

The University of Manchester

Searching Collective-like Effects for Heavy-Flavour in Small Systems with ALICE

ANTENNY MANA

Yoshini Bailung, on behalf of ALICE Collaboration Indian Institute of Technology Indore

14th International Workshop on Multiple Parton Interactions at the LHC [MPI@LHC], 20-24 Nov 2023, University of Manchester, United Kingdom

Motivation: Heavy-Flavours

* Charm and beauty quarks : produced via hard scatterings in heavy-ion collisions

* Why are they studied in collisions of small systems?

The ALICE Detector - Run 2

MPI@LHC 2023

Yoshini Bailung

Yoshini Bailung

Yoshini Bailung

* In small systems, two-particle correlations are used to extract the azimuthal anisotropy of the collision

$v_2(p_{\rm T}) = \langle \cos[2(\phi - \Psi_2)] \rangle$

$$\sum_{n=1}^{\infty} v_n(p_T) \cos[n(\phi - \Psi_n)]$$

Momentum anisotropy

#Zhang et. al, Phys. Rev. D, 102 (2020), 034010

MPI@LHC 2023

Yoshini Bailung

Heavy-Flavour and Collectivity

Nuclear Modification Factor (R_{pPb}) of Open Charm Hadrons $d\sigma_{pPb}/dp_{T}$ R_{pPb} $R_{\rm pPb}$ = $A \cdot d\sigma_{pp}/dp_{T}$ p–Pb, √*s*_{NN}=5.02 TeV ALICE Prompt D mesons, $-0.96 < y_{cms} < 0.04$ \rightarrow Transport of charm POWLANG • Average D^0 , D^+ , D^{*+} 1.4 quarks in a quark-gluon plasma using \square D⁰ 1.2 transport coefficients from Hard Thermal Loop (HTL) or Lattice QCD (IQCD) calculations 0.8 0.6 Puke Transport Model $\mathbb{H} \rightarrow$ Includes 0.4 ---- Duke collisional and radiative energy loss POWLANG (HTL) 0.2 **POWLANG (IQCD)** HALICE, JHEP 12, (2019), 012 15 10 25 20 30 35 U 5 **#Beraudo et al JHEP 03 (2016) 123**

MPI@LHC 2023

Yoshini Bailung

\Xu et al PRC 97, (2018), 064915

Yoshini Bailung

O Nuclear Modification Factor (R_{pPb}) of Open Charm Hadrons

MPI@LHC 2023

Yoshini Bailung

Color Glass Condensate formalism³⁴ with CNM effects

FONLL calculation[#] with EPPS16 NLO[#] nuclear modification

HALICE, JHEP 12, (2019), 012

♯ Fujii et. al arXiv: <u>1706.06728</u>

∺Cacciari et al, JHEP 2012, (2012) 137

𝗚 Eskola et al, EPJ C 77 (2017), 163

Heavy-Flavour and Collectivity

Nuclear Modification Factor (R_{pPb}) of Open Charm Hadrons Color Glass Come of data Description Of data Within 20 Within Ministry pr 6 Genatically Systematically **R**pPb p–Pb, √*s*_{NN}=5.02 TeV ALICE underestimates Prompt D mesons, $-0.96 < y_{cms} < 0.04$ data# • Average D^0 , D^+ , D^{*+} 1.4 \square D⁰ 1.2 FONLL calculation³⁸ with Eppo- Eppsi 6 nuclear poper limit of Eppine Upper limit of and Description closer to upper limit y band 0.8 0.6 CGC (Fujii-Watanabe) 0.4 FONLL with EPPS16 nPDF Vitev et al.: power corr. + k_{T} broad + CNM Eloss 0.2 Kang et al.: incoherent multiple scattering HALICE, JHEP 12, (2019), 012 **♯ Fujii et. al arXiv: 1706.06728** 20 15 30 25 35 10 U 5 *p*₋ (GeV/*c*) **#Cacciari et al, JHEP 2012, (2012) 137** ALI-PUB-321155 **# Eskola et al, EPJ C 77 (2017), 163**

MPI@LHC 2023

Yoshini Bailung

Heavy-Flavour and Collectivity

O Nuclear Modification Factor (R_{pPb}) of Open Charm Hadrons

MPI@LHC 2023

Yoshini Bailung

LO pQCD calculation with CNM (Vitev et al) H

 \rightarrow Intrinsic k_T broadening

 \rightarrow Nuclear shadowing

 \rightarrow Energy loss of the charm quarks

Kang et. al^{\approx} \rightarrow Higher-twist calculation based on incoherent multiple scatterings

