Recent results on soft and hard diffraction at the LHC

Christophe Royon University of Kansas, Lawrence, USA MPI 2023, Manchester, UK

November 20-24 2023

- Soft diffraction: Total cross section and elastic interactions
- Odderon discovery
- Exclusive production of low mass pion pairs
- Hard diffraction: jet gap jets

Elastic scattering at the LHC

- We want to study elastic interactions: $pp \rightarrow pp$
- These are very clean events, where nothing is produced outside the two protons
- How to detect/measure these events? We measure the intact protons after interaction in TOTEM or ATLAS/ALFA!
- Interactions explained by the exchange of a colorless object (\geq 2 gluons, photon, etc...) between the two protons

Analysis methods in TOTEM: total cross section

- N_{inel} measured using forward TOTEM telescopes, and N_{el} from the roman pots
- Known equations (Optical theorem) (ρ : ratio of real/Imaginary part of cross section)

$$L\sigma_{tot}^{2} = \frac{16\pi}{1+\rho^{2}} (dN_{el}/dt)_{t=0}$$
$$L\sigma_{tot} = N_{el} + N_{inel}$$

- Different methods to measure the total cross section
 - Lumi independent measurement

$$\sigma_{tot} = rac{16\pi}{(1+
ho^2)} rac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$$

• Lumi dependent measurement (elastic only)

$$\sigma_{tot}^2 = rac{16\pi}{(1+
ho^2)}rac{1}{L}(dN_{el}/dt)_{t=0}$$

• ρ independent measurement $\sigma_{tot} = \sigma_{el} + \sigma_{inel}$

Elastic, Inelastic and Total cross section at 7, 8 and 13 TeV (TOTEM)

- Independent methods with different precision/systematics lead to similar results on elastic, inelastic and total cross sections
- In addition, at 13 TeV, total cross section using lumi independent method for β* = 90m:
 - $\sigma_{tot} = 110.6 \pm 3.4$ mb,
 - $\sigma_{\it el}=$ 31.0 \pm 1.7mb,
 - $\sigma_{\textit{inel}} = 79.5 \pm 1.8 \text{mb}$
- ρ measurement using $\beta^* = 2500m$ data

Elastic, inelastic, total cross section measurements (ATLAS/ALFA and TOTEM)

- High precision measurement of elastic, inelastic and total cross sections
- Measurements in agreement with cosmic-ray data (large error bars though)
- ATLAS \sim 2 σ lower than TOTEM at 8 and 13 TeV: differences due to luminosity measurements?

Recent results on soft and hard diffraction at the LHC

TOTEM elastic $pp \ d\sigma/dt$ cross section measurements

- Elastic *pp* $d\sigma/dt$ measurements: tag both intact protons in TOTEM Roman Pots 2.76, 7, 8 and 13 TeV
- Very precise measurements at 2.76, 7, 8 and 13 TeV: Eur. Phys. J. C 80 (2020) no.2, 91; EPL 95 (2011) no. 41004; Nucl. Phys. B 899 (2015) 527; Eur. Phys. J. C79 (2019) no.10, 861

Implication of elastic cross section measurements: B slope at 13 TeV

- B slope of $d\sigma/dt$: larger slope at 13 TeV
- Linear behavior (Ins) compatible for $\sqrt{s} < 3$ TeV, incompatible at higher energy
- The increase of σ_{el}/σ_{tot} with energy is confirmed at LHC
- ATLAS Coll., Eur. Phys. J. C 83 (2023) 441

ρ measurement (TOTEM and ATLAS/ALFA)

• Measure elastic scattering at very low t: Coulomb-Nuclear interference region

$$rac{d\sigma}{dt} \sim |A^{C} + A^{N}(1 - lpha G(t))|^{2}$$

- The differential cross section is sensitive to the phase of the nuclear amplitude
- In the CNI region, both the modulus and the phase of the nuclear amplitude can be used to determine $\rho = \frac{Re(A^N(0))}{Im(A^N(0))}$ where the modulus is constrained by the measurement in the hadronic region and the phase by the t dependence

