

Investigating collective effects in small collision systems using PYTHIA 8 and EPOS4 simulations

A. Manea (Institute of Space Science) with: S. Basu, C. Brandibur, A. Danu, A Dobrin, V. Gonzalez, C. Pruneau

14th International Workshop on Multiple Parton Interactions at the LHC

Ridge in pp: first observation

(b) CMS MinBias, 1.0GeV/c<p-<3.0GeV/c CMS, JHEP 1009 (2010) 091 $\mathbf{R}(\Delta\eta,\Delta\phi)$ $\stackrel{2}{\rightsquigarrow}$ o \mathbf{r} -2 away side jet near side jet (Δφ ≈ π) (Δφ ≈ 0, Δη ≈ 0)

- Minimum bias pp
	- Non-flow contributions
		- Near side jet peak (+ resonances, HBT effects)
		- Recoil jet in away side

- Minimum bias pp
	- Non-flow contributions
		- Near side jet peak (+ resonances, HBT effects)
		- Recoil jet in away side
- High multiplicity pp
	- Near side ridge, typical of collective systems
		- \bullet Decomposed into Fourier harmonics v_n $1+\sum_{n=1}^{\infty}2v_n\cos\left(n(\varphi-\Psi_n)\right)$

vn coefficients

• v_n dependence on collision system but not on energy

cdi

 v_n coefficients

- v_n dependence on collision system but not on energy
- Mass ordering observed in high multiplicity p-Pb and pp collisions
	- Test particle type dependence at high p_{τ}

vn coefficients

- v_n dependence on collision system but not on energy
- Mass ordering observed in high multiplicity p-Pb and pp collisions
	- Test particle type dependence at high p_{τ}

What is the origin of these collective effects?

Sources of collectivity

- **Final state effects**
	- Initial spatial eccentricities converted into momentum anisotropies via final state interactions
		- Hydrodynamics
		- Parton transport
		- Parton escape

Sources of collectivity

- **Final state effects**
	- Initial spatial eccentricities converted into momentum anisotropies via final state interactions
		- Hydrodynamics
		- Parton transport
		- Parton escape
- Initial state effects
	- Initial momentum anisotropies from initial interactions
		- Color Glass Condensate (CGC) Glasma
		- Color-field domains

Sources of collectivity

- **Final state effects**
	- Initial spatial eccentricities converted into momentum anisotropies via final state interactions
		- Hydrodynamics
		- Parton transport
		- Parton escape
- Initial state effects
	- Initial momentum anisotropies from initial interactions
		- Color Glass Condensate (CGC) Glasma
		- Color-field domains

How to disentangle different regimes?

Our approach: macroscopic vs microscopic models

K. Werner, arXiv: 2306.10277

- Macroscopic model: EPOS4
	- Core–corona model with statistical hadronization
	- Collective effects from hydrodynamical evolution of the medium

Our approach: macroscopic vs microscopic models

- Macroscopic model: EPOS4
	- Core–corona model with statistical hadronization
	- Collective effects from hydrodynamical evolution of the medium

- Microscopic model: PYTHIA 8
	- QCD strings with LUND fragmentation
	- Collective effects from new processes
		- Color reconnection, rope hadronization, ...

Experimental methods: flow

η

Experimental methods: flow

S. Voloshin et al., arXiv:0809.2949

 $-0.5 +0.5 +1$

 u | Q

η

● Cumulants

 $u_{n_x} = \cos(n \varphi)$

 $u_{n,y} = \sin(n \varphi)$

Scalar product (SP) method

 $v_n\{\mathrm{SP}\}=\frac{\langle\langle\mathbf{u}_{\rm n,k}\mathbf{Q}_{\rm n}^*/\mathrm{M}\rangle\rangle}{\sqrt{\langle\mathbf{Q}_{\rm n}^{*{\rm a}}\mathbf{Q}_{\rm n}^{*{\rm b}}/(\mathrm{M}^{\rm a}\mathrm{M}^{\rm b})\rangle}}$

Particles of Interest (POI) Reference Particles (RPs)

