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Part 1: QCD in the high-energy limit



HIGH-ENERGY LOGARITHMS
At each order in perturbative QCD, large logarithms arise when the centre of mass energy is much greater than 
the transverse momenta of the produced partons. 
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Consider the partonic cross section for inclusive dijet production:

We need to sum the whole tower of logarithms in order to restore stability to perturbative predictions.
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REGGE LIMIT OF 2→2 SCATTERING AT LO
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In the Regge limit the LO QCD amplitudes takes a simple factorised form:

where the so-called impact factors are simple helicity conserving phases: [1]
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In the Regge limit the LO QCD amplitudes takes a simple factorised form:

where the so-called impact factors are simple helicity conserving phases: [1]

Quark scattering is similarly described, but with fundamental generators in place of the adjoint ones: [2]
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In the Regge limit the LO QCD amplitudes takes a simple factorised form:

where the so-called impact factors are simple helicity conserving phases: [1]

Quark scattering is similarly described, but with fundamental generators in place of the adjoint ones: [2]

For all channels (𝑔𝑔 → 𝑔𝑔, 𝑞𝑔 → 𝑞𝑔, 𝑞𝑄 → 𝑞𝑄	etc.), the leading-power amplitudes are described by antisymmetric 
octet exchange 𝟖& in the 𝑡-channel, and have only a simple pole in 𝑞' ". 

C
(0)
ggg∗(p⊕2 , p

"
3 , q) = gsf

a2a3c(1)

2Our spinor phase conventions follow [1] hep-ph/9503340 & [2] hep-ph/9605404: V. Del Duca

𝑝" 𝑝#

𝑝! 𝑝$

𝑞

∗

C
(0)
q̄qg∗(p⊕2 , p

"
3 , q) = gsT

c
i3i2

(1)
∗

∗

∗

C
(0)
g∗gg

(−q, p⊕4 , p
"
1 ) = gsf

a4a1c

(

−
p∗4⊥
p4⊥

)

∗

C
(0)
g∗q̄q(−q, p⊕4 , p

"
1 ) = gsT

c
i1i4

(

p∗4⊥
p4⊥

)
1

2



REGGE LIMIT OF 2→2 SCATTERING AT NLO

At loop level we might have expected other representations to be exchanged in the 𝑡-channel. For the example of  
gg→gg scattering, naively we might have expected any of the following representations,

8a ⊗ 8a = 1⊕ 8a ⊕ 8s ⊕ 10⊕ 10⊕ 27 .

3[2] Sov. J. Nucl. Phys. 23 (1976) , Lipatov 



However, in the Regge limit, the one-loop correction to the amplitude does not alter the colour structure:
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However, in the Regge limit, the one-loop correction to the amplitude does not alter the colour structure:

REGGE LIMIT OF 2→2 SCATTERING AT NLO

The LL contribution from the loop integration appears with the transverse function known as the Regge trajectory [2]:

At loop level we might have expected other representations to be exchanged in the 𝑡-channel. For the example of  
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REGGE LIMIT OF 2→2 SCATTERING TO ALL ORDERS

In the Regge limit, it is found that the virtual corrections simply exponentiate to all orders: [3]

4[3] Sov. Phys. JETP, Vol.44, No. 3 (1976) Kuraev, Lipatov, Fadin
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In the Regge limit, it is found that the virtual corrections simply exponentiate to all orders: [3]

This exponential can be interpreted as a modification of the gluon propagator, known as gluon Reggeisation:
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REGGE LIMIT OF 2→2 SCATTERING TO ALL ORDERS

In the Regge limit, it is found that the virtual corrections simply exponentiate to all orders: [3]

This exponential can be interpreted as a modification of the gluon propagator, known as gluon Reggeisation:

In order to find the LL behaviour of the cross section we must also study real emissions. 
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REGGE LIMIT OF 2→3 SCATTERING AT LO

where the contribution of all gluon emissions is given by the effective Lipatov vertex [2]:

The LL contribution from the phase-space integration of an additional real emission comes from the Multi-Regge 
Kinematic (MRK) region: 

y3 ! y4 ! y5, |p3⊥| ≈ |p4⊥| ≈ |p5⊥|

At LO the amplitude again has a simple factorised form:
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Again, we see that the amplitude is governed by the exchange of gluon quantum numbers in the 𝑡! and 𝑡" channels. 