ρ measurement at 13 TeV (TOTEM and ATLAS/ALFA)

- $\bullet~\rho$ is the ratio of the imaginary and real part of the total cross section
- Using low |t| data, measurement of ρ at 13 TeV: $\rho = 0.09 \pm 0.01$ (TOTEM, EPJC 79 (2019) 785)
- ATLAS: 0.098 ± 0.011 (EPJC 83 (2023) 441)
- ρ value at 13 TeV clearly below expectations (COMPETE fits as an example)
- Can be explained by the exchange of Odderon in addition to Pomeron

The odderon in a nutshell

- Let us assume that elastic scattering can be due to exchange of colorless objects: Pomeron and Odderon
- Charge parity C: Charge conjugation changes the sign of all quantum charges

- Pomeron and Odderon correspond to positive and negative C parity: Pomeron is made of two gluons which leads to a +1 parity whereas the odderon is made of 3 gluons corresponding to a -1 parity
- Scattering amplitudes can be written as:

 $A_{pp} = Even + Odd$ $A_{p\bar{p}} = Even - Odd$

 From the equations above, it is clear that observing a difference between *pp* and *pp̄* interactions would be a clear way to observe the odderon

D0 elastic $p\bar{p} \ d\sigma/dt$ cross section measurements

- D0 collected elastic pp̄ data with intact p and p̄ detected in the Forward Proton Detector with 31 nb⁻¹ Phys. Rev. D 86 (2012) 012009
- Measurement of elastic $p\bar{p} \ d\sigma/dt$ at 1.96 TeV for 0.26 < |t| < 1.2 GeV²

Predictions at $\sqrt{s} = 1.96$ TeV

- Reference points at 1.96 TeV (extrapolating TOTEM data) and 1σ uncertainty band
- Comparison with D0 data: the χ^2 test with six degrees of freedom yields the *p*-value of 0.00061, corresponding to a significance of 3.4 σ
- Combination with independent evidence of the odderon using ρ and total cross section measurements at low t: combined significance ranges from **5.3 to 5.7** σ **depending on the model**
- TOTEM and D0: PRL 127 (2021) 062003

Central exclusive production

- Measurement of central exclusive production of pair of particles
- Measure both intact protons in TOTEM or in ATLAS-ALFA and pions in ATLAS/CMS
- Background can be controlled by matching the proton and CMS/ATLAS measurements: $M_{pp} = M_{central}, y_{pp} = y_{central}$

Dipion central exclusive production (ATLAS)

Non-resonant exclusive dipion production (CMS/TOTEM)

CMS-PAS-SMP-21-004 ; TOTEM-NOTE-2023-001

- Non-resonant exclusive di-pion production: Very clean events, 2 pions measured in CMS and 2 protons in TOTEM
- $pp \rightarrow p\pi\pi p$
- Sum of proton transverse momentum $(p_{X,Y}^{TOTEM})$ versus sum of charged particles in tracker $(p_{X,Y}^{CMS})$
- Allows to select very pure sample
- Require diproton and dipion p_x and p_y to match (Σ₄p_x ~ 0 and Σ₄p_y ~ 0)
- Main background: elastic with inelastic pileup

Recent results on soft and hard diffraction at the LHC

Non-resonant exclusive dipion production (CMS/TOTEM)

- Variables studied: m_{π+π-}, proton p_T and φ (2-proton azimuthal angle difference)
- Focus on non-resonant region: $0.35 < m_{\pi\pi} < 0.65~{\rm GeV}$
- First observation of parabolic minimum in ϕ
- Study nucleon-pomeron and meson-pomeron couplings in different models with different form factors
- Two channel model favored
- Remarkable agreement with DIME model

Mueller Tang: Gap between jets at the Tevatron and the LHC

- Looking for a gap between two jets: Region in rapidity devoid of any particle production, energy in detector
- Exchange of a BFKL Pomeron between the two jets: two-gluon exchange in order to neutralize color flow
- Method to test BFKL resummation: Implementation of BFKL NLL formalism in HERWIG/PYTHIA Monte Carlo

