Two-photon fusion processes at ATLAS + CMS

Image by Shutterstock

Lydia Beresford on behalf of the ATLAS & CMS collaborations MPI@LHC 2023 20-24 November 2023

The LHC as a photon collider

Surrounding electromagnetic field \rightarrow Coherent flux of photons

Photon-photon collision!

Lydia Beresford

Budnev et al Phys.Rept. 15 (1975) 181-281

LHC collisions

LHC Run 2 2015-2018

Lydia Beresford

3

Broadband photon collider

Head-on Pb+Pb collision

2018-11-14 18:05:31 CEST

 $p_{\rm T}^{\mu} = 11.7 \,\,{\rm GeV}$

Ultra-peripheral Pb+Pb collision

5

ATLAS forward detectors & LHCf

Diagram by Jesse Liu

ATLAS Pb+Pb UPC $\gamma\gamma \rightarrow \mu\mu$

PRC 104 (2021) 024906

Goal: Study γ flux & dependence on neutron emission

Use ZDC to categorise events:

OnOn no neutrons in ZDCs, **OnXn** no neutrons in one, ≥ 1 in other, **XnXn** ≥ 1 neutron in both

CMS Pb+Pb UPC $\gamma\gamma \rightarrow \mu\mu$

Goal: Study γ flux & dependence on neutron emission

ATLAS Pb+Pb non-UPC $\gamma\gamma \rightarrow \mu\mu$ PRC 107 (2023) 054907

Acoplanarity & k_{\perp} broadening for less peripheral collisions

UPC: peaked at zero
More central Pb+Pb:
peaked away from zero

Is it due to muons being deflected in magnetic fields generated in QGP?

Prediction from PRL 122 132301: Broadening would vary as $tanh |\Delta y|$ (suppression near $k_{\perp} = 0$ greater for larger $|\Delta y|$)

No strong dependence on $|\Delta y|$ observed

$$k_{\perp} \equiv \frac{1}{2} (p_{\mathrm{T}_{1}} + p_{\mathrm{T}_{2}}) (\pi - |\phi_{1} - \phi_{2}|) = \pi \alpha \bar{p}_{\mathrm{T}}$$

ATLAS Pb+Pb UPC $\gamma\gamma \rightarrow ee$

Goal: Study γ flux & dependence on neutron emission

Measure cross-section after subtracting dissociation, Υ & $\tau\tau$

For inclusive ZDC (All) & 0n0n:

- STARlight underestimates Esp. at high $|y_{ee}|$ as require $b_{i\perp} > R_A$
- SuperChic overestimates

JHEP 06 (2023) 182

Pb

Pb

SPP 11 064 (2021)

Pb

ATLAS & CMS Pb+Pb UPC $\gamma\gamma \rightarrow \tau\tau$

Goal: measure the tau anomalous magnetic moment 'g-2'

Spin 1/2 charged particles magnetic moment: $\mu = g \frac{q}{2m} \mathbf{S}$

Anomalous magnetic moment: $a = \frac{(g-2)}{2}$

ATLAS & CMS Pb+Pb UPC $\gamma\gamma \rightarrow \tau\tau$

 $\gamma\gamma \rightarrow \tau\tau$ cross-section & lepton p_T sensitive to tau g-2

ATLAS: 2018 data ~1.5 nb⁻¹

CMS: 2015 data ~0.5 nb⁻¹

 μ +3 tracks (μ p_T > 2.5 GeV)

 $e\mu$, μ +1 track & μ +3 tracks (μ p_T > 4 GeV)

- Measure differentially in muon p⊤
- Constrain γ -flux in $\gamma\gamma \rightarrow \mu\mu$ CR

