

Probing the Mechanisms of Strangeness Enhancement in Small Systems with ALICE

MPI@LHC 2023

Roman Nepeivoda* for the ALICE Collaboration *roman.nepeivoda@cern.ch

Strangeness Enhancement Phenomenon

Strangeness enhancement with particle multiplicity **independent** of collision system and energy

interaction between **MPI** systems**?**

core-corona approach down to **pp** systems**?**

Roman Nepeivoda

MPI@LHC 2023

The ALICE Detector: A Window into High-Energy Collisions

Analysis methodology

- Different underlying assumptions of qualitatively very differen scenarios are tested by investigating the angular correlations be strange baryon $\mathbf{E}^{-}(\overline{\mathbf{E}}^{+})$ and other identified hadrons
- Per-trigger yield of associated identified hadrons with respect to the

$$
S(\Delta y, \Delta \varphi) = \frac{1}{N_{\text{trig}}} \frac{d^2 N_{\text{pairs}}^{\text{sig}}}{d\Delta y d\Delta \varphi}
$$

\n
$$
B(\Delta y, \Delta \varphi) = \alpha \frac{d^2 N_{\text{pairs}}^{\text{mixed}}}{d\Delta y d\Delta \varphi}
$$

\n
$$
\Delta y = y_{\text{assoc}} - y_{\text{trig}}^{\text{orig}}
$$

\n
$$
\Delta \varphi = \varphi_{\text{assoc}} - \varphi_{\text{trig}}^{\text{orig}}
$$

\n
$$
N_{\text{pairs}}^{\text{sig}} (N_{\text{pairs}}^{\text{mixed}})
$$

\n
$$
N_{\text{trig}}^{\text{sig}} \qquad \text{number of trigger-associated particle pairs in the time of the time of the time. The time is given by
$$
N_{\text{rig}}^{\text{sing}}
$$

\n
$$
N_{\text{trig}}^{\text{sing}}
$$

\n
$$
N_{\text{rig}}^{\text{single}}
$$

\n
$$
N_{\text{pairs}}^{\text{single}}
$$

\n
$$
N_{\text{polar}}^{\text{single}}
$$

\n $$
$$

Multiplicity-integrated correlation functions

Multiplicity-integrated correlation functions

Roman Nepeivoda arxiv:2308.16706 MPI@LHC 2023

Explanation for the strangeness enhancem

Comparison to Monte Carlo models $(\Xi - \pi)$

- The overall magnitude of the UE is well described by the PYTHIA 8 tunes but not
- Overestimation of the UE in EPOS-LHC could be dictated by the Ξ production in m

Roman Nepeivoda arxiv:2308.16706 MPI@LHC 2023

Comparison to Monte Carlo models $(E - K)$

- PYTHIA 8 tunes tend to predict more significant near-side peaks than are observed in data in (mini)jet fragmentation in the corresponding models
- The width of the near-side peak in data is larger comparing to the PYTHIA 8 predictions suggesting more considerable quark and the PYTHIA 8 predictions suggesting than than than than than the value of the Nulle more consid one anticipated by the models

Roman Nepeivoda arxiv:2308.16706 MPI@LHC 2023

Comparison to Monte Carlo models $(\Xi - p)$

- OB-SB difference in data is described by the rope and junction models in PYTHIA mechanism unlike the results provided by the Monash tune
- The near-side peak is also observed to be broader in Ξ −baryon correlations than early decoupling and diffusion of baryon number

Roman Nepeivoda arxiv:2308.16706 MPI@LHC 2023

Comparison to Monte Carlo models $(E - \Lambda)$

- Similar difference between data and PYTHIA as in $E K$ correlations
- Junction model reduces the peak amplitude favoring junction/rope baryon production mechanism over the diquark b while still overpredicting the strength of the OB-SB correlation significantly

Roman Nepeivoda arxiv:2308.16706 MPI@LHC 2023

Comparison to Monte Carlo models (Ξ — Ξ)

- Similar difference between data and other models as in $E \Lambda$ correlation
	- PYHTIA 8 and HERWIG tend to overpredict the OB near-side ridge
- Near-side dip in the same-baryon-number correlations demonstrates the difficulty antibaryons) close in phase space

Roman Nepeivoda arxiv:2308.16706 MPI@LHC 2023

The ALICE Detector in Run 3

ITS upgrade

NIM 1032

- 7 layers of silicon pixel dete with reduced material budg
- First detection layer closer t [new beam p](https://doi.org/10.1016/j.nima.2022.167021)ipe (ITS L0 at 2

TPC upgrade

JINST 16, P03022 (2021)

- MWPCs replaced with GEM
- Continuous readout up to 5 Pb-Pb interaction rate (x50

New O2 framework

CERN-LHCC-2015-006, ALICE-TDR-019

- One common Online Offline (O2) computing system
- Faster online and offline processing
- Increased data volume x100 wrt Run 2

Roman Nepeivoda

MPI@LHC 2023

NEW Fast Interaction Trigger

NIM 1039, 167021 (2022)

- 4 arrays of Cherenkov detectors and scintillators
- Triggering, collision time, centrality estimation

Performance of the ALICE detector in Run 3

The LHC Run 3 started in 2022, so far ALICE collected almost **x1000** events wrt Run 2 in pp data taking at **~500 kHz** in continuous readout

- Extend our studies further to higher multiplicities
- Increase our precision on existing studies
- Conduct studies on rare species (stay tuned for Ω hadron correlations)

Roman Nepeivoda MPI@LHC 2023 14

Ω/π ratio vs multiplicity

- Unprecedented multiplicity differential study of Ω/π production in pp collisions at $\sqrt{s} = 13.6$ TeV
- First Ω yield measured in INEL>0 pp collisions at \sqrt{s} = **900 GeV** at the LHC

Roman Nepeivoda MPI@LHC 2023 15

- **Strangeness enhancement** phenomenon **is examined** via the microscopic balance of baryon number, charge and strangeness
- **The results are compared with the predictions** from the string-breaking model PYTHIA 8, including tunes with baryon junctions and rope hadronization enabled, the cluster hadronization model HERWIG 7, and the core–corona model EPOS-LHC
- **None** of the aforementioned models **is able to describe** both qualitative and quantitative features of the **experimental data**
- Nevertheless, these **results can be used to further refine and tune models** of strangeness and baryon number production in hadronic collisions
- First measurement of Ω^{\pm} to π^{\pm} ratio in pp at \sqrt{s} = 13.6 TeV: **unprecedented multiplicity differential study**
- **Extension** of the Ω^{\pm} to π^{\pm} ratio to the lowest collision energy (900 GeV) available at the LHC

Roman Nepeivoda MPI@LHC 2023 16

Thank you!

ALICE Pb-Pb 5.36 TeV

LHC22s period 18th November 2022 16:52:47.893