November 21st, 2023 Manchester

14th International Workshop on Multiple Partonic Interactions at the LHC MPI@LHC – 2023

StringSpinner – adding spin to the PYTHIA string fragmentation

Albi Kerbizi University of Trieste and INFN Trieste

- StringSpinner is a package for the introduction of quark spin effects in PYTHIA 8 string fragmentation
 latest version in AK, L. Lönnblad, CPC 292 (2023) 108886
- □ Presently, can handle Deep Inelastic Scattering (DIS) @ LO

- StringSpinner is a package for the introduction of quark spin effects in PYTHIA 8 string fragmentation
 latest version in AK, L. Lönnblad, CPC 292 (2023) 108886
- □ Presently, can handle Deep Inelastic Scattering (DIS) @ LO Driving motivation → the Collins asymmetry in semi-inclusive DIS (SIDIS) off T pol. Nucleons

a transversely polarized nucleon $H_{1q}^{\perp h}$ Collins FF: fragmenttion of a transversely polarized quark in an unpolarized hadron f_1^q and D_{1q}^h : spin-averaged PDF and FF

- StringSpinner is a package for the introduction of quark spin effects in PYTHIA 8 string fragmentation
 latest version in AK, L. Lönnblad, CPC 292 (2023) 108886
- □ Presently, can handle Deep Inelastic Scattering (DIS) @ LO Driving motivation → the Collins asymmetry in semi-inclusive DIS (SIDIS) off T pol. Nucleons

$$d\sigma^{IN \rightarrow I'hx} \propto 1 + D_{NN} |\vec{S}_{T}^{Nucl.}| A_{Coll} \sin \varphi_{Coll} + \cdots$$

$$A_{Coll} \simeq \frac{\sum_{q} e_{q}^{2} h_{1}^{q} \times H_{1q}^{\perp h}}{\sum_{q} e_{q}^{2} f_{1}^{q} \times D_{1q}^{h}}$$

$$h_{1}^{q} \text{ transversity PDF: transverse polarization of quarks in a transversely polarized nucleon}$$

$$H_{1q}^{\perp h} \text{ Collins FF: fragmenttion of a transversely polarized nucleon}$$

$$H_{1q}^{\perp h} \text{ collins FF: fragmenttion of a transversely polarized nucleon}$$

$$f_{1}^{q} \text{ and } D_{1q}^{h} \text{ : spin-averaged PDF and FF}$$
Found to be non-vanishing in a proton target by HERMES and COMPASS

Albi Kerbizi (Trieste University and INFN)

- StringSpinner is a package for the introduction of quark spin effects in PYTHIA 8 string fragmentation
 latest version in AK, L. Lönnblad, CPC 292 (2023) 108886
- □ Presently, can handle Deep Inelastic Scattering (DIS) @ LO Driving motivation → the Collins asymmetry in semi-inclusive DIS (SIDIS) off T pol. Nucleons
- □ Implementation for e^+e^- annihilation to hadrons ongoing Collins asymmetry also in e+e- → access to Collins FFs

$$d\sigma^{e^+e^- \to h_1 h_h X} \propto 1 + a_{NN} A_{Coll}^{e^+e^-} \cos(\phi_1 + \phi_2)$$

$$A_{Coll}^{e^+e^-} \simeq \frac{\sum_q e_q^2 H_{1q}^{\perp h_1} \times H_{1\overline{q}}^{\perp h_2}}{\sum_q e_q^2 D_{1q}^{h_1} \times D_{1\overline{q}}^{h_2}}$$
Many measurements by BELLE_BABAR_BESIII

StringSpinner is a package for the introduction of quark spin effects in PYTHIA 8 string fragmentation latest version in AK, L. Lönnblad, CPC 292 (2023) 108886
 Presently, can handle Deep Inelastic Scattering (DIS) @ LO Driving motivation → the Collins asymmetry in semi-inclusive DIS (SIDIS) off T pol. Nucleons

- StringSpinner is a package for the introduction of quark spin effects in PYTHIA 8 string fragmentation
 latest version in AK, L. Lönnblad, CPC 292 (2023) 108886
- □ Presently, can handle Deep Inelastic Scattering (DIS) @ LO Driving motivation → the Collins asymmetry in semi-inclusive DIS (SIDIS) off T pol. Nucleons
- Implementation for e⁺e[−] annihilation to hadrons ongoing Collins asymmetry also in e+e- → access to Collins FFs

