

Charged-particle production as a function of $R_{\rm T}$ in pp, p-Pb, and Pb-Pb collisions

Instituto de Ciencias Nucleares UNAM

workshop on Multiple Partonic **Interactions at the LHC 20-24 November 2023**

based on: arXiv:2310.07490

Paola Vargas, for the ALICE collaboration

Introduction

- Collectivity in small systems
- **Selection** biases
- Underlying event and $R_{\rm T}$

Analisys procedure

- **The ALICE detector in Run 2**
- Analysis details

Results

- $\bullet p_{\rm T}$ -spectra as a function of $R_{\rm T}$
- $\langle p_{\rm T} \rangle$ as a function of $R_{\rm T}$
- Integrated yield as a function of $R_{\rm T}$

Summary

MPI@LHC 2023

Outline

Paola Vargas

21/11/2023

Collectivity in small systems

MPI@LHC 2023

Paola Vargas

ALICE pp $\sqrt{s} = 5.02 \text{ TeV}$ _{ah}/d*p*_dn (GeV/*c*)⁻ SPD tracklets mult. classes 10 + Stat. unc. Total syst. unc. Z N Selecting multiplicity (×10' IX' (×10²) $(\times 10^{7})$ classes and measuring 10-2 `VIII' (×10 VII' (×10⁴ particle spectra in the 10^{-∞} (×10[°] same pseudo rapidity Stat. unc. Uncorr. syst. unc. interval biases the sample towards hard pp collisions Ratio to INEL>C 10-15 Eur. Phys. J. C79 (2019) no.10, 857 0 10 р_т (GeV/*c*)

Hard process

MPI@LHC 2023

Paola Vargas

Selection biases

Charged particles

The neutral-to-charged particle yield is biased by requiring high charge-particle multiplicity

21/11/2023

- biased at high- $R_{\rm T}$ values

Underlying event and $R_{\rm T}$

Instituto de 🤇 Ciencias Nucleares UNAM

More details about multiplicity estimators in Sushanta Tripathy's talk (11/20 at 9:50 h)

21/11/2023

Paola Vargas

The ALICE detector in Run 2

MPI@LHC 2023

Main detectors used in this work

ITS: primary vertex, pile up rejection and tracking

TPC: tracking

V0: triggering and background rejection

ALICE Schematics

21/11/2023

Corrections

The raw $p_{\rm T}$ spectra as a function of track multiplicity were corrected for multiplicity using a Bayesian unfolding

The raw $p_{\rm T}$ spectra as a function of $R_{\rm T}$ fully corrected multiplicity were further corrected for:

Efficiency: Data-driven-tracking efficiency Secondary contamination: from different sources such as weak decays and material interactions

Systematic uncertainties

Source

 $p_{\rm T}$ (Ge

track re mult. de MC nor matchir particle seconda materia

Total

Analysis details

These were divided in R_{T} -dependent uncertainties (*) and $R_{T-independent}$ uncertainties

	uncertainty (%)					
	pp		p–Pb		Pb–Pb	
V/c)	0.5	7.0	0.5	7.0	0.5	7.0
construction and selection*	1.5	3.5	1.4	1.2	2.5	1.4
ependence of tracking efficiency*	3.0	3.0	3.0	3.0	3.0	3.0
n-closure*	3.0	3.0	3.0	3.0	3.0	3.0
ng efficiency	0.4	0.3	1.1	0.6	0.8	0.9
composition	0.3	1.3	0.5	1.2	0.3	0.7
ary contamination	0.1	negl.	0.3	negl.	negl.	negl.
l budget	0.3	0.2	0.3	0.2	0.3	0.2
	4.5	5.7	4.6	4.6	5.0	4.6

MPI@LHC 2023

Paola Vargas

21/11/2023

MPI@LHC 2023

• For $p_T < 4$ GeV/c, the p_T spectra in the away and toward regions relative to the $R_{\rm T}$ -integrated event class exhibit a $R_{\rm T}$ -dependence. This effect can be attributed to the presence of collective radial flow

For $p_{\rm T} > 4$ GeV/c, the spectral shapes in the away and toward regions are found to be almost independent of $R_{\rm T}$

MPI@LHC 2023

Instituto de (Ciencias Nucleares UNAM

For $p_T < 4$ GeV/*c*, the p_T spectra in the away and toward regions relative to the $R_{\rm T}$ -integrated event class exhibit a $R_{\rm T}$ -dependence. This effect can be attributed to the presence of collective radial flow

For $p_{\rm T} > 4$ GeV/*c*, the spectral shapes in the away and toward regions are found to be almost independent of

The $p_{\rm T}$ spectra in the transverse region harden with increasing $R_{\rm T}$. Autocorrelations are relevant in this Phys. Rev. D 104 (2021) 016017 region

MPI@LHC 2023

For $p_T < 4$ GeV/*c*, the p_T spectra in the away and toward regions relative to the $R_{\rm T}$ -integrated event class exhibit a $R_{\rm T}$ -dependence. This effect can be attributed to the presence of collective radial flow

