Recent heavy-flavor results in small systems with ATLAS and CMS

CMS Experiment at the LHC, CERN Data recorded: 2016-Nov-18 05:51:16.422656 GMT Run / Event / LS: 285480 / 49966555 / 240

G. K. Krintiras (<u>cern.ch/gkrintir</u>) on behalf of ATLAS and CMS Collaborations The University of Kansas

Key features of heavy flavor measurements

- **Variety** of meson/baryon states in a broad kinematic range
- techniques to separate bottom from charm, also from light flavor decays
- We gain insights on
- heavy quark flow
- pQCD predictions, parton shower modeling, hadronization mechanisms
- parton interactions in the QGP (energy loss,...) \rightarrow cf. Mattia's talk

HF dimuon angural correlations

Lepton pairs with large |Δη| from HF hadron decays

- **Z** Enhancement on the "away-side" ($\Delta \phi = \pi$) \rightarrow hard-scattering processes
- Same-, opposite-sign and combination have different b/c composition
- Compare the widths of the away-side peaks in pp vs PbPb (centrality dependence)

POWHEG (pp) for charge sign combinations

Fraction of b jets estimated based on muon momentum relative to jet axis

ab jets **small fraction** (~4%) of the inclusive jet yield \rightarrow we need more luminosity

● independent of √s (CMS @ 7 TeV) and consistent with PYTHIA8

Fraction of b jets estimated based on muon momentum relative to jet axis

ab jets **small fraction** (~4%) of the inclusive jet yield \rightarrow we need more luminosity

- independent of \sqrt{s} (CMS @ 7 TeV) and consistent with PYTHIA8
- better agreement with NLO+LL predictions than HERWIG7, PYTHIA8, SHERPA 2.2.4

Collectivity in small systems?

- Detailed flow measurements in pp/pPb indicate that
- centrality/event activity and p_T dependence qualitatively similar to that in AA
- identified and multiparticle correlation techniques support collective origin of v_n
- encompassed by hydrodynamical models, but not a unique description
- What about HF?

HF flow flow in pPb

Observation of c flow

- the number-of-constituent-quark (n_q) scaling holds for $KE_T/n_q < 1$ GeV
- model with final-state interactions underestimates the v₂ signal

- Observation of c flow 7
- the number-of-constituent-quark (n_a) scaling holds for $KE_T/n_a < 1$ GeV
- model with final-state interactions underestimates the v_2 signal
- First measurements of **b flow**, inducing **Y(1S)** 7
- flavor hierarchy for light, c, and b at low p_{T}
- **agreement with CGC** \rightarrow important role for initial-state effects?

25

30

HF flow in pp

- First measurements of c and b flow
- no dependency on track multiplicity (CMS D⁰ extends to 25< N_{ch} <150)
- charm $v_2 > 0$ decreasing with p_T
- bottom v₂~0
- **No calculation** yet available in the smallest systems

ATLAS: PRL **124** (2020) 082301 CMS: PLB **813** (2021) 136036

Comparing HF particle flow in all systems

- There is charm anisotropy... everywhere
- apparent ordering: v_2 (PbPb) > v_2 (pPb) > v_2 (pp)
- so system size should play a role?
- **Z** For open bottom hadrons: v_2 (PbPb) > 0 but v_2 (pPb) ~ v_2 (pp) ~ 0
- do we hit some **threshold** between charm and beauty processes?

Charm quark hadronization in pPb

- **Z** First measurement of Λ_c^+/D^0 vs N_{trk}
- small dependence on N_{trk} contrary to the strange sector

Charm quark hadronization in pPb (and PbPb)

- **Z** First measurement of Λ_c^+/D^0 **vs** N_{trk}
- small dependence on N_{trk} contrary to the strange sector
- **Z** Extending system (pPb 8 TeV), p_T (<40 GeV), centrality (0–90%) reach of Λ_c^+/D^0
- in pPb and MB PbPb consistent at intermediate $p_T \rightarrow$ coalescence?
- Λ_c^+/D^0 approaches the ratio from e^+e^- at high p_T

B⁺ production in pPb

3

- **I** Using $B^+ \rightarrow J/\psi K^+$ in an extended $3 < p_T < 50 \text{ GeV}$
- differential p_T cross section **consistent with FONLL** (scaled pp)

B⁺ production in pPb vs N_{trk}

- **Z** Using $B^+ \rightarrow J/\psi K^+$ in an extended $3 < p_T < 50 \text{ GeV}$
- \bullet differential p_{T} cross section consistent with FONLL (scaled pp)
- **Z** Extending measurement vs \mathbf{N}_{trk} for the first time
- density of the hadronic environment impacts B⁺ production?

CMS-PAS-HIN-22-001

Constraining f₀(980) quark content

- \blacksquare f₀(980) structure not well established
- KK molecule, tetraquark, diquark?
- **I** Use n_q scaling of v_2 to infer number of quarks

A. Baty (QM23)

15

Constraining f₀(980) quark content

- In a f₀(980) structure not well established
- KK molecule, tetraquark, diquark?
- **Z** Use n_q scaling of v_2 to infer number of quarks
- • $n_q = 4$ excluded at 3.1 σ

n_q = 2 favored

A. Baty (QM23)

 $0.15 \qquad PPb, \sqrt{s_{NN}} = 8.16 \text{ TeV} (185 \le N_{trk}^{offline} < 250)$ $O.15 \qquad O.15 \qquad O.15 \qquad O.16 \qquad$

CMS-PAS-HIN-20-002

 E_{T}/n_{α} (GeV)

16

Top quark production in pPb

- Probes high-x gluons in a poorly constrained kinematic region
- dilepton channel cleaner but with lower yield than semileptonic

ATLAS: ATLAS-CONF-2023-063 CMS: PRL **119** (2017) 242001 (editor's suggestion)

Top quark production in pPb

- Probes high-x gluons in a poorly constrained kinematic region
- dilepton channel cleaner but with lower yield than semileptonic
- **a** ATLAS achieved a 9% precision \rightarrow most precise tt measurement in HI collisions
- results consistent with the combined ATLAS+CMS pp cross section
- good agreement with NNLO using several nPDFs (tension with nNNPDF30?)

