

Investigating collective effects in small collision systems using PYTHIA 8 and EPOS4 simulations

A. Manea (Institute of Space Science) with: S. Basu, C. Brandibur, A. Danu, A Dobrin, V. Gonzalez, C. Pruneau

14th International Workshop on Multiple Parton Interactions at the LHC

Ridge in pp: first observation

- Minimum bias pp
 - Non-flow contributions
 - Near side jet peak (+ resonances, HBT effects)
 - Recoil jet in away side

- Minimum bias pp
 - Non-flow contributions
 - Near side jet peak (+ resonances, HBT effects)
 - Recoil jet in away side

- High multiplicity pp
 - Near side ridge, typical of collective systems
 - Decomposed into Fourier harmonics v_{n} 1+ $\sum_{n=1}^{\infty} 2 \, v_{n} \cos \left(n \left(\phi \! \! \Psi_{n} \right) \right)$

v_n coefficients

• v_n dependence on collision system but not on energy

scđi

 v_n coefficients

- v_n dependence on collision system but not on energy
- Mass ordering observed in high multiplicity p-Pb and pp collisions
 - Test particle type dependence at high p_{T}

A. Manea - MPI@LHC2023

 v_n coefficients

- v_n dependence on collision system but not on energy
- Mass ordering observed in high multiplicity p-Pb and pp collisions
 - Test particle type dependence at high p_{T}

What is the origin of these collective effects?

A. Manea - MPI@LHC2023

Sources of collectivity

- Final state effects
 - Initial spatial eccentricities converted into momentum anisotropies via final state interactions
 - Hydrodynamics
 - Parton transport
 - Parton escape

Sources of collectivity

- Final state effects
 - Initial spatial eccentricities converted into momentum anisotropies via final state interactions
 - Hydrodynamics
 - Parton transport
 - Parton escape
- Initial state effects
 - Initial momentum anisotropies from initial interactions
 - Color Glass Condensate (CGC) Glasma
 - Color-field domains

Sources of collectivity

- Final state effects
 - Initial spatial eccentricities converted into momentum anisotropies via final state interactions
 - Hydrodynamics
 - Parton transport
 - Parton escape
- Initial state effects
 - Initial momentum anisotropies from initial interactions
 - Color Glass Condensate (CGC) Glasma
 - Color-field domains

How to disentangle different regimes?

Our approach: macroscopic vs microscopic models

- Macroscopic model: EPOS4
 - Core–corona model with statistical hadronization
 - Collective effects from hydrodynamical evolution of the medium

Our approach: macroscopic vs microscopic models

- Macroscopic model: EPOS4
 - Core–corona model with statistical hadronization
 - Collective effects from hydrodynamical evolution of the medium

- Microscopic model: PYTHIA 8
 - QCD strings with LUND fragmentation
 - Collective effects from new processes
 - Color reconnection, rope hadronization, ...

November 2023

Experimental methods: flow

Cumulants

Particles of Interest (POI)

 $u_{n,x} = \cos(n\varphi)$

 $u_{n,v} = \sin(n\varphi)$

Scalar product (SP) method

2- and 4-particle azimuthal correlations for an event $\langle 2 \rangle = \langle \cos(n(\omega - \omega_i)) \rangle \quad i \neq i$

$$\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle, i \neq j \neq k \neq l$$

 $c_n\{2\} = \langle \langle 2 \rangle \rangle = v_n^2$

 $c_{n}{4} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^{2} = -v_{n}^{4}$

Averaging over all events $\rightarrow 2^{nd}$ and 4^{th} order cumulants

Experimental methods: flow

S. Voloshin et al., arXiv:0809.2949

Q

Δη=0.95

Q1

<u>Δη=0.4</u>

Q2

Q3

A. Bilandzic et al., PRC 83, 044913 (2011)

J. Jia et al., PRC 96, 034906 (2017)

•

Experimental methods: flow

- Particles of Interest (POI) $u_{n,x} = \cos(n\varphi)$ $u_{n,v} = \sin(n\varphi)$
- $Q_{n,x} = \sum_{i} \cos(n \varphi_{i})$ $Q_{n,v} = \sum_{i} \sin(n \varphi_i)$

Δη=0.95

Q1

<u>Δη=0.4</u>

Q2

- Cumulants
 - 2- and 4-particle azimuthal correlations for an event $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_i)) \rangle, i \neq j$ $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle, i \neq j \neq k \neq l$ Averaging over all events $\rightarrow 2^{nd}$ and 4^{th} order cumulants $c_n\{2\} = \langle \langle 2 \rangle \rangle = v_n^2$ $c_{n}{4} = \langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^{2} = -v_{n}^{4}$