ATLAS & CMS clear observation of $\gamma\gamma \rightarrow \tau\tau$ in Pb+Pb

CMS Pb+Pb UPC $\gamma\gamma \rightarrow \tau\tau$

Cross-section measurement of $\gamma\gamma \rightarrow \tau\tau$

$$a_{ au} = 0.001^{+0.055}_{-0.089}$$
 at 68% CL

ATLAS Pb+Pb UPC $\gamma\gamma \rightarrow \tau\tau$

ATLAS constraints competitive with DELPHI

ATLAS & CMS set first new constraints on a_{τ} since 2004 For both ATLAS & CMS statistical uncertainty dominates First measurements of τ leptons in heavy ion collisions Lydia Beresford

ATLAS & CMS Pb+Pb UPC $\gamma\gamma \rightarrow \gamma\gamma$ JHEP 03 (2019) 134826 JHEP 03 (2021) 243

SM light-by-light scattering discovered at ATLAS

BSM Axion-Like-Particle (ALP)

Look for narrow resonance in $m_{\gamma\gamma}$ ATLAS: $E_{\gamma} > 2.5$ GeV, CMS: $E_{\gamma} > 2$ GeV 15

Run Number: 304431, Event Number: 220654830

Date: 2016-07-25 05:01:07 UTC

Head-on pp collision

Photon-fusion pp collision

ATLAS pp $\gamma\gamma \rightarrow WW$ leptonic

PLB 816 (2021) 136190

8.4 σ significance

 $\sigma_{\rm meas} = 3.13 \pm 0.31 ({\rm stat.}) \pm 0.28 ({\rm syst.}) {\rm fb}$

Sensitive to anomalous gauge self-interactions

Key variable

Lydia Beresford

ATLAS γγ→WW $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ $p_{\tau}^{e\mu}$ > 30 GeV aq→WW Other qq initiated Non-prompt Drell-Yan Total uncertainty Data / Pred. 0.8 0.6 3 0 2 4 Number of reconstructed tracks, n_{trk}

ATLAS forward detectors & LHCf

Diagram by Jesse Liu

ATLAS & CMS pp $\gamma\gamma \rightarrow ll$ + AFP/PPS

CMS pp ll + **p:** 1st observation using CMS-PPS <u>JHEP 07 (2018) 153</u> **ATLAS** $eel\mu\mu$ + **p:** observation & 1st σ measurement <u>PRL 125 (2020) 261801</u>

CMS pp $Z/\gamma + X$ + PPS

Search for $Z/\gamma + X + pp$ events

Use novel info from both intact protons

- \rightarrow Total reconstructed mass
- \rightarrow Calculate mass of X (missing mass)
- X could be invisible, not-reconstructed

$\mathbf{CMS} \operatorname{pp} \gamma \gamma \to VV \operatorname{hadronic} + \mathbf{PPS}$

Targets high mass, hadronic WW/ZZ + pp

Standard Model:

- ZZ not allowed at tree level
- WW mainly at low mass (negligible here)

Sensitive to BSM e.g. anomalous QGC 2 Large-R (0.8) jets + proton on either side

kinematic matching to reject bkg

 p_2 p_2 p_2 p_2 p_2 p_1 p_2 p_2 p_2 p_2 p_2 p_2 p_2 p_2 p_3 p_4 p_4

- 1st limits via $yy \rightarrow ZZ$ production
- Dim-6 yyWW aQCG: 15-20x tighter than Run 1 limits w/o protons
- Dim-8 results close to CMS ssWW & WZ 13 TeV results after unitarisation
- Fiducial cross-section limits

See backup for search for exclusive $t\overline{t}$ + pp by CMS

ATLAS & CMS pp $\gamma\gamma \rightarrow \gamma\gamma$ + **AFP/PPS**

<u>JHEP 07 (2023) 234</u> <u>arxiv 2311.02725</u>

Search for: $\gamma\gamma + p$ (ATLAS); $\gamma\gamma + pp$ (CMS) Kinematic matching to reject bkg

ATLAS 7x smaller dataset but profits from single proton requirement

Summary

Broad range of interesting two-photon fusion results

Typically statistically limited \rightarrow Big gains for larger dataset

More p+p & heavy ion data being recorded! (2023 Pb+Pb data already doubles existing dataset)