- StringSpinner is a package for the introduction of quark spin effects in PYTHIA 8 string fragmentation
 latest version in *AK*, *L*. *Lönnblad*, *CPC* **292** (2023) 108886
- □ Presently, can handle Deep Inelastic Scattering (DIS) @ LO Driving motivation → the Collins asymmetry in semi-inclusive DIS (SIDIS) off T pol. Nucleons
- □ Implementation for e^+e^- annihilation to hadrons ongoing Collins asymmetry also in $e+e- \rightarrow$ access to Collins FFs
- SIDIS and e⁺e⁻ data used in global analyses aimed at extracting both transversity and the Collins FF

•••

A complete MCEG including these effects is lacking spin effects in perturbative processes already included

Richardson, JHEP 11, 029, Richardson, Webster, EPJ, C (2020) 80:83, K. Hamilton et al., JHEP 03 (2022) 193

StringSpinner aims at filling this lack implements the string+³P₀ model of polarized hadronization using the UserHooks of PYTHIA 8

Modeling spin-dependent hadronization: string+³P₀

Extension of the Lund string fragmentation model to include the quark spin

Artru, DSPIN-09, arXiv:1001.1061	2009	toy model
AK, Artru, Belghobsi, Bradamante, Martin, PRD 97, 074010 (201	L8) 2018	PS mesons
AK, Artru, Belghobsi, Martin, PRD 100, 014003 (2019)	2019	PS mesons
AK, Artru, Martin, PRD 104, 114038 (2021)	2021	PS mesons + VM

□ Basic quantity – quark (and antiquark) splitting amplitude

$$T_{q',h,q} \propto \left[F_{q',h,q}^{Lund}(Z_+, \mathbf{p}_T; \mathbf{k}_T) \right]^{1/2} \left[\mu + \sigma_z \boldsymbol{\sigma}_T \cdot \mathbf{k'}_T \right] \Gamma_{h,s_h}$$

Modeling spin-dependent hadronization: string+³P₀

Extension of the Lund string fragmentation model to include the quark spin

Artru, DSPIN-09, arXiv:1001.1061	2009	toy model
AK, Artru, Belghobsi, Bradamante, Martin, PRD 97, 074010 (2018)	2018	PS mesons
AK, Artru, Belghobsi, Martin, PRD 100, 014003 (2019)	2019	PS mesons
AK, Artru, Martin, PRD 104, 114038 (2021)	2021	PS mesons + VM

Basic quantity – quark (and antiquark) splitting amplitude

Modeling spin-dependent hadronization: string+³P₀

Implementation of spin effects in PYTHIA hadronization for DIS

- □ Hard scattering event set up by Pythia
- \square Spin information is encoded in density matrices ρ

Implementation of spin effects in PYTHIA hadronization for DIS

- □ Hard scattering event set up by Pythia
- Spin information is encoded in density matrices ρ
- Using the UserHooks class of PYTHIA
 - Each emitted hadron is accepted with probability according string+³P₀

 $w_{q \to h+q'} = \frac{\operatorname{Tr} T_{q \to h+q'} \rho(q) T_{q \to h+q'}^{\dagger}}{\operatorname{Tr} T_{q \to h+q'} T_{q \to h+q'}^{\dagger}}$

Propagate spin info to the next splitting using string+³P₀

Implementation of spin effects in PYTHIA hadronization for DIS

Decays of PS mesons handled by Pythia
 Polarized decays of VMs handled externally using the UserHooks class and rules of string+³P₀
 i. Calculate ρ(VM)

ii. Perform polarized decay

- iii. Return a decay matrix D [recipe of Collins '88, Knowles '88]
- iv. Store decay products and pass them to Pythia later
- v. Calculate ρ of next quark

Iterate until exit condition of Pythia

Simulations of SIDIS with transversely polarized protons

Relevant hadronic variables Bjorken xfractional energy $z = P \cdot P_h / P \cdot q$ transverse momentum P_T

Results on

Collins asymmetries

Collins asymmetries for ρ^0 mesons

 $\begin{array}{c} A_{UT}^{\sin \phi_{h} + \phi_{S} - \pi}(x, z, P_{T}) \\ A_{UT}^{\sin \phi_{\rho^{0}} + \phi_{S} - \pi}(x, z, P_{T}) \end{array}$

more results in AK, L. Lönnblad, CPC **292** (2023) 108886

Collins asymmetries for π and K

The model reproduces the main features of data!

