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HIGH-ENERGY LOGARITHMS

At each order in perturbative QCD, large logarithms arise when the centre of mass energy is much greater than
the transverse momenta of the produced partons.

Consider the partonic cross section for inclusive dijet production:

t = (pp + p3)?
b2 p3
4— _>

c@ /6@ = 1

s = (p1+p2)’ cW/e® = qLel?  +  actV

D - (2 /g0 = angc(()z) +  ail ng) + agcgz)
S
LElog(__t) > 1 c® /g0 = a§’L3c((,3) + angcf’) + ag’ch) + ...
a, K1
a,L~1

We need to sum the whole tower of logarithms in order to restore stability to perturbative predictions.
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REGGE LIMIT OF 22 SCATTERING AT LO

P2 P3
\ : In the Regge limit the LO QCD amplitudes takes a simple factorised form:
q M 0) 28C( ) N A2 ) 1 C( ) (— A4 >\1)
9999 s>>_t5 ggg* \P2 ,p3 » q \q 2 g*gg\—4 Py » P
— —— where the so-called impact factors are simple helicity conserving phases: [1]
P1 4
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Our spinor phase conventions follow [1] hep-ph/9503340 & [2] hep-ph/9605404: V. Del Duca
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Quark scattering is similarly described, but with fundamental generators in place of the adjoint ones: [2]
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-~ I—» ¢ (PaL)’
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For all channels (gg = 99,99 = q9,q9Q — qQ etc.), the leading-power amplitudes are described by antisymmetric
octet exchange 8, in the t-channel, and have only a simple pole in |q, |?.

Our spinor phase conventions follow [1] hep-ph/9503340 & [2] hep-ph/9605404: V. Del Duca



REGGE LIMIT OF 22 SCATTERING AT NLO

At loop level we might have expected other representations to be exchanged in the t-channel. For the example of
gg—gg scattering, naively we might have expected any of the following representations,

8, 8, =108,88, 510810 27.

[2] Sov. J. Nucl. Phys. 23 (1976) , Lipatov
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REGGE LIMIT OF 22 SCATTERING TO ALL ORDERS

In the Regge limit, it is found that the virtual corrections simply exponentiate to all orders: [3]
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[3] Sov. Phys. JETP, Vol.44, No. 3 (1976) Kuraey, Lipatov, Fadin
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This exponential can be interpreted as a modification of the gluon propagator, known as gluon Reggeisation:
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In order to find the LL behaviour of the cross section we must also study real emissions.

[3] Sov. Phys. JETP, Vol.44, No. 3 (1976) Kuraey, Lipatov, Fadin



REGGE LIMIT OF 2—-3 SCATTERING AT LO

The LL contribution from the phase-space integration of an additional real emission comes from the Multi-Regge
Kinematic (MRK) region:

Ys > Ya > Ys, P3|~ [par| =~ [psL]
2 3 At LO the amplitude again has a simple factorised form:
0 0 A A
lql M_gg)—hggg M—RK>28 Cég?g* (p227p337 Q1)
4 1 (0) 1
X X Vyrggr(—q1,D4,q2) X ( )
| (|Qu!2> o ) g2 |2
0 A A

: ; X Cylyg(—42,3", P2

where the contribution of all gluon emissions is given by the effective Lipatov vertex [2]:

*

. Q11921
ém Vé*gg*(—ql,pjﬁ%) _ g, feraace S1L92L

P4l
*

Again, we see that the amplitude is governed by the exchange of gluon quantum numbers in the t; and t, channels.

[2] Sov. J. Nucl. Phys. 23 (1976) , Lipatov



THE REGGE LIMIT OF QCD TO LL
The 2 - n amplitude in QCD is described to all orders by: [3]
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[3] Sov. Phys. JETP, Vol.44, No. 3 (1976) Kuraeyv, Lipatov, Fadin, [4] Sov. J. Nucl. Phys. 28 (1978) Balitsky, Lipatov,
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This was the form from which the BFKL equation was first derived [4].

This observation is also the starting point of HEJ, although from this point the two
approaches diverge.

We would like to clarify how these approaches differ in the treatment of logarithmic corrections to the cross
section within collinear factorisation.

TAB—X = Z / dzy daofr /a (1) fro/B (T2) Gy 1
f1,f2

[3] Sov. Phys. JETP, Vol.44, No. 3 (1976) Kuraeyv, Lipatov, Fadin, [4] Sov. J. Nucl. Phys. 28 (1978) Balitsky, Lipatov,



COMPARISON OF BFKL AND HE]

One way to derive the BFKL equation is to combine the Regge-factorised amplitudes with s-channel unitarity [5]

Discs [ My, f,— g1 15 (s,t = 0)] Z > /d‘Dn 2 My fos foeotu (Mg get) m%:gﬂ
n=4 f; a;,\;

[5] hep-ph/9807528: Fadin, [6] 0910.5113: Andersen, Smillie
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A Mellin transform allows the longitudinal integrals to be performed analytically over MRK phase space. g %

The central physics is captured by the gluon Green'’s function, G, , which obeys a recursive integral
equation. For the case of forward scattering and vacuum quantum numbers, this is the BFKL equation [4],

which can be solved analytically. The partonic cross section can be written s ® poo
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The central physics is captured by the gluon Green'’s function, G, , which obeys a recursive integral
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On the other hand, the starting point of HEJ [6] is to only use a . /dCD My, oo x |’ 00d ggq)s oo
Regge-factorised approximation to amplitudes to compute the fuf2 * 23

partonic cross section directly:

There are many benefits to performing the phase space numerically, not ;s

| (Z iy | ¥ ) Meyg g
least the fact that the momentum fractions can be reconstructed exactly. V/Shad V Shad

Other benefits: LO matching, exclusive observables, cuts, interfacing with standard HE tools such as Rivet.