See Orlando Villalobos Baillie talk for more

Image by Shutterstock

Backup

ATLAS Pb+Pb non-UPC $\gamma\gamma \rightarrow \mu\mu$

Acoplanarity broadening for less peripheral collisions

ATLAS Pb+Pb non-UPC $\gamma\gamma \rightarrow \mu\mu$

k_{\perp} broadening for less peripheral collisions

ATLAS Pb+Pb UPC $\gamma\gamma \rightarrow ee$

Lydia Beresford

JHEP 06 (2023) 182

ATLAS Pb+Pb UPC BSM Tau g-2

Re-weight SM signal MC to BSM a_{τ} values based on <u>PLB 2020 135682</u> 3D weighting in $m_{\tau\tau}$, $|y_{\tau\tau}|$, $|\Delta\eta_{\tau\tau}|$ Calculations based on same parametrisation as LEP

CMS Pb+Pb UPC Tau g-2

ATLAS pp $\gamma\gamma \rightarrow ll + AFP$

1st LHC cross-section measurements for this process with a tagged proton

$\sigma_{\mathrm{HERWIG+LPAIR}} imes S_{\mathrm{surv}}$	$\sigma_{ee+p}^{ ext{fid.}}$ (fb)	$\sigma_{\mu\mu+p}^{ ext{fid.}}$ (fb)
$S_{\rm surv} = 1$	15.5 ± 1.2	13.5 ± 1.1
S_{surv} using Refs. [33,34]	10.9 ± 0.8	9.4 ± 0.7
SUPERCHIC 4 [97]	12.2 ± 0.9	10.4 ± 0.7
Measurement	11.0 ± 2.9	7.2 ± 1.8

Fiducial cross-sections $\xi \in [0.035, 0.08]$ compared to proton soft survival models

[33] Harland-Lang et al EPJC 76 (2016) 9[34] Dyndal & Schoffel PLB 741 (2015) 66[97] Harland-Lang et al EPJC 80, 925 (2020)

Slight undershoot of data wrt to Superchic 4, especially for $\mu\mu$

CMS pp $Z/\gamma + X + PPS$

Search for $Z/\gamma + X$ events Use novel info from both intact protons

- \rightarrow Total reconstructed mass
- \rightarrow Calculate mass of X (missing mass)

X could be invisible, not-reconstructed

The missing mass is defined as:

$$m_{\rm miss}^2 = \left[(P_{\rm p_1}^{\rm in} + P_{\rm p_2}^{\rm in}) - (P_{\rm V} + P_{\rm p_1}^{\rm out} + P_{\rm p_2}^{\rm out}) \right]^2, \qquad (1)$$

where P_V is the four-momentum of the boson and $P_{p_i}^{out,in}$ (*i* = 1, 2) are the four-momenta of the outgoing and incoming protons, respectively.

CMS pp $\gamma\gamma \rightarrow \gamma\gamma$ + **PPS**

<u>CMS-PAS-EXO-21-007</u>

$$\mathcal{L}_{4\gamma} = \zeta_1 F_{\mu\nu} F^{\mu\nu} F_{\rho\sigma} F^{\rho\sigma} + \zeta_2 F_{\mu\nu} F^{\nu\rho} F_{\rho\lambda} F^{\lambda\mu}$$

CMS pp $\gamma\gamma \rightarrow t\bar{t} + PPS$

1st search for exclusive $t\bar{t}$ + pp

Not expected to be sensitive to SM production (~0.2 fb in PPS acceptance)

Focus on two channels: $\ell\ell \& \ell$ +jets

Kinematic fitter to improve resolution of $t\overline{t}$ kinematic variables

BDT for signal vs bkg separation \rightarrow Fit BDT score & extract upper limits

Upper limit of 0.59 pb⁻¹ at 95% CL

2310.11231

CMS PPS