Collins asymmetries for π and K

MPI@LHC 2023, Manchester

Collins asymmetries for ρ^0

Steps:

- 1. Hard scattering
- 2. Joint spin density matrix
- 3. Hadron emission from a
- 4. Update density matrix
- 5. Hadron emission from \bar{q}
- 6. Exit condition

More complicated recipe than DIS, should account for entanglement of q and \overline{q} spin-correlations in string fragmentation

> AK, X. Artru, [HADRON-2023] arXiv: 2311.03827 AK, X. Artru, in preparation

Steps:

1. Hard scattering

- 2. Joint spin density matrix
- 3. Hadron emission from a
- 4. Update density matrix
- 5. Hadron emission from \bar{q}
- 6. Exit condition

□ Set up the scattering $e^+e^- \rightarrow q\bar{q}$ in the c.m.s

Steps:

1. Hard scattering

2. Joint spin density matrix

- 3. Hadron emission from q
- 4. Update density matrix
- 5. Hadron emission from \bar{q}
- 6. Exit condition

□ Set up the joint spin density matrix of the $q\overline{q}$ pair for γ^* exchange

 $\rho(q,\overline{q}) \propto \mathbf{1}_q \otimes \mathbf{1}_{\overline{q}} - \sigma_q^z \otimes \sigma_{\overline{q}}^z + \frac{\sin^2\theta}{1 + \cos^2\theta} \; [\sigma_q^x \otimes \sigma_{\overline{q}}^x + \sigma_q^y \otimes \sigma_{\overline{q}}^y]$

 θ angle between e^- and q

Steps:

- 1. Hard scattering
- 2. Joint spin density matrix
- **3.** Hadron emission from q
- 4. Update density matrix
- 5. Hadron emission from \bar{q}
- 6. Exit condition

□ Emit the first hadron with probability

 $dP(q \rightarrow h + q'; q\overline{q}) = Tr_{q'\overline{q}}T_{q',h,q}\rho(q,\overline{q}) T_{q',h,q}^{\dagger}$ $T_{q',h,q} \equiv T_{q',h,q} \otimes 1_{\overline{q}}$

(VM emission in the backup)

Steps:

- 1. Hard scattering
- 2. Joint spin density matrix
- 3. Hadron emission from q
- 4. Update density matrix
- 5. Hadron emission from \bar{q}

6. Exit condition

Evaluate the spin density matrix $\rho(q'\bar{q})$

$$\rho(q', \overline{q}) = \mathbf{T}_{q',h,q} \ \rho(q, \overline{q}) \ \mathbf{T}_{q',h,q}^{\dagger}$$

includes the information on the emission of h

Steps:

- 1. Hard scattering
- 2. Joint spin density matrix
- 3. Hadron emission from q
- 4. Update density matrix
- 5. Hadron emission from \overline{q}

6. Exit condition

 \Box Emit a hadron from the \overline{q} side with probability

[Collins NPB, 304:794–804, 1988, Knowles NPB, 310:571–588, 1988]

 $dP(\bar{q} \rightarrow H + \bar{q}'; q'\bar{q}) = Tr_{q'\bar{q}'}T_{\bar{q}',H,\bar{q}} \rho(q',\bar{q}) T_{\bar{q}',H,\bar{q}}^{\dagger}$

conditional probability of emitting H, having emitted h \rightarrow correlations between the transverse momenta

Iterate until exit condition

Simulations of e^+e^- with spin effects

Now possible in Pythia 8.3 by using the StringSpinner package work still ongoing
AK, L. Lönnblad, A. Martin

□ Free parameters as in [AK and L. Lönnblad CPC 292 (2023) 108886], except $f_L = 0.33$ and $\theta_{LT} = -\pi/6$ by «eye» tunning, OK for both e^+e^- and SIDIS

Simulations of e^+e^- with spin effects

Now possible in Pythia 8.3 by using the StringSpinner package work still ongoing AK, L. Lönnblad, A. Martin

□ Free parameters as in [AK and L. Lönnblad CPC 292 (2023) 108886], except $f_L = 0.33$ and $\theta_{LT} = -\pi/6$ by «eye» tunning, OK for both e⁺e⁻ and SIDIS

□ Next slides → Collins asymmetries for back-to-back pions comparison with BELLE data (work ongoing for BaBar and BESIII)

A_{12}^{UL} asymmetry for back-to-back $\pi^\pm-\pi^\mp$

 $P_{T1} \times P_{T2}$ - dependence

Asymmetries w.r.t thrust axis (not q \overline{q} axis) T > 0.8 z > 0.2, P_T < 3.0 GeV/c $\alpha_0 < 0.3$