[5] hep-ph/9807528: Fadin, [6] 0910.5113: Andersen, Smillie






2-2 AT LO REVISITED: QUARK SCATTERING

Consider the Feynman diagrams for the scattering of gQ —» gQ. Only a single diagram contributes:

(SGACLB ]

X |igs T2 @ (pa) ¥ P u (—p1)]

rmaa — —1
MQQ—N]Q — I:?’gSngg?gu(pS)/yMAu(_pQ)} X [ gluA,utB

We see that the amplitude already has the high-energy factorised form, without any kinematic approximations.

[7] hep-ph/0601117: Fadin, Bogdan, [8] 0910.5113: Andersen, Smillie.
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This motivates us to take the impact factors to be the full quark currents: [7,8]
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Note also that the full 4-dimensional pole in t can be retained. We do not have to approximate — — PHRER
q1

[7] hep-ph/0601117: Fadin, Bogdan, [8] 0910.5113: Andersen, Smillie.



LO 2—-2 REVISITED: GLUON SCATTERING

Consider the colour-ordered amplitudes for gqg = gg. These are related to the gQ - gQ amplitude by a
supersymmetric Ward identity:

(0) (0)
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LO 2—-2 REVISITED: GLUON SCATTERING

Consider the colour-ordered amplitudes for gqg = gg. These are related to the gQ - gQ amplitude by a
supersymmetric Ward identity:

(13) 1 -0
12} e MS) (0,05, p§, pY)

It follows that each colour-ordered amplitude can be written in the Regge-factorised form, without any kinematic
approximations. We can therefore define the following colour-ordered impact factors:

+ % T x
C.U()p 7p 7 — | _ p_3p3J_ 3|g”|2 OH() : _ p_2p3J_ 3lgH|2
gg9* (P2, P35, q) = oF D (3lo"[2] gog+ (P2 P35 q) = . (3la*[2]

Now considering the colour-dressed amplitude,

(0)
Mggqq(péejp367p§?,p1@)

MO (2,5, 0T, p0) = g2 (T2 T%); 0, Mok (0,05, 08, p9)+ 92 (TS T¥);, 5, ML (05, S, pE, pF)

we see that only the antisymmetric combination of the colour factors is leading in the Regge limit. This defines the
HEJ gluon current:

0 asa c]' 0
é CE O (p@,pS, q) = g, f*2%° 5 (Cg‘g(g)(p?,pg )+Cg‘g(g)(p?,p§'9,Q))

X

For gg = qg, the colour-octet component of the LO amplitude is described exactly.



LO 2—3 REVISITED

By making minimal approximations to the amplitude for gQ — ggQ, it is possible to
derive a form of the Lipatov vertex which retains much of the information about the LO
amplitude: [8]

0)/ Aa —A i 0 A U 0 A A
M1 g2—q10 :Céfqlg(*)(pfapg 2,q1) X (E) X V}LZW(PAL“) X (g) X Cgfq(q)(—%m 2

0 A g \
Vg*lél;*( ) (_ptwpggvptg) = nul/wﬁfatlatzage'ug (pgg,pT)
t 2plibg 2ph to Qp/fg It
X (ptl _|_pt2)p“g _ _1 q1 _|_ p(h + va g2 _|_ pq2 +
2 Sqig Sqig 2 SGag S
24 il m m i u
L S019Pa3 — Sa29Par + Sq1gPa2 — Sq29Pg, +3q19png — SqgPay n Sa19Pg — Sa29Pq;
2 Sq1q2 SG1q2 Sq1ds P

This vertex is gauge invariant in all of phase space, not just the MKR limit. It conserves 4-momentum, not just
transverse momentum. The vertex is symmetric with respect to —p, < p; and —p; © p, which better approximates
the pole structure of the LO amplitude.

[8] 0910.5113: Andersen, Smillie.