∺ Kang et al, Phys. Lett. B 740, (2015), 2329

Heavy-Flavour and Collectivity

O Nuclear Modification Factor (R_{pPb}) of Open Charm Hadrons

MPI@LHC 2023

Yoshini Bailung

8

Nuclear Modification Factor (R_{pPb}) of Open Charm Hadrons

MPI@LHC 2023

Yoshini Bailung

POWHEG+PYTHIA6^{se} coupled to EPPS16

nPDF parametrization

POWLANG \rightarrow Transport of charm quarks in a quark gluon plasma using transport coefficients from HTL

Quark (re)Combination Model (QCM) \rightarrow No cold nuclear matter or initial state effects

al PRC (2018)4915

Heavy-Flavour and Collectivity

Yoshini Bailung

Heavy-Flavour and Collectivity

MPI@LHC 2023

Yoshini Bailung

Similar trend of self-normalized yields for D mesons, electrons from heavy-flavour hadron decays^H, and J/ ψ^{H} at mid rapidity

Contribution from auto-correlation[#] between heavy-flavour yields and charged-particle

production

#ALICE, JHEP 2023, 6 (2023) #ALICE, Phys. Lett. B 810 (2020) 135758 #Weber et al, EPJ C, 79, 36 (2019)

MPI@LHC 2023

Yoshini Bailung

Similar trend of self-normalized yields for D mesons, electrons from heavy-flavour hadron decays³², and J/ ψ^{34} at mid rapidity

Stronger than linear increase as a function of charged-particle multiplicity

Contribution from auto-correlation[#] between

heavy-flavour yields and charged-particle production

#<u>ALICE, JHEP 2023, 6 (2023)</u> #<u>ALICE, Phys. Lett. B 810 (2020) 135758</u> #<u>Weber et al, EPJ C, 79, 36 (2019)</u>

MPI@LHC 2023

Yoshini Bailung

11

EPOS3 without hydro^{\mathbb{H}} \rightarrow particle production via flux-tube expansion and fragmentation

EPOS3 with hydro^{\mathfrak{H}} \rightarrow particle

production via flux-tube expansion and fragmentation followed by a hydrodynamic evolution

 \rightarrow Reduces multiplicity

 \rightarrow Amplifies stronger than linear rise

3-pomeron Color Glass Condensate \Rightarrow particle production via three pomeron fusion correction

MPI@LHC 2023

Yoshini Bailung

11

EPOS3 without he results production estimates the results ube expansion and Underestimation

 $\begin{array}{l} \mbox{EPOS3 with hydro}^{\mbox{\tiny H}} \rightarrow \mbox{particle} \\ \mbox{production} data \\ \mbox{production} data \\ \mbox{x-tube} \\ \mbox{verticle} \mbox{verticle} \\ \mbox{verticle} \mbox{verticle} \mbox{verticle} \\ \mbox{verticle} \mbox{verticle} \mbox{verticle} \\ \mbox{verticle} \mbox{verticle} \mbox{verticle} \mbox{verticle} \mbox{verticle} \\ \mbox{verticle} \mbo$

 \rightarrow Reduces multiplicity

 \rightarrow Amplifies stronger than linear rise

3-pomeron Color Glassie results ate \rightarrow particle provisionates the results ate \rightarrow particle provisionates the pomeron overestion correction

MPI@LHC 2023

Yoshini Bailung

Stronger than linear trend for electrons[®] from

> heavy-flavour hadron decays

PYTHIA8 + Monash[#]

Comparable to data

Multiparton Interactions (MPI) and Colour Reconnection (CR) mechanism in hadronisation \rightarrow Important to describe data

#ALICE, JHEP 2023, 6 (2023) #Skands et al, EPJ C74 (2014) 3024

Heavy-Flavour and Collectivity

Yoshini Bailung

Yoshini Bailung

Heavy-Flavour and Collectivity

Yoshini Bailung

Heavy-Flavour and Collectivity

Conclusions

- * Positive inclusive muon v_2 in high multiplicity p—Pb collisions \circ Hint of collectivity in small systems
 - o Possible role of initial state effects R_{pPb}

- * Auto-correlation between heavy-flavour yields and charged-particle multiplicity \rightarrow Stronger than linear trend with multiplicity
 - MPI and CR essential to reproduce charged-particle multiplicity
 * Open charm

of ch o Hiv A

* $R_{\rm pPb}$ of $\Lambda_{\rm c}^+$ shows suppression below $p_{\rm T}$ < 2 GeV/c

QCM offers closest description without CNM or initial state effects

o Hint of an enhancement for high-multiplicity jetty events

Thank you for your attention !

J-HILL

UTT