LHC: Measurement of jet gap jet fraction (CMS)

- Measurement of fraction of jet gap jet events as a function of jet Δη, p_T, ΔΦ (Phys.Rev.D 104 (2021) 032009)
- Comparison with NLL BFKL (with LO impact factors) as implemented in PYTHIA, and soft color interaction based models (Ingelman et al.)
- Disagreement between BFKL and measurements ($\Delta\eta$ dependence): Sensitivity to ISR

Another kind of events: Jet gap jet events in diffraction (CMS/TOTEM)

- Jet gap jet events: powerful test of BFKL resummation C. Marquet, C. Royon, M. Trzebinski, R. Zlebcík, Phys. Rev. D 87 (2013) 3, 034010
- Subsample of gap between jets events requesting in addition at least one intact proton on either side of CMS
- Jet gap jet events were observed for the 1st time by CMS! (Phys.Rev.D 104 (2021) 032009)

First observation of jet gap jet events in diffraction (CMS/TOTEM)

- \bullet First observation: 11 events observed with a gap between jets and at least one proton tagged with $\sim 0.7~{\rm pb}^{-1}$
- Leads to very clean events for jet gap jets since MPI are suppressed and might be the "ideal" way to probe BFKL
- Would benefit from more stats $>10 \text{ pb}^{-1}$ needed, 100 for DPE

- Total and elastic cross sections measured by the TOTEM/ATLAS-ALFA collaborations: non-exponential behavior of $d\sigma/dt$, discrepancy of $\sim 2\sigma$ between both collaborations
- pp and $p\bar{p}$ cross sections differ with a significance of 3.4 σ in a model-independent way and thus provides evidence for the odderon (D0-TOTEM)
- When combined with ρ and total cross section results at 13 TeV, the significance 5.3 to 5.7σ
- Measurements of exclusive dipions by ATLAS and CMS-TOTEM: MC tuning
- Jet gap jet measurements (test of BFKL) and first observation of jet gap jets in diffraction

Strategy to compare pp and $p\bar{p}$ data sets

- In order to identify differences between pp and pp̄ elastic dσ/dt data, we need to compare TOTEM measurements at 2.76, 7, 8, 13 TeV and D0 measurements at 1.96 TeV
- All TOTEM dσ/dt measurements show the same features, namely the presence of a dip and a bump in data, whereas D0 data do not show this feature

Reference points of elastic $d\sigma/dt$

• Define 8 characteristic points of elastic pp $d\sigma/dt$ cross sections (dip, bump...) that are feature of elastic pp interactions

- Determine how the values of |t| and $d\sigma/dt$ of characteristic points vary as a function of \sqrt{s} in order to predict their values at 1.96 TeV
- We use data points closest to those characteristic points (avoiding model-dependent fits)
- Data bins are merged in case there are two adjacent dip or bump points of about equal value
- This gives a distribution of t and $d\sigma/dt$ values as a function of \sqrt{s} for all characteristic points

Variation of t and $d\sigma/dt$ values for reference points

 $|t| = a \log(\sqrt{s} [\text{TeV}]) + b$ $(d\sigma/dt) = c\sqrt{s} [\text{TeV}] + d$