– 2- and 4-particle azimuthal correlations for an event Averaging over all events \rightarrow 2nd and 4th order cumulants $\langle 2 \rangle \equiv \langle \cos(n(\varphi_i - \varphi_j)) \rangle$ *, i* ≠ *j* $\langle 4 \rangle \equiv \langle \cos(n(\varphi_i + \varphi_j - \varphi_k - \varphi_l)) \rangle$, $i \neq j \neq k \neq l$ c_n {2}= $\langle \langle 2 \rangle \rangle$ = v_n^2 c_n (4)= $\langle \langle 4 \rangle \rangle - 2 \langle \langle 2 \rangle \rangle^2 = -v_n^4$

 $Q_{n, x} = \sum_{i} \cos (n \varphi_i)$

 $Q_{n,y} = \sum_{i} \sin (n \varphi_i)$

A. Bilandzic et al., PRC 83, 044913 (2011) J. Jia et al., PRC 96, 034906 (2017)

Experimental methods: flow

 $-0.5 +0.5 +1$

 u | Q

η

\n- Scalar product (SP) method\n
	\n- $$
	v_n\{SP\} = \frac{\langle \langle \mathbf{u}_{n,k} \mathbf{Q}_n^* / M \rangle \rangle}{\sqrt{\langle \mathbf{Q}_n^{*a} \mathbf{Q}_n^{*b} / (M^a M^b) \rangle}}
	$$
	\n\n
\n- Particles of Interest (POI) Reference Particles (RPs)\n
	\n- $\mathbf{u}_{n,x} = \cos(n \varphi)$
	\n- $\mathbf{Q}_{n,x} = \sum_i \cos(n \varphi_i)$
	\n- -1
	\n- -0.5
	\n\n
\n

 $u_{n, x} = \text{co}$ $u_{n,y} = \sin(n \varphi)$ $Q_{n,y} = \sum_{i} \sin (n \varphi_i)$

Cumulants

A. Bilandzic et al., PRC 83, 044913 (2011) J. Jia et al., PRC 96, 034906 (2017)

Cumulant based method Centrality

 $B^{\alpha|\bar{\beta}}(y_1|y_2) = A_2^{\alpha|\bar{\beta}}(y_1|y_2) - A_2^{\bar{\alpha}|\bar{\beta}}(y_1|y_2)$ $B^{\bar{\alpha}|\beta}(y_1 | y_2) = A_2^{\bar{\alpha}|\beta}(y_1 | y_2) - A_2^{\alpha|\beta}(y_1 | y_2)$

• Integrals provide information about each balancing charge

• Possibility to probe particle production mechanisms for different models

 $I^{\alpha \bar{\beta}} = \frac{\langle N_2^{\alpha \beta} \rangle}{\langle N_1^{\bar{\beta}} \rangle} - \frac{\langle N_2^{\bar{\alpha} \beta} \rangle}{\langle N_1^{\bar{\beta}} \rangle}$

 $I^{\bar{\alpha}\beta} = \frac{\langle N_2^{\bar{\alpha}\beta} \rangle}{\langle N_1^\beta \rangle} - \frac{\langle N_2^{\alpha\beta} \rangle}{\langle N_1^\beta \rangle}$

uefiscdi Experimental methods: Balance function

Central

Late emission Dominance

"Small" \sqrt{s}

 $\Delta y, \Delta \varphi$

v_n in pp and p-Pb collisions

- PYTHIA 8
	- pp collisions $@$ 13.6 TeV
		- Default
		- Default no CR
		- Rope hadronization https://gitlab.com/Pythia8/releases/-/issues/80
		- Monash tune
	- \cdot p-Pb collisions $@$ 5.02 TeV
		- Angantyr
- EPOS4
	- pp collisions $@$ 13.6 TeV
		- core+corona+hadronic afterburner (full simulation)
		- core+corona
		- core

November 2023 A. Manea - MPI@LHC2023 A. Manea - MPI@LHC2023

- Small mass ordering for $|\Delta \eta|$ > 2
	- More pronounced for rope hadronization
-

