Ortiz, and A. Paz, Phys. Rev. D 104, (2021) 016017