Paramotor	Exponential	Orear ture	Power law	DDME 1 / 2
ampirical model	Exponential	Orear-type	rower-law	DIME 1/2
empirical model		0.725 0.015		
$u_{\text{ore}}[\text{GeV}]$	1 004 1 0 004	0.735 ± 0.015	1 254 1 2 201	
b _{exp/ore/pow} [GeV ⁻²⁰⁷]	1.084 ± 0.004	1.782 ± 0.014	1.356 ± 0.001	
$B_{\mathbb{P}} [\text{GeV}^{-2}]$	3.757 ± 0.033	3.934 ± 0.027	4.159 ± 0.019	
χ^2/dof	9470/5796	10059/5795	11409/5796	
one-channel model				
$\sigma_0[mb]$	34.99 ± 0.79	27.98 ± 0.40	26.87 ± 0.30	
$\alpha_P - 1$	0.129 ± 0.002	0.127 ± 0.001	0.134 ± 0.001	
α'_{P} [GeV ⁻²]	0.084 ± 0.005	0.034 ± 0.002	0.037 ± 0.002	
aore [GeV]		0.578 ± 0.022		
b _{exp/ore/pow} [GeV ^{-2 or -1}]	0.820 ± 0.011	1.385 ± 0.015	1.222 ± 0.004	
$B_{\rm IP} [{\rm GeV}^{-2}]$	2.745 ± 0.046	4.271 ± 0.021	4.072 ± 0.017	
χ^2/dof	7356/5793	7448/5792	8339/5793	
two-channel model				
$\sigma_0[mb]$	20.97 ± 0.48	22.89 ± 0.17	23.02 ± 0.23	23 / 33
$\alpha_P - 1$	0.136 ± 0.001	0.129 ± 0.001	0.131 ± 0.001	0.13 / 0.115
$\alpha'_p [\text{GeV}^{-2}]$	0.078 ± 0.001	0.075 ± 0.001	0.071 ± 0.001	0.08 / 0.11
a _{ore} [GeV]	_	0.718 ± 0.012		
been or the been been been been been been been be	0.917 ± 0.007	1.517 ± 0.008	0.931 ± 0.002	0.45
$\Delta a ^2$	0.070 ± 0.026	-0.058 ± 0.009	0.042 ± 0.011	-0.04 / -0.25
$\Delta \gamma$	0.052 ± 0.042	0.131 ± 0.018	0.273 ± 0.023	0.55 / 0.4
$b_1 [\text{GeV}^2]$	8.438 ± 0.108	8.951 ± 0.041	8.877 ± 0.040	8.5 / 8.0
c_1 [GeV ²]	0.298 ± 0.012	0.278 ± 0.004	0.266 ± 0.006	0.18 / 0.18
d	0.472 ± 0.007	0.465 ± 0.002	0.465 ± 0.003	0.45 / 0.63
$b_2 [\text{GeV}^2]$	4.982 ± 0.133	4.222 ± 0.052	4.780 ± 0.060	4.5 / 6.0
$c_2 [\text{GeV}^2]$	0.542 ± 0.015	0.522 ± 0.006	0.615 ± 0.006	0.58 / 0.58
d ₂	0.453 ± 0.009	0.452 ± 0.003	0.431 ± 0.004	0.45 / 0.47
χ^2/dof	5741/5786	6415/5785	7879/5786	

- Two channel model favored
- Remarkable agreement with DIME model

Central exclusive production (CMS/TOTEM)

• $pp \rightarrow p\pi\pi p$

- Sum of proton transverse momentum $(p_{X,Y}^{TOTEM})$ versus sum of charged particles in tracker $(p_{X,Y}^{CMS})$
- Allows to select very pure sample

Recent results on soft and hard diffraction at the LHC

Jet gap jet measurements at the LHC (CMS@13 TeV)

- Implementation of BFKL NLL formalism in Pythia and compute jet gap jet fraction
- Dijet cross section computed using POWHEG and PYTHIA8
- Three definitions of gap: theory (pure BFKL), experimental (no charged particle above 200 MeV in the gap $-1 < \eta < 1$) and strict gap (no particle above 1 MeV in the gap region) (C. Baldenegro, P. Gonzalez Duran, M. Klasen, C. Royon, J. Salomon, JHEP 08 (2022) 250); CMS data: Phys.Rev.D 104 (2021) 032009
- Two different CMS tunes: CP1 without MPI, CP5 with MPI

Charged particle distribution

- Disitribution of charged particles from PYTHIA in the gap region $-1 < \eta < 1$ with ISR ON (left) and OFF (right)
- Particles emitted at large angle with $p_T > 200$ MeV from initial state radiation have large influence on the gap presence or not, and this on the gap definition (experimental or strict)