[2] Sov. J. Nucl. Phys. 23 (1976) , Lipatov 
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The 2 → 𝑛 amplitude in QCD is described to all orders by: [3]
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This was the form from which the BFKL equation was first derived [4]. 

The 2 → 𝑛 amplitude in QCD is described to all orders by: [3]
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This observation is also the starting point of HEJ, although from this point the two 
approaches diverge.

σAB→X =
∑
f1,f2

∫ 1

0

dx1 dx2ff1/A (x1) ff2/B (x2) σ̂f1f2

We would like to clarify how these approaches differ in the treatment of logarithmic corrections to the cross 
section within collinear factorisation.



[5] hep-ph/9807528: Fadin, [6] 0910.5113: Andersen, Smillie

One way to derive the BFKL equation is to combine the Regge-factorised amplitudes with s-channel unitarity [5]
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A Mellin transform allows the longitudinal integrals to be performed analytically over MRK phase space.

The central physics is captured by the gluon Green’s function, 𝐺/ 	, which obeys a recursive integral 
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On the other hand, the starting point of HEJ [6] is to only use a 
Regge-factorised approximation to amplitudes to compute the 
partonic cross section directly:
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There are many benefits to performing the phase space numerically, not 
least the fact that the momentum fractions can be reconstructed exactly.

2

Other benefits: LO matching, exclusive observables, cuts, interfacing with standard HE tools such as Rivet.    

7



Part 2: Amplitudes in HEJ



2→2 AT LO REVISITED: QUARK SCATTERING
Consider the Feynman diagrams for the scattering of qQ → qQ.  Only a single diagram contributes:

MqQ→qQ =
[
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ı3 ı̄2 ū (p3) γ
µAu (−p2)

]

×
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−igµAµB
δaAaB

t

]

×
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i4 ı̄1
ū (p4) γ

µBu (−p1)
]

We see that the amplitude already has the high-energy factorised form, without any kinematic approximations. 

8[7] hep-ph/0601117: Fadin, Bogdan, [8] 0910.5113: Andersen, Smillie.
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t
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]

We see that the amplitude already has the high-energy factorised form, without any kinematic approximations. 

This motivates us to take the impact factors to be the full quark currents: [7,8]

Note that the two forms of the impact factor agree in the strict high-energy limit:
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2→2 AT LO REVISITED: QUARK SCATTERING
Consider the Feynman diagrams for the scattering of qQ → qQ.  Only a single diagram contributes:
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ū (p4) γ

µBu (−p1)
]

We see that the amplitude already has the high-energy factorised form, without any kinematic approximations. 

This motivates us to take the impact factors to be the full quark currents: [7,8]

Note that the two forms of the impact factor agree in the strict high-energy limit:

Cµ (0)
q̄qg∗ (p⊕2 , p

"
3 , q) = gsT

c
i3i2

〈3|σµ|2]

∗

Note also that the full 4-dimensional pole in t can be retained. We do not have to approximate 

gsT
c
i3i2

〈3|σµ|2] −−−−−−−−→
p+
2 ∼p+

3 "p−

3

2pµ
2
gsT

c
i3i2

eiφ

∗∗

2p
µ

8[7] hep-ph/0601117: Fadin, Bogdan, [8] 0910.5113: Andersen, Smillie.

1

t
→

1

|q⊥|2
.



LO 2→2 REVISITED: GLUON SCATTERING
Consider the colour-ordered amplitudes for qg → qg. These are related to the qQ → qQ amplitude by a 
supersymmetric Ward identity:
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LO 2→2 REVISITED: GLUON SCATTERING
Consider the colour-ordered amplitudes for qg → qg. These are related to the qQ → qQ amplitude by a 
supersymmetric Ward identity:

It follows that each colour-ordered amplitude can be written in the Regge-factorised form, without any kinematic 
approximations. We can therefore define the following colour-ordered impact factors:

M
(0)
ggq̄q(p

⊕
2 , p

"
3 , p

⊕
4 , p

"
1 ) =

〈13〉

〈12〉
M

(0)
Q̄Qq̄q

(p⊕2 , p
"
3 , p

⊕
4 , p

"
1 )