A_{12}^{UL} asymmetry for back-to-back $\pi^{\pm} - \pi^{\mp}$ $P_{T1} \times P_{T2}$ - dependence

 A_{12}^{UL} asymmetry for back-to-back $\pi^{\pm} - \pi^{\mp}$ $P_{T1} \times P_{T2}$ - dependence

A_{12}^{UL} asymmetry for back-to-back $\pi^{\pm} - \pi^{\mp}$ w.r.t $q\overline{q}$ axis

 $z_1 \times z_2$ - dependence

Belle asymmetries measured using the thrust axis, then rescaled to $q \overline{q}$ axis

Integrated over $P_T $$T > 0.8, z > 0.2$$

StringSpinner gives a satisfactory description!

Conclusions

StringSpinner implements the quark spin effects in Pythia string fragmentation using the string+³P₀ model spin effects restricted to the productions of pseudoscalar and vector mesons

 Applied to DIS (public) and being developed for e⁺e⁻ annihilation
 @ LO, promising description of transverse-spin asymmetry data more phenomenological studies ongoing: comparisons with BaBar and BESIII, calculation of the Artru-Collins asymmetries ...

More developments foreseen for the string+³P₀ model gluon emission (needed to connect with a parton shower) baryon production application to other processes (pp)

and implementation in Pythia!

StringSpinner is still at an early stage, and many opportunities for exciting developments are possible!

Backup

Dihadron asymmetry for h^+h^-

 A_{12}^{UL} asymmetry for back-to-back $\pi^\pm - \pi^\mp z_1 \times z_2$ - dependence

A_{12}^{UL} asymmetry for back-to-back $\pi^0-\pi^\mp$

Asymmetries measured w.r.t the thrust axis difficult to describe

A_{12}^{UL} asymmetry for $\eta-\pi^\pm$

Sensitivity of asymmetries to free parameters

Asymmetries evaluated using the thrust axis The oblique polarization θ_{LT} is varied, while all other parameters fixed

Relevant free parameters for string fragmentation used in simulations

(see AK, L. Lönnblad, arXiv: 2305.05058)

Pythia parameters		
StringZ:aLund	default	
StringZ:bLund	default	
StringPT:sigma	default	
StringPT:enhancedFraction	0.0	
StringPT:enhancedWidth	0.0	GeV/c

String+³P₀ parameters Re(μ) Im(μ)

f_L

 θ_{LT}

 $\begin{array}{c} 0.42 \ \ {\rm GeV/c^2} \\ 0.76 \ \ {\rm GeV/c^2} \\ 0.33 \\ -\pi/6 \end{array}$

The recursive recipe for simulating e^+e^- annihilation: VM emission

For a vector meson h=VM

$$\rightarrow \eta(q) = \mathbf{T}_{q',h=VM,q}^{a\prime\dagger} \,\eta(q') \,\mathbf{T}_{q',h=VM,q}^{a} \mathcal{D}_{a'a'} \,\eta(q') = \mathbf{1}_{q'} \text{ and } \eta(\bar{q}) = \mathbf{1}_{\bar{q}}$$

Steps:

i) Emission probability density (summing over decay information, i.e. $D_{a'a} = \delta_{a'a}$) $\frac{dP(q \rightarrow h = VM + q'; q\bar{q})}{dM^2 dZ_+ Z_+^{-1} d^2 p_T} = Tr_{q'\bar{q}} T_{q',h,q}^a \rho(q,\bar{q}) T_{q',h,q}^{a\dagger} = F_{q',h,q}(M^2, Z_+, p_T; k_T, C^{q\bar{q}})$ ii) Calculate the spin density matrix of h=VM, and decay the meson $\rho_{aa'}(h) = Tr_{q'\bar{q}} T_{q',h,q}^a \rho(q,\bar{q}) T_{q',h,q}^{a'\dagger}$ iii) Decay the meson $p \rightarrow p_1 p_2$.. $dN(p_1, p_2..)/d\Omega \propto M_{dec.}^a(p \rightarrow p_1 p_2..) \rho_{aa'}(h)M_{dec.}^{\dagger a'}(p \rightarrow p_1 p_2..)$

iv) Build the decay matrix $D_{a'a}(p_1, p_2, ...) = M_{dec.}^{\dagger a'}(p \rightarrow p_1 p_2...) M_{dec.}^a(p \rightarrow p_1 p_2...)$

MPI@LHC 2023, Manchester