

Probing the Mechanisms of Strangeness Enhancement in Small Systems with ALICE

MPI@LHC 2023

Roman Nepeivoda* for the ALICE Collaboration *roman.nepeivoda@cern.ch

Strangeness Enhancement Phenomenon

Strangeness enhancement with particle multiplicity **independent** of collision system and energy

core-corona approach down to **pp** systems?

Roman Nepeivoda

The ALICE Detector: A Window into High-Energy Collisions

Analysis methodology

4

- Different **underlying assumptions** of qualitatively very different production scenarios **are tested** by investigating the angular correlations between the multistrange baryon $\mathcal{Z}^-(\overline{\mathcal{Z}}^+)$ and other identified hadrons
- Per-trigger yield of associated identified hadrons with respect to the trigger Ξ

Multiplicity-integrated correlation functions

- Flat pedestal represents
 underlying event (UE) activity
 not correlated to the Ξ⁻ production
- Near-side and away-side peaks localized around $(\Delta y, \Delta \varphi) = (0, 0)$ and $\Delta \varphi = \pi$ attributed to the production within **the same** and **back-to-back (mini)jets**
- In opposite-sign (**OS**) correlations, near-side peak is enhanced due to the production of $q\bar{q}$ pair ($\bar{d}d$ and $\bar{s}s$)
- In same-sign (SS) correlations, near side peak for E — K is suppressed demonstrating the difficulty of producing three strange quarks within the same (mini)jet
 - $\begin{array}{l} \Xi^{-} \left(dss \right) \ \Xi^{+} \left(\overline{dss} \right) \\ \mathrm{K}^{-} \left(s\bar{u} \right) \ \mathrm{K}^{+} \left(u\bar{s} \right) \\ \pi^{-} \left(d\bar{u} \right) \ \pi^{+} \left(u\bar{d} \right) \end{array}$

Multiplicity-integrated correlation functions

 $(\Xi^{-}\overline{\Xi}^{+} + \overline{\Xi}^{+}\Xi^{-})/2$

Ap (rad)

 $\Xi - p$ same B

 $\Xi - \Lambda$ same B

 $\Xi - \Xi$ opposite B

ALICE pp $\sqrt{s} = 13 \text{ TeV}$

 $1.0 < p_{\tau}^{\text{trig}} < 12 \text{ GeV}/c$

 $1.0 < p_{\tau}^{assoc} < 12 \text{ GeV}/c$

-0.

ALI-PUB-557827

Roman Nepeivoda

arXiv:2308.16706

Explanation for the strangeness enhancement

Comparison to Monte Carlo models ($\Xi - \pi$)

- The overall magnitude of the UE is well described by the PYTHIA 8 tunes but not the EPOS-LHC and HERWIG
- Overestimation of the UE in EPOS-LHC could be dictated by the Ξ production in mainly higher-than-average multiplicity events

Roman Nepeivoda

arXiv:2308.16706

Comparison to Monte Carlo models ($\Xi - K$)

- PYTHIA 8 tunes tend to predict more significant near-side peaks than are observed in data indicating that strangeness is overproduced in (mini)jet fragmentation in the corresponding models
- The width of the near-side peak in data is larger comparing to the PYTHIA 8 predictions suggesting more considerable quark diffusion than the one anticipated by the models

Roman Nepeivoda

arXiv:2308.16706

Comparison to Monte Carlo models $(\Xi - p)$

- OB-SB difference in data is described by the rope and junction models in PYTHIA 8 after the introduction of the junction mechanism unlike the results provided by the Monash tune
- The near-side peak is also observed to be broader in Ξ −baryon correlations than in Ξ −meson ones, which may indicate the early decoupling and diffusion of baryon number

Roman Nepeivoda

arXiv:2308.16706

Comparison to Monte Carlo models $(\Xi - \Lambda)$

- Similar difference between data and PYTHIA as in ΞK correlations
- Junction model reduces the peak amplitude favoring junction/rope baryon production mechanism over the diquark breaking while still overpredicting the strength of the OB-SB correlation significantly

Roman Nepeivoda

Comparison to Monte Carlo models ($\Xi - \Xi$)

- Similar difference between data and other models as in $\Xi-\Lambda$ correlation
- PYHTIA 8 and HERWIG tend to overpredict the OB near-side ridge
- Near-side dip in the same-baryon-number correlations demonstrates the difficulty of producing multiple baryons (or multiple antibaryons) close in phase space

Roman Nepeivoda

arXiv:2308.16706

The ALICE Detector in Run 3

<complex-block>

New O² framework

<u>CERN-LHCC-2015-006, ALICE-TDR-019</u>

- One common Online Offline (O²) computing system
- Faster online and offline processing
- Increased data volume x100 wrt Run 2

Roman Nepeivoda

ITS upgrade *NIM 1032, 166632 (2022)*

- 7 layers of silicon pixel detectors with reduced material budget
- First detection layer closer to IP + new beam pipe (ITS L0 at 22 mm)

TPC upgrade

<u>JINST 16, P03022 (2021)</u>

- MWPCs replaced with GEMs
- Continuous readout up to 50 kHz Pb-Pb interaction rate (x50 wrt Run 2)

NEW Fast Interaction Trigger (FIT)

<u>NIM 1039, 167021 (2022)</u>

- 4 arrays of Cherenkov detectors and scintillators
- Triggering, collision time, centrality estimation

Performance of the ALICE detector in Run 3

The LHC Run 3 started in 2022, so far ALICE collected almost **x1000** events wrt Run 2 in pp data taking at **~500 kHz** in continuous readout

- Extend our studies further to higher multiplicities
- Increase our precision on existing studies
- Conduct studies on rare species (stay tuned for Ω hadron correlations)

Roman Nepeivoda

Ω/π ratio vs multiplicity

- Unprecedented multiplicity differential study of Ω/π production in pp collisions at $\sqrt{s} = 13.6 \text{ TeV}$
- First Ω yield measured in INEL>0 pp collisions at $\sqrt{s} = 900$ GeV at the LHC

Roman Nepeivoda

Summary

- Strangeness enhancement phenomenon is examined via the microscopic balance of baryon number, charge and strangeness
- The results are compared with the predictions from the string-breaking model PYTHIA 8, including tunes with baryon junctions and rope hadronization enabled, the cluster hadronization model HERWIG 7, and the core—corona model EPOS-LHC
- None of the aforementioned models is able to describe both qualitative and quantitative features of the experimental data
- Nevertheless, these results can be used to further refine and tune models of strangeness and baryon number production in hadronic collisions
- First measurement of Ω^{\pm} to π^{\pm} ratio in pp at \sqrt{s} = 13.6 TeV: **unprecedented multiplicity differential study**
- **Extension** of the Ω^{\pm} to π^{\pm} ratio to the lowest collision energy (900 GeV) available at the LHC

Thank you!

h.c.h.l.Ht.

Pb-Pb 5.36 TeV

LHC22s period 18th November 2022 16:52:47.893