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Standard model of heavy ion physics

Based on developments in hydro theory over the last few years, we should replace
“thermalization” with “hydrodynamization”
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Azimuthal anisotropy measurements
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Hydrodynamics translates initial shape (including fluctuations) into final state distribution
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Azimuthal anisotropy measurements
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Small systems geometry scan

Collective motion translates initial geometry into final state distributions

To determine whether small systems exhibit collectivity, we can adjust the geometry and
compare across systems

We can also test predictions of hydrodynamics with a QGP phase
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Small systems geometry scan
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Small systems geometry scan
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v2 and v3 ordering matches ε2 and ε3 ordering in all three systems
—Collective motion of system translates the initial geometry into the final state
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Small systems geometry scan
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v2 and v3 vs pT predicted or described very well by hydrodynamics in all three systems
—All predicted (except v2 in d+Au) in J.L. Nagle et al, PRL 113, 112301 (2014)
—v3 in p+Au and d+Au predicted in C. Shen et al, PRC 95, 014906 (2017)

R. Belmont, UNCG MPI 2023, 20 November 2023 - Slide 7

PHENIX, Nat. Phys. 15, 214–220 (2019)

p+Au d+Au 3He+Au



Can initial state effects explain the data?
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K. Dusling and R. Venugopalan, Phys. Rev. D 87, 094034 (2013)

CGC framework: glasma diagrams produce
angular correlations like the ridge and vn
purely from initial state correlations, with no
need for final state interactions (hydro)

Can they explain the data?



Initial state effects cannot explain the data
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Initial state effects (CGC/Glasma) alone do not describe the data
—Phys. Rev. Lett. 123, 039901 (Erratum) (2019)
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How important are initial state effects?

Initial state effects important for theory, but make little contribution for central collisions

Overestimation of data assumed to be related to fluid choice parameters and/or
longitudinal dynamics
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B. Schenke et al, Phys. Lett. B 803, 135322 (2020)

p+Au d+Au 3He+Au



How important are initial state effects?

For central p+Au, modest correlation between εp and v2

For central d+Au and 3He+Au, no correlation between εp and v2
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How important are initial state effects?

The CGC/Glasma correlations appear to be too narrow in (pseudo)rapidity to have any
significant impact on the data
—The PHENIX data are measured with three detectors spanning −3.9 < η < +0.35

We’ll talk more about the importance of the pseudorapidity acceptance of experiments
soon
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B. Schenke et al, Phys. Rev. D 105, 094023 (2022)



Comparisons with STAR
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STAR, Phys. Rev. Lett. 130, 242301 (2023)

Good agreement between STAR and
PHENIX for v2

Large difference between STAR and
PHENIX for v3 in p+Au and d+Au

Large subnucleonic fluctuations can
overwhelm the intrinsic geometry in
some models, leading to similar ε3 for
all systems
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PHENIX data update
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PHENIX, Phys. Rev. C 105, 024901 (2022)
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PHENIX has completed a new analysis confirming the results published in Nature Physics

All new analysis using two-particle correlations with event mixing instead of event plane method
—Completely new and separate code base
—Very different sensitivity to key experimental effects (beam position, detector alignment)

It’s essential to understand the two experiments have very different acceptance in pseudorapidity
—STAR-PHENIX difference actually reveals interesting physics



PHENIX data update
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PHENIX data update
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All new analysis using two-particle correlations with event mixing instead of event plane method
—Completely new and separate code base
—Very different sensitivity to key experimental effects (beam position, detector alignment)

It’s essential to understand the two experiments have very different acceptance in pseudorapidity
—STAR-PHENIX difference actually reveals interesting physics



STAR and PHENIX detector comparison

The PHENIX Nature Physics paper uses the BBCS-FVTXS-CNT detector combination
—This is very different from the STAR analysis (TPC only)

We can try to use FVTXS-CNT-FVTXN detector combination to better match STAR
—Closer, and “balanced” between forward and backward, but still different
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More STAR and PHENIX data comparisons
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PHENIX, Phys. Rev. C 105, 024901 (2022)
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Good agreement with STAR for v2
—Similar physics for the two different pseudorapidity acceptances

Strikingly different results for v3
—Rather different physics for the two different pseudorapidity acceptances
—Longitudinal effects apparently much stronger for v3 than v2
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Good agreement with STAR for v2
—Similar physics for the two different pseudorapidity acceptances

Strikingly different results for v3
—Rather different physics for the two different pseudorapidity acceptances
—Longitudinal effects apparently much stronger for v3 than v2
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Pseudorapidity dependence in small systems
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The likely much stronger pseudorapidity dependence of v3 compared to v2 is an essential
ingredient in understanding different measurements
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J.L. Nagle et al, Phys. Rev. C 105, 024906 (2022)



Pseudorapidity dependence in small systems

Flow vectors become decorrelated with increasing pseudorapidity separation
—The effect is much stronger for v3 than for v2

The hierarchy of the measured vn depends on that of the geometry and decorrelations
—Interesting that the decorrelation hierarchy matches that of the geometry...
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W. Zhao et al, Phys. Rev. C 107, 014904 (2023)



Pseudorapidity dependence in small systems

Flow decorrelations lead to larger v3 for STAR, explaining ∼50% of the difference between
the experiments in this particular model
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W. Zhao et al, Phys. Rev. C 107, 014904 (2023)



