

Quarkonium as a probe of multiple parton interaction and collectivity in pp collisions with ALICE

Ida Storehaug For the ALICE Collaboration MPI@LHC 2023 November 21, 2023 University of Manchester

UNIVERSITY OF OSLO

Why study quarkonium in pp collisions?

Quarkonia as a probe of the quark-gluon plasma: Heavy quarks are produced in hard-scattering processes in the early stages of the collision and experience the entire medium evolution

Quarkonium production

- Hard scale: creation of qq pairs in initial hard scattering
- Soft scale: binding into a colorless final state

Models of quarkonium production: e.g. Color Evaporation Model (CEM), Non-relativistic QCD (NRQCD)

Why study pp collisions?

Understand production mechanism
 Reference for heavy-ion collisions

Quarkonium production in small systems: open questions

Proton

Underlying Event

Outgoing Parto

Outgoing Part

- Hints of collective behaviors in small systems at high multiplicity
 - Near-side ridge
 - Anisotropic flow of light and heavy-flavor particles
- Opens up two questions
 - Are there collective effects on heavy quarks in high multiplicity pp collisions? ALICE result: J/ψ elliptic flow in small systems
 - Collective-like effects due to MPI or QGP droplets? ALICE result: J/ψ pair production in pp collisions (quarkonium measurements as a function of multiplicity)
 - Quarkonium production: interplay between soft and hard processes ALICE result: Inclusive $\psi(2S)$ to J/ ψ ratio at midrapidity ALICE result: J/ψ fragmentation function in pp collisions (quarkonium production cross section and polarization)

Phys. Lett. B 719 (2013) 29-41

For ALICE quarkonium measurements as a function of multiplicity, see Chi Zhang's talk, Monday Nov 20th

Quarkonium reconstruction in ALICE

Ida Storehaug

Run 3 upgrade

Central barrel $(y < 0.9)$	TPC	Replaced readout chambers
	ITS	Increased number of layers (6 to 7) with increased granularity (MAPS)
		Decreased material budget (1.15 % to 0.35 %)
Muon arm 2.5 < y < 4	MFT	New forward tracker (MAPS) upstream of the hadron absorber

Resulting in...

- 1. Higher statistics
 - Continuous readout of Pb—Pb events at an interaction rate up to 50 kHz, $\sim 10^2$ higher for MB events than Run 2
- 2. Improved vertexing resolution in the barrel
- 3. Secondary vertexing capabilities in the muon arm

MPI@LHC, Manchester, 21.11.2023

Ida Storehaug

Small systems — a way to study production mechanisms

Inclusive $\psi(2S)$ at midrapidity in pp collisions at $\sqrt{s} = 13.6$ TeV

Inclusive $\psi(2S)$ to J/ψ ratio at midrapidity $\sigma_{\psi(2\mathrm{S})}/\sigma_{\mathrm{J/\psi}}$ from e^+e^- decay channel ALICE preliminary 0.8⊨ pp, $\sqrt{s} = 13.6 \text{ TeV}$ • At $\sqrt{s} = 13.6 \text{ TeV}$ (Run 3) Inclusive J/ ψ , ψ (2S), e⁺e⁻ channel, |y| < 0.90.7 BR uncert.: 2.2 % 0.6 In agreement with Run 2 results at Ο CGC+NRQCD (Y-Q. Ma et al.) + FONLL NRQCD (Y-Q. Ma et al.) + FONLL forward rapidity and midrapidity (with TRD 0.5 NRQCD (M. Butenschön et al.) + FONLL ICEM (V. Cheung et al.) + FONLL triggered data) 0.4 $\sigma_{\psi(2{
m S})}/\sigma_{{
m J}/\psi}$ 0.3 ALICE preliminary Inclusive J/ ψ , ψ (2S), e⁺e⁻ channel, |y| < 0.9BR uncert .: 0.2 + pp, \sqrt{s} = 13.6 TeV (minimum bias data) e⁺e⁻ channel: 2.2 % + pp. $\sqrt{s} = 13$ TeV (TRD-triggered data) u⁺u⁻ channel: 11 % 0.1 0.8 Inclusive J/ ψ , ψ (2S), $\mu^+\mu^-$ channel, 2.5 < γ < 4 + pp, √s = 13 TeV (EPJC 77 (2017) 392) 8 12 10 0.6 p_ (GeV/c) ALI-PREL-558575 0.4 Slight *p*_T-dependence expected from models 0.2 No significant rapidity dependence 6 8 10 12 14 Good description provided by ICEM $p_{_{\rm T}}$ (GeV/c) ALI-PREL-548563

Ida Storehaug

Cheung

Butens

) 042002 2011) 022003

14029

Inclusive $\psi(2S)$ to J/ ψ ratio in pp collisions at $\sqrt{s} = 13.6$ TeV

- In agreement with previous results
- No significant energy and rapidity dependence