C
µ (0)
ggg∗ (p⊕2 , p

"
3 , q) =

(

−

√

p+3
p+2

p∗3⊥
p3⊥

)

〈3|σµ|2] C
µ (0)
ggg∗ (p!3 , p

⊕
2 , q) =

(

√

p+2
p+3

p∗3⊥
p3⊥

)

〈3|σµ|2]

9



LO 2→2 REVISITED: GLUON SCATTERING
Consider the colour-ordered amplitudes for qg → qg. These are related to the qQ → qQ amplitude by a 
supersymmetric Ward identity:

It follows that each colour-ordered amplitude can be written in the Regge-factorised form, without any kinematic 
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Now considering the colour-dressed amplitude,

we see that only the antisymmetric combination of the colour factors is leading in the Regge limit. This defines the 
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For qg → qg, the colour-octet component of the LO amplitude is described exactly.



LO 2→3 REVISITED

By making minimal approximations to the amplitude for qQ → qgQ, it is possible to 
derive a form of the Lipatov vertex which retains much of the information about the LO 
amplitude: [8]
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This vertex is gauge invariant in all of phase space, not just the MKR limit. It conserves 4-momentum, not just 
transverse momentum. The vertex is symmetric with respect to −𝑝"↔ 𝑝# and −𝑝!↔ 𝑝0 which better approximates 
the pole structure of the LO amplitude.

[8] 0910.5113: Andersen, Smillie.



LO NUMERICAL COMPARISON

Comparing the two factorised approximations to amplitudes, we see the HEJ amplitudes capture much of the LO 
physics:
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Of course, HEJ matrix elements are matched point-by-point to LO matrix elements where they are available.

∆fb/2

We see that the HEJ approximation to the LO matrix element is reasonable, even within LHC phase space. 
Integrating the strict approximation would lead to a massive overestimate of the cross section.

∆fb/2
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REAL NLL CORRECTIONS IN HEJ

∗

∗

∗

∗
∗ ∗

Regulating the IR divergences of these improved vertices requires almost all of the machinery of a NLO 
calculation. We are using a minimally modified FKS subtraction to perform this regularisation. 

In the meantime, we can use these factorised expressions to improve the accuracy of HEJ by imposing jet 
clustering requirements to regulate IR divergences.

In order to move to NLL accuracy, we need both real and virtual corrections to the building blocks. We have 
recently completed the calculation of the real corrections with the minimal-approximation approach of HEJ: 

[10] 2012.10310[9] 1706.01002 [In preparation]
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The final ingredient we need is a central gg vertex. After minimal gauge invariant approximations, we find
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with vertex:
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which is written in terms of the colour-ordered vertices:

This looks complex, but the matrix-element evaluations are not computationally expensive.

The final ingredient we need is a central gg vertex. After minimal gauge invariant approximations, we find
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NUMERICAL TEST OF g*ggg* VERTEX: AMPLITUDE

Here we compare the new HEJ     vertex with the previous factorised approximations. 

We see that the MRK approximation fails to describe the NMRK phase space. The strict approximation only begins 
to converge to LO at the edge of LHC phase space.
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Mqq→qggq

How well do the factorised expressions describe LO cross sections, within LHC phase space?
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In these plots we compare the following factorised approximations to the exact LO amplitude:
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CONCLUSIONS

ONGOING PROJECTS IN HEJ
As of the latest release, HEJ supports the following processes: Process LL Extremal g Central qq

≥ 2 jets ✓ ✓ ✓
H + ≥ jet ✓ n/a n/a

H + ≥ 2 jets ✓ ✓
W + ≥ 2 jet ✓ ✓ ✓
Z/𝛾 + ≥ 2 jet ✓ ✓
W± W± + ≥ 2 jet ✓

• Merging with Pythia
• Full NLL accuracy

In this talk we have introduced the main principles of the HEJ framework, and compared it with the BFKL approach.

We reviewed several advantages of adopting Monte Carlo for phase space integration. We focused on the freedom 
to take more complicated functions as our factorised building blocks. 

This leads to improved descriptions away from the high-energy limit, while still capturing same the high-energy 
physics.
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Current ongoing projects include:

For more details see https://hej.hepforge.org/ 

[2210.10671]

[2107.06818]
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