Pseudorapidity dependence in small systems
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B. Schenke et al, Phys. Rev. D 105, 094023 (2022)

Intrinsic geometry likely
persists over all
pseudorapidity ranges

Fluctuations in the
geometry vary as a
function of rapidity (p
from a p+Pb collision
shown)

PHENIX data follow
intrinsic geometry, STAR
data follow subnucleonic
fluctuations



Brief Summary

Long established role of geometry and hydrodynamics in large systems

Role of geometry and hydrodynamics in small systems also now established

Understanding the pseudorapidity dependence is an essential part of understanding the
overall dynamics
—Longitudinal decorrelation leads to major differences between measurements
—The intrinsic geometry likely persists over long ranges in pseudorapidity
—Fluctuations in the geometry vary over pseudorapidity

Initial state effects, though important from a theoretical standpoint, have minimal impact
on the measured vn
—This is in part due to their rather small range in pseudorapidity

We’ve learned a lot from 2+1D hydro, but we have ever-increasing need for 3+1D hydro
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Additional Material

Additional Material
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A few other things of possible interest

v2(pT ) with diffferent detector combinations in p+p and for all centralities in p+Au,
d+Au, 3He+Au at 200 GeV
—PHENIX, Phys. Rev. C 107, 024907 (2023)

v2(η) for central and dNch/dη for all centralities in p+Al, p+Au, d+Au, and 3He+Au at
200 GeV
—PHENIX, Phys. Rev. Lett. 121, 222301 (2018)

v2(η) and dNch/dη for central and v2(pT ) for all centralities in d+Au at 200, 62.4, 39,
and 19.6 GeV
—PHENIX, Phys. Rev. C 96, 064905 (2017)

The dNch/dη measurements across many different systems, centralities, and energies can
help constrain 3+1D modes for BES-II

R. Belmont, UNCG MPI 2023, 20 November 2023 - Slide 23



Pseudorapidity dependence in small systems
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PHENIX, Phys. Rev. Lett. 121, 222301 (2018)

p+Al, p+Au, d+Au, 3He+Au

Good agreement with wounded quark model
(M. Barej et al, Phys. Rev. C 97, 034901 (2018))

Good agreement with 3D hydro
(P. Bozek et al, Phys. Lett. B 739, 308 (2014))



Pseudorapidity dependence in small systems

Good agreement with 3D hydro for dNch/dη in p+Au, p+Au, 3He+Au

R. Belmont, UNCG MPI 2023, 20 November 2023 - Slide 25

W. Zhao, S. Ryu, C. Shen and B. Schenke, Phys. Rev. C 107, 014904 (2023)



Pseudorapidity dependence in small systems

v2 vs η in p+Al, p+Au, d+Au, and 3He+Au

Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))
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PHENIX, Phys. Rev. Lett. 121, 222301 (2018)
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Pseudorapidity dependence in small systems

v2 vs η in p+Al, p+Au, d+Au, and 3He+Au

Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))

Prevalence of nonflow near the EP detector (−3.9 < η < −3.1)
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Pseudorapidity dependence in small systems

v2 vs η in p+Al, p+Au, d+Au, and 3He+Au

Good agreement with 3D hydro for p+Au and d+Au (Bozek et al, PLB 739, 308 (2014))

Prevalence of nonflow near the EP detector (−3.9 < η < −3.1)
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Pseudorapidity dependence in small systems

Good agreement with 3D hydro for v2(η) in p+Au, p+Au, 3He+Au
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The large difference between the
PHENIX published and STAR
preliminary in this case is nonflow

PHENIX suppresses nonflow via
kinematic selection

STAR applies non-flow subtraction
procedure

One needs to be careful about the
risk of over-subtraction
methods—S. Lim et al, Phys. Rev.
C 100, 024908 (2019)
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with PHENIX



Additional non-flow studies using published data tables

To enable additional study, the new PHENIX publication
(Phys. Rev. C 105, 024901 (2022)) includes the complete set of ∆φ correlations and
extracted coefficients c1, c2, c3, c4

A new paper uses these data tables to explore non-flow subtraction of these data as well
as to assess the degree of (non-)closure of non-flow subtraction methods
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The BBCS-FVTXS-CNT combination minimizes non-flow, so subtraction doesn’t make too much
difference

The FVTXS-CNT-FVTXN combination has more non-flow, and the subtraction does much more
That the three different combinations all line up after non-flow subtraction seems to lend some
credence thereto, but one must be careful...
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There’s a larger relative change for v3 compared to v2, but the smaller value of v3 makes the non-flow
subtraction more sensitive to non-closure

For the combinations with more non-flow, where the v3 is imaginary in p+Au and d+Au, the non-flow
subtraction is completely uncontrolled
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Since AMPT has too much non-flow and PYTHIA doesn’t have any flow, the degree of
overcorrection in real data is likely not as bad as it is with these generators
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The standard PHENIX v3/v2 is lower than the ATLAS, while the non-flow corrected is above

The ratio is expected to be lower for lower collision energies in almost all physics scenarios
—Lower energy, shorter lifetime, more damping of higher harmonics
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The standard PHENIX v3/v2 is lower than the ATLAS, while the non-flow corrected is above
The ratio is expected to be lower for lower collision energies in almost all physics scenarios
—Lower energy, shorter lifetime, more damping of higher harmonics
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