J/ψ fragmentation function in pp collisions

J/ ψ production with **small** jet activity $(z^{\text{ch.}} \rightarrow 1)$ may indicate **early formation**

J/ ψ production with **large** jet activity ($z^{ch.} < 1$) may indicate production at **later** time scales

Separation of **prompt** charmonium and **nor prompt** charmonium from *b*-hadron decay based on pseudoproper decay length

J/ψ fragmentation function in pp collisions

J/ψ fragmentation function

- Prompt and non-prompt J/ψ fragmentation function similar within uncertainties
- Comparison to models are needed: fragmentation function is **particularly sensitive** to the chosen jet $p_{\rm T}$ range

Phys. Lett. B 719 (2013) 29-41

Small systems — a way to study MPI and collective effects

J/ψ elliptic flow in small systems

 $\frac{\mathrm{d}N}{\mathrm{d}\varphi_{\alpha}} \propto 1 + 2\sum_{n} \left[v_{n,\alpha} \cos n(\varphi_{\alpha} - \Psi_{n}) \right]$

- Elliptic flow: a probe of collectivity
- $J/\psi v_2$ in **pp compatible with 0**, contrary to larger systems
 - p-Pb: $v_2 > 0$ for $p_T > 4$ GeV/c
 - Pb-Pb: $v_2 > 0$ for $p_T > 1$ GeV/*c*

J/ ψ pair production in pp collisions Phys. Rev. C 108 (2023) 045203

Double quarkonium as probe to...

- J/ψ production mechanism pair production provides stringent tests of model calculations
- **DPS and partonic structure of proton**: transverse overlap function ~ σ_{eff} .

AIP Conf. Proc. 1523 (2013) 1

Consistent with measured LHCb cross section, with two caveats

- Inclusive J/ψ measured
 in ALICE vs prompt J/ψ
 measured by LHCb
- Slightly different rapidity intervals

	Cross sections (nb)		
ALICE	$10.3 \pm 2.3(\text{stat.}) \pm 1.3(\text{syst.})$		
LHCb	15.2 ± 1.0 (stat.) ± 0.9 (syst.)		

LHCb: JHEP 06 (2017) 047

MPI@LHC, Manchester, 21.11.2023

Ida Storehaug

Conclusions

- Small collision systems as a way to study production mechanism
 - First ALICE measurement of $\psi(2S)$ at midrapidity: $\psi(2S)$ to J/ψ ratio in agreement with previous results \rightarrow no rapidity dependence, slight p_T dependence
 - Similar J/ ψ fragmentation functions for prompt and non-prompt J/ ψ
- Small collision systems as a way to study MPI and collectivity
 - $J/\psi v_2$ in pp collisions does not show collective effects within uncertainties
 - J/ ψ pair production provides important insight into MPI \rightarrow results in agreement with LHCb

Backup slides

Inclusive $\psi(2S)$ to J/ ψ ratio in pp collisions at $\sqrt{s} = 13$ TeV

- Inclusive $\psi(2S)$ production at **forward rapidity** shows a **linear dependence** with midrapidity multiplicity
 - $\circ~$ Well described by PYTHIA, with/without color reconnection, with some tension at high multiplicity
- $\psi(2S)$ to J/ψ double ratio compatible with unity \rightarrow production at forward rapidity independent of charmonium state
 - \circ Comover model in agreement with data within uncertainties, tension with PYTHIA at low multiplicity

J/ψ fragmentation function in pp collisions: CMS results

- Naive expectation:
 - Prompt J/ ψ produced in singlet state (early formation) will have a higher $\langle z^{ch.} \rangle$
 - Prompt J/ ψ produced in octet state will have a lower $\langle z^{ch.} \rangle$
 - Non-prompt J/ ψ are produced from b hadrons \rightarrow gluon emission \rightarrow lower $\langle z^{ch.} \rangle$
- Possible interpretation of CMS results: prompt J/ψ are primarily produced in CO state / late formation time

Quarkonium production: models

- NRQCD Phys. Rev. Lett. 106 (2011) 042002
 - Combination of color-singlet and color-octet (CO) state
 - Color neutralization of the CO state is treated as a non-perturbative process.
- ICEM Phys.Rev.D 94 (2016) 11, 114029
 - Production cross section of a charmonium state is proportional to the $c\bar{c}$ cross section, integrated between the mass of the charmonium and twice the mass of the lightest D meson
 - invariant mass of the intermediate heavy quark-antiquark pair can be larger than the mass of produced quarkonium
- PYTHIA 8.2. with Color Reconnection JHEP08 (2015)003
 - Combination of *initial* and *final state effects*
 - Final state effect at play with MPI where strings are merged based on a QCD full color flow calculation with a loose modeling of dynamical effect via a global saturation
- Comover model PBL 731 (2014) 57, JHEP 10 (2018) 094
 - Quarkonia dissociated in final state by interactions with comoving particles