• Hint of crossing between proton and pion v_2 for $|\Delta \eta| > 2$

Not for rope hadronization

November 2023 A. Manea - MPI@LHC2023 17

EPOS4 pp collisions: PID v_2

core + corona + hadronic afterburner $v_2(2, |\Delta \eta| > 1)$ core + corona core Q: $0.2 < p_r < 3.0$ GeV/c, $-1.0 < \eta < -0.5$ $u: 0.5 < n < 1.0$ 0.2 |Δη|>1 v₂{2, l∆ql>2} $\bullet \pi^{\pm}$ Q: $0.2 < p_r < 3.0$ GeV/c, $-5.0 < p_r < -3.0$ 0.4 ∎ Ƙ[.] $u: \ln 1 < 1.0$ |Δη|>2 0.2 0.5 4.5 0.5 3.5 4.5 0 0.5 3.5 4.5 0 3.5 $\overline{\bf{4}}$ \mathbf{o} 1.5 2 2.5 3 4 1.5 2 2.5 -3 1.5 2 2.5 з 4 $\mathbf{1}$ p_{T} (GeV/c) p_{t} (GeV/c) p_{r} (GeV/c)

• Mass ordering for both $|\Delta \eta|$ gaps

• Different trends than in PYTHIA 8

- Mass ordering influenced by UrQMD for p_T <1.0 GeV/c
- No particle type grouping
-
- November 2023 A. Manea MPI@LHC2023 18

PYTHIA 8 p-Pb collisions: PID v_2

- Mass ordering broken for $|\Delta n|$ >1
- Small mass ordering for $|\Delta n| > 2$
- Crossing between proton and pion v_2 for $|\Delta n| > 2$
- No particle type grouping

November 2023 A. Manea - MPI@LHC2023 19

uefiscati PYTHIA 8 pp collisions: c_2 {2} and c_2 {4}

- $c_2\{2\}$ > 0 at high multiplicities
	- Small dependence on $|\Delta \eta|$ gap for $c_2\{2\}$
- $c_2{4} \sim 0 \rightarrow$ expected for Gaussian fluctuations

SS

November 2023 A. Manea - MPI@LHC2023 20

• Similar qualitatively trends for all configurations

EPOS4 pp collisions: $c_2{2}$ and $c_2{4}$

- $c_2{2} > 0$ at high multiplicities (except core)
	- Small dependence on $|\Delta \eta|$ gap for $c_2\{2\}$
- c_2 {4} ~ 0 \rightarrow expected for Gaussian fluctuations
- Different trends between core+corona and core
- Different trends than in PYTHIA 8
	- More pronounced at low multiplicities

SS

November 2023 A. Manea - MPI@LHC2023 21

iscati

SS

PYTHIA 8 p-Pb collisions: $c_2{2}$ and $c_2{4}$ \forall is cdi

- Similar trends as in pp collisions
- c_2 {2} > 0 at high multiplicities
	- Small dependence on $|\Delta\eta|$ gap for c₂{2}
- c_2 {4} ~ 0 \rightarrow expected for Gaussian fluctuations

Balance function in pp collisions

- \cdot PYTHIA 8
	- https://gitlab.com/Pythia8/releases/-/issues/80 https://gitlab.com/Pythia8/releases/-/issues/80• Rope hadronization
	- Monash tune
- EPOS4
	- core+corona+hadronic afterburner (full simulation)

Balance function

Integral value B⁺⁻: 0.469

Integral value B⁺: 0.474

November 2023 A. Manea - MPI@LHC2023 24 0.486

0.490

Balance function

November 2023 A. Manea - MPI@LHC2023 25

Balance function projections

scdi

Projections show different trends in away side ridge

November 2023 A. Manea - MPI@LHC2023 26

Summary

- Investigate collective effects in EPOS4 and PYTHIA 8 simulations
	- Different trends for various settings
- c_2 {2} decreasing with increasing multiplicity and $|\Delta n|$ gap
	- Small dependence on |Δη| gap
- c_2 {4} ~ 0 at high multiplicities
	- Expected for Gaussian fluctuations
- PID v2: mass ordering for large $|\Delta n|$ gap
	- No particle type grouping
- Balance function: different trends in away side