LO NUMERICAL COMPARISON

Comparing the two factorised approximations to amplitudes, we see the HEJ amplitudes capture much of the LO
physics:

><1Io_l12 I T

0.12 ] L] oo . s g j . R
; T ] e ] Yyr
' 0.1F ] ® L :
| N il — | - |
- . 2— p—
% I ] E B R Yi " — Agp
B i - _ =
~— 0.08— — = ]
N C ] & 1.5 —
LDE L i OOC’D - : Yb
% 0.06— - gl: : :
\ B ] g — 4 Yy
(a\] - -
= 0.04 - ~ [ ]
3 : > . > > : |§ I~ : : yg
R : — 0.5 -4 Y > Db
0.02— | - _
_ — ] B _ . Yg
- l 1 L 1 I 1 1 1 L I 1 1 1 1 I 1 1 1 1 l 1 1 1 |— B L 1 l L 1 1 I 1 1 1 l 1 1 1 l 1 1 1 l 1 1 L I 1 1 1 l I_ yb
% 1 2 3 4 5 6 % 2 4 6 8 10 12 14
Afb/Z Afb/Q

We see that the HEJ approximation to the LO matrix element is reasonable, even within LHC phase space.
Integrating the strict approximation would lead to a massive overestimate of the cross section.

Of course, HEJ matrix elements are matched point-by-point to LO matrix elements where they are available.
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REAL NLL CORRECTIONS IN HE]

In order to move to NLL accuracy, we need both real and virtual corrections to the building blocks. We have
recently completed the calculation of the real corrections with the minimal-approximation approach of HEJ:

X k
+
—4—
X X
* *
[9] 1706.01002 [via sWard] [10] 2012.10310 [In preparation]

Regulating the IR divergences of these improved vertices requires almost all of the machinery of a NLO
calculation. We are using a minimally modified FKS subtraction to perform this regularisation.

In the meantime, we can use these factorised expressions to improve the accuracy of HEJ by imposing jet
clustering requirements to regulate IR divergences.

12



CENTRAL g*ggg” VERTEX

The final ingredient we need is a central gg vertex. After minimal gauge invariant approximations, we find

—1 Uty Uta Oty Q —1
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with vertex: Vst (—py Dy Do Pta) = Y tr (T T@s T T%2) VLIS (—py i, g, Pga,)
o€ESs
& & Hiq B
+ tr (Tatl T Te 2fljatg) Vg tglggtg (_pt;[?pggl 7p902 7pt3)

. ot (Ton T2 T T ) VEAES (—p o by, by, )
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This looks complex, but the matrix-element evaluations are not computationally expensive. .



NUMERICAL TEST OF g*ggg* VERTEX: AMPLITUDE

V:utl /'Lt3

Here we compare the new HEJ V,.;.,* vertex with the previous factorised approximations.

8r
7F
s 6F
> F
T 5[
> 4F
Nk: N
2
= of
1f
- yf:A
ob
yg = 0.25
O2_ :Afb
= [ yg = —0.25
e L
o1
ch i yp = —A

We see that the MRK approximation fails to describe the NMRK phase space. The strict approximation only begins
to converge to LO at the edge of LHC phase space.
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Ratio to LO

NUMERICAL TEST OF g*ggg* VERTEX: CROSS SECTION

How well do the factorised expressions describe LO cross sections, within LHC phase space?
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In these plots we compare the following factorised approximations to the exact LO amplitude:

| IS

Mag—ag9q q—>qt th gtg CQ—>Q q—>qt ggt CQ—>Q
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NUMERICAL TEST OF g*ggg* VERTEX: CROSS SECTION

How well do the factorised expressions describe LO cross sections, within LHC phase space?
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In these plots we compare the following factorised approximations to the exact LO amplitude:
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NUMERICAL TEST OF g*ggg* VERTEX: CROSS SECTION

How well do the factorised expressions describe LO cross sections, within LHC phase space?
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In these plots we compare the following factorised approximations to the exact LO amplitude:
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CONCLUSIONS

In this talk we have introduced the main principles of the HEJ framework, and compared it with the BFKL approach.

We reviewed several advantages of adopting Monte Carlo for phase space integration. We focused on the freedom

to take more complicated functions as our factorised building blocks.

This leads to improved descriptions away from the high-energy limit, while still capturing same the high-energy

physics.

ONGOING PROJECTS IN HE]

As of the latest release, HEJ supports the following processes: Process
> 2 jets
2210.10671]  H + > jet
H+ > 2 jets
W+ 2> 2jet
Zly + = 2 jet

: : : | EWEL > 9
Current ongoing projects include: 2107.06818] W=W=+ = 2 jet

* Merging with Pythia
« Full NLL accuracy

For more details see https://hej.hepforge.org/

LL Extremalg Central qq

v v
v n/a n/a
VARG

VARG v
VARG

v
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PHASE SPACE SLICES

3j MRK

yr

Yi —p> Afb
Yg =

Yp

|p11| = |par| = 40 GeV
=247, y2=0, ys=-A,

21
¢1:07 ¢2:?,
P3L = —pPi11 — P21

4j MRK

Yi > Afb
Yg

Yb

|p11| = |p21| = |psL| = 40 GeV
_3A A A _3A
Y1 = 9 y2—2, Y3 = 9 Yy = 5
m 3

qsl:O? ¢2217 ¢3:—?,

Pa1 = —P1L — P21 — P31

4j NMRK
Ys
Yg

Yi > Afb
Yg

Yb

Ip11| = |p21| = |psi| =40 GeV
1 =4, y, =025 y3=—0.25,

Y 3T

== 0 —_ — [

¢1 ’ ¢2 4’ ¢3 9
PaL = —P11 — P21 — P31

ys = —A