For $p_{\rm T} > 4$ GeV/*c*, the spectral shapes in the away and toward regions are found to be almost independent of

The $p_{\rm T}$ spectra in the transverse region harden with increasing $R_{\rm T}$. Autocorrelations are relevant in this Phys. Rev. D 104 (2021) 016017 region In general, PYTHIA8 describes data better than **EPOS-LHC**

Paola Vargas

MPI@LHC 2023

small $R_{\rm T}$ large $R_{\rm T}$

• For $p_T < 4$ GeV/c, the p_T spectra in the away and toward regions relative to the $R_{\rm T}$ -integrated event class exhibit a $R_{\rm T}$ -dependence. This effect can be attributed to the presence of collective radial flow

For $p_{\rm T} > 4$ GeV/c, the spectral shapes in the away and toward regions are found to be almost independent of K_{T}

- The $p_{\rm T}$ spectra in the transverse region harden with increasing $R_{\rm T}$. Autocorrelations are relevant in this Phys. Rev. D 104 (2021) 016017 region
- In general, PYTHIA8/Argantyr describes data better than EPOS-LHC except for the transverse region

Same features like in pp collisions for all the three topological regions

21/11/2023

MPI@LHC 2023

ALICE

Paola Vargas

For $p_{\rm T} < 6$ GeV/*c*, the $p_{\rm T}$ spectra for all three topological regions are qualitatively similar to that of pp and p-Pb collisions.

For $p_{\rm T} > 6$ GeV/*c*, the spectral shapes for all three topological regions are found to be almost independent of $R_{\rm T}$

21/11/2023

MPI@LHC 2023

For $p_T < 6$ GeV/*c*, the p_T spectra for all three topological regions are qualitatively similar to that of pp and p-Pb collisions.

For $p_{\rm T} > 6$ GeV/*c*, the spectral shapes for all three topological regions are found to be almost independent of $R_{\rm T}$

In general, PYTHIA8/Argantyr fairly describes the data in the lower $p_{\rm T}$ region and overestimates the high $p_{\rm T}$ yield ($p_{\rm T} > 3 \text{ GeV}/c$) for all three topological regions while EPOS LHC fail the description up to 10% for higher $R_{\rm T}$ -bins.

$p_{\rm T}$) as a function of $R_{\rm T}$

MPI@LHC 2023

Paola Vargas

Instituto de 🌎 Ciencias **Nucleares** UNAM

21/11/2023

$(p_{\rm T})$ as a function of $R_{\rm T}$

For large R_T , the $\langle p_T \rangle$ is dominated by bulk contribution and exhibits an ordering that depends on the system size

MPI@LHC 2023

Instituto de 🧲 Ciencias **Nucleares** UNAM

Comparison of $\langle p_{\rm T} \rangle$ with models

Instituto de 🌎 Ciencias Nucleares UNAM

 The models deviate by 10% from data, however, they show a trend with $R_{\rm T}$ that is qualitatively similar to the measured one

Paola Vargas

21/11/2023

Normalized integrated yield as a function of R_T UNAM ALICE

MPI@LHC 2023

Normalized integrated yield as a function of R_T UNAM

MPI@LHC 2023

Normalized integrated yield as a function of R United Ciencias ALICE

For all three collision system, PYTHIA8/Argantyr describes data better than EPOS-LHC

MPI@LHC 2023

- The $p_{\rm T}$ spectra as a function of $R_{\rm T}$ in pp, p-Pb and Pb-Pb collisions have been presented • For $R_T < 2$, the activity in the transverse region is a good proxy for UE
 - For $R_{\rm T} > 2$, the activity in the transverse region gets biased towards multi-jet final states (probably from hard Bremsstrahlung radiation)
- pp and p-Pb collisions
 - In the toward and away regions the high- $p_{\rm T}$ yield ($p_{\rm T} > 2 \text{ GeV}/c$) is nearly $R_{\rm T}$ independent suggesting the absence of high multiplicity effects at high $R_{
 m T}$
 - The transverse region is affected by autocorrelations: the $p_{\rm T}$ spectra get harder with increasing $R_{\rm T}$. Similar behavior is seen using the track multiplicity instead of $R_{\rm T}$
- Pb-Pb collisions
 - We could only reach $R_{\rm T} < 2.5$ therefore results are dominated by bulk particle production
- For $R_{\rm T}$ close to zero, the $\langle p_{\rm T} \rangle$ is system size independent while for large $R_{\rm T}$, it exhibits an system size ordering
- Overall, PYTHIA 8 describes better the data (pp, p-Pb and Pb-Pb) than EPOS LHC supporting the MPI picture Results about energy dependence of the $R_{\rm T}$ in Feng Fan's talk (11/23 at 17:20 h) MPI@LHC 2023 Paola Vargas 21/11/2023

MPI@LHC 2023

Backup

MPI@LHC 2023

21/11/2023