Methods have different sensitivity to non-flow and fluctuations

A. Bilandzic et al., PRC 83, 044913 (2011) J. Jia et al., PRC 96, 034906 (2017)

Q3

14

$egin{aligned} I^{lphaar{eta}} &= rac{\langle N_2^{lphaeta} angle}{\langle N_1^{ar{eta}} angle} - rac{\langle N_2^{ar{lpha}eta} angle}{\langle N_1^{ar{eta}} angle} \ I^{ar{lpha}eta} &= rac{\langle N_2^{ar{lpha}eta} angle}{\langle N_1^{ar{lpha}} angle} - rac{\langle N_2^{lphaeta} angle}{\langle N_1^{ar{lpha}} angle} \end{aligned}$

November 2023

Integrals provide information about each balancing charge

A. Manea - MPI@LHC2023

• Possibility to probe particle production mechanisms for different models

 $\Delta y, \Delta \varphi$

Balance function gives insight into charged particle production

ISS Exp

Experimental methods: Balance function United is chi

v_n in pp and p-Pb collisions

- PYTHIA 8
 - pp collisions @ 13.6 TeV
 - Default
 - Default no CR
 - Rope hadronization https://gitlab.com/Pythia8/releases/-/issues/80
 - Monash tune
 - p-Pb collisions @ 5.02 TeV
 - Angantyr
- EPOS4
 - pp collisions @ 13.6 TeV
 - core+corona+hadronic afterburner (full simulation)
 - core+corona
 - core

November 2023

A. Manea - MPI@LHC2023

PYTHIA 8 pp collisions: PID v₂

- Small mass ordering for |Δη|>2
 - - More pronounced for rope hadronization
- November 2023

• Not for rope hadronization

Hint of crossing between proton and pion v_2 for $|\Delta \eta| > 2$

A. Manea - MPI@LHC2023

.

• Mass ordering for both $|\Delta \eta|$ gaps

• Different trends than in PYTHIA 8

- Mass ordering influenced by UrQMD for $p_{\rm T}{<}1.0$ GeV/c
- No particle type grouping
- November 2023

A. Manea - MPI@LHC2023

PYTHIA 8 p-Pb collisions: PID v₂

- Mass ordering broken for $|\Delta \eta|$ >1
- Small mass ordering for $|\Delta \eta|$ >2
- Crossing between proton and pion v_2 for $|\Delta \eta| > 2$
- No particle type grouping

November 2023

UB fiscoti PYTHIA 8 pp collisions: c_2 {2} and c_2 {4}

- c₂{2} > 0 at high multiplicities
 - Small dependence on $|\Delta \eta|$ gap for c₂{2}
- $c_2\{4\} \thicksim 0 \rightarrow$ expected for Gaussian fluctuations

November 2023

S.S.

A. Manea - MPI@LHC2023

Similar qualitatively trends for all configurations

EPOS4 pp collisions: c_2 {2} and c_2 {4}

- c₂{2} > 0 at high multiplicities (except core)
 - Small dependence on $|\Delta \eta|$ gap for c₂{2}
- $c_2\{4\} \thicksim 0 \rightarrow expected$ for Gaussian fluctuations

- Different trends between core+corona and core
- Different trends than in PYTHIA 8
 - More pronounced at low multiplicities

November 2023

S.S.

A. Manea - MPI@LHC2023

-iscđi

PYTHIA 8 p-Pb collisions: c2{2} and c2{4}

- Similar trends as in pp collisions
- c₂{2} > 0 at high multiplicities
 - Small dependence on $|\Delta\eta|$ gap for $c_2\{2\}$
- $c_2\!\{4\} \thicksim 0 \to expected$ for Gaussian fluctuations

Balance function in pp collisions

schi

- PYTHIA 8
 - Rope hadronization https://gitlab.com/Pythia8/releases/-/issues/80
 - Monash tune

- EPOS4
 - core+corona+hadronic afterburner (full simulation)

Balance function

Integral value B⁺⁻: 0.469

Integral value B⁻⁺ : 0.474

November 2023

A. Manea - MPI@LHC2023

0.486

Balance function

November 2023

A. Manea - MPI@LHC2023

25

Balance function projections

scđi

Projections show different trends in away side ridge

November 2023

A. Manea - MPI@LHC2023

Summary

- Investigate collective effects in EPOS4 and PYTHIA 8 simulations
 - Different trends for various settings
- c₂{2} decreasing with increasing multiplicity and $|\Delta\eta|$ gap
 - Small dependence on $|\Delta \eta|$ gap
- $c_2{4} \sim 0$ at high multiplicities
 - Expected for Gaussian fluctuations
- PID v2: mass ordering for large $|\Delta \eta|$ gap
 - No particle type grouping
- Balance function: different trends in away side