ATLAS: ATLAS-CONF-2023-063 CMS: PRL **119** (2017) 242001 (editor's suggestion)

Summary

- HF important tool to study production and bulk properties
- provides a reference to understand "beyond pQCD", e.g., dimuon correlations, b jets
- Comprehensive studies of HF collectivity in all systems
- charm v_2 in pPb&pp is significant, but lower than in PbPb
- b flows in PbPb, but seems not(?) in pPb or pp \rightarrow more lumi
- **Z** First Λ_c^+/D^0 and **B**⁺ vs N_{ch} in pPb for dedicated high-density studies
- Small systems can be used in **novel ways**, e.g., hadron spectroscopy and "very HF"
- extracted $n_q=2$ for $f_0(980)$ using NCQ scaling of v_2 , ever-increasing top quark precision
- pp ref in Run 3~Run 2, no pPb before Run 4 (but upgraded detectors)

"Everything...flows"(?)

- **Z** Long-range ($2 < |\Delta\eta| < 4$), near-side ($\Delta \phi \approx 0$) angular correlations in
- heavy ion (XeXe and PbPb), and
- "small systems", i.e., high-multiplicity pPb and pp collisions
- Signs reminiscent of collective behavior of a quark-gluon plasma (QGP)

Di-hadron

correlations

associated

Δφ

Measuring HF particle flow in PbPb

- HF hadrons and their decay products are effective probes of QGP
- a series of measurements with, e.g., D^0 , J/ψ , Y(nS), and heavy-flavor decay leptons
- extension to studies of EM fields effects, e.g., no rapidity dependence of Δv_2 (D⁰– $\overline{D^0}$)
- The harmonics for c mesons are comparable to the light-flavor hadrons
- Closer to zero anisotropy observed for nonprompt D^0 , Y(nS) or beauty decay e's/µ's

Understanding collectivity in small systems

- Correlation between v_n and [p_T] (radial flow) sensitive to initial conditions
- $v_2^{-}[p_T]$ in pPb favors a more compact initial state \rightarrow stronger flow and prominent ridge
- Process-dependent v_n can distinguish complementary production mechanisms
- **v_{2,3}** similarity (ordering) in MB vs jet-triggered events indicates flow (soft+hard mix)
- v₂₋₄ largely independent of whether measured in jet enriched/depleted pp events
- Photonuclear collisions in UPC offer an alternative dynamics of small systems
- competing explanations tested in cases one of the "beams" has a simpler initial state
- ATLAS see significant v₂ in UPC PbPb contrary to γp collisions (CMS)

Prompt $D^0 v_2$ in pp and Y(nS) v_2 in PbPb

- First measurement with high-multiplicity events in pp
- $v_2 \neq 0$; close to the v_2 of light flavors
- Flow of bottomonia in PbPb
- •Precise Y(1S) v₂ consistent with 0
- •First Y(2S) v₂ measurement consistent with 0 too
- In contrast to larger J/ ψ v₂

Flow of heavy flavor decay leptons

- **a** Reconstruction of μ 's from c and b hadron decays separated from π/K bkg using
- the momentum imbalance $\rho = (p^{ID} p^{MS})/p^{ID}$
- between the inner detector and muon spectrometer
- real muons have a ρ distribution peaked around zero
- π/K bkg a broader ρ shifted towards higher values
- the transverse impact parameter d₀
- different d₀ due to c and b hadrons' decay lengths

QM22: Y(1S) v2

Simultaneous fitting

QuarkMatter_2022_Apr_6th

QM23: f0(980)

Data Analysis: Reconstruction of $f_0(980)$

- > Dataset: pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV in high multiplicity events collected in 2016.
- Dominant decay channel: $f_0(980) \rightarrow \pi^+\pi^-$.
- No PID in this analysis; All charged tracks assumed to be pions
- ▶ Mass Spectrum: opposite sign pair $\pi^+\pi^-$ subtracted by same sign pair $\pi^+\pi^+$, $\pi^-\pi^-$

QM23: f0(980)

v_2^{sub} results and systematic uncertainties

- Systematic uncertainties of $f_0(980) v_2$
 - Mix-Event Correction
 - Track Selection
 - Event-plane Resolution
 - Signal Form
 - Residual Background Form
 - Fit Range
 - Nonflow Subtraction
- Systematic uncertainties of $f_0(980) n_q$

Source	$n_{ m q}$ uncertainty
Statistical	0.16
${ m f}_0(980) \; v_2$ systematics	0.12
Non-flow effects on v_2^{sub}	0.10
NCQ-scaling fit parameters	0.05
NCQ-scaling functional form	0.04
NCQ-scaling using $p_{ m T}/n_{ m q}$	0.04