Perturbative splitting in DPDs and DPS.

Numerical impact of NLO corrections

November 21, 2023

P. Plößl $¹$ </sup>

¹Deutsches Elektronen-Synchrotron DESY

Part I

[DPDs in the limit of small interparton distance.](#page-1-0)

Small distance limit of DPDs.

Operator product expansion of DPDs for $y \to 0$:

$$
F_{a_1a_2}(\boldsymbol{y};{ \boldsymbol{\mu} }, { \boldsymbol{\mu} })\stackrel{y\rightarrow 0}{=} F_{a_1a_2}^{\text{int}}(\boldsymbol{y};{ \boldsymbol{\mu} }, { \boldsymbol{\mu} })+F_{a_1a_2}^{\text{spl}}(\boldsymbol{y};{ \boldsymbol{\mu} }, { \boldsymbol{\mu} })
$$

where $F_{a_1a_2}^{\rm int}$ and $F_{a_1a_2}^{\rm spl}$ can be expressed in terms of twist-4 distributions and PDFs, respectively.

 $F^{\rm spl}$ is enhanced with respect to $F^{\rm int}$ by a factor of \pmb{y}^{-2} , making it the leading contribution at small \pmb{y} :

$$
F_{a_1 a_2}(\bm{y};{ \mu }, { \mu })\stackrel{y\to 0}{\approx} F_{a_1 a_2}^{\rm spl}(\bm{y};{ \mu }, { \mu }) = \frac{1}{\pi \bm{y}^2}\;V_{a_1 a_2 , a_0}(\bm{y}, { \mu })\mathop{\otimes}\limits_{12} f_{a_0}({ \mu })
$$

Issues with the DPS cross section?

$$
\int\mathrm{d}^2\boldsymbol{y}\,F_{a_1a_2}(\boldsymbol{y})\,F_{b_1b_2}(\boldsymbol{y})\sim\int\frac{\mathrm{d}^2\boldsymbol{y}}{y^4}
$$

UV divergent cross section?

MPI@LHC 2023 Manchester 11/21/2023 1/16

Disentangling SPS and DPS.

SPS-DPS ambiguity for contributions of the following form:

Diehl-Gaunt-Schönwald subtraction formalism:

Double counting between SPS and DPS requires a subtraction term:

 $\sigma = \sigma_\text{SPS} + \sigma_\text{DPS} - \sigma_\text{sub} \, , \qquad \sigma_\text{sub} = \sigma_\text{DPS}$ with $F_{ij} \to F_{ij}^\text{spl}$ [Diehl, Gaunt, and Schönwald, 2017]

The UV divergence of the DPS cross section is regulated with a lower cut-off $(y \gtrsim 1/\min(Q_A,Q_B))$.

Disentangling SPS and DPS.

SPS-DPS ambiguity for contributions of the following form:

Diehl-Gaunt-Schönwald subtraction formalism:

Double counting between SPS and DPS requires a subtraction term:

 $\sigma = \sigma_\text{SPS} + \sigma_\text{DPS} - \sigma_\text{sub} \, , \qquad \sigma_\text{sub} = \sigma_\text{DPS}$ with $F_{ij} \to F_{ij}^\text{spl}$ [Diehl, Gaunt, and Schönwald, 2017]

The UV divergence of the DPS cross section is regulated with a lower cut-off $(y \gtrsim 1/\min(Q_A,Q_B))$.

The perturbative $1 \rightarrow 2$ splitting at LO.

The $1 \rightarrow 2$ splitting kernels can be calculated from Feynman diagrams for partonic DPDs a_1a_2 in a parton a_0 :

LO splitting formula:

$$
F_{a_1a_2}^{\text{spl}, (1)}(x_1, x_2, \mathbf{y}; \mu, \mu) = \frac{1}{\pi \mathbf{y}^2} \frac{\alpha_s(\mu)}{2\pi} V_{a_1a_2, a_0}^{(1)}\left(\frac{x_1}{x_1 + x_2}\right) f_{a_0}(x_1 + x_2; \mu)
$$

where:

$$
V_{gg,g}^{(1)}(z) = 2 C_A \left(\frac{1-z}{z} + \frac{z}{1-z} + z(1-z) \right)
$$

MPI@LHC 2023 Manchester 11/21/2023 3/16

The perturbative $1 \rightarrow 2$ splitting at LO.

The $1 \rightarrow 2$ splitting kernels can be calculated from Feynman diagrams for partonic DPDs a_1a_2 in a parton a_0 :

LO splitting formula:

$$
F_{a_1a_2}^{\text{spl}, (1)}(x_1, x_2, \mathbf{y}; \mu, \mu) = \frac{1}{\pi \mathbf{y}^2} \frac{\alpha_s(\mu)}{2\pi} V_{a_1a_2, a_0}^{(1)}\left(\frac{x_1}{x_1 + x_2}\right) f_{a_0}(x_1 + x_2; \mu)
$$

where:

$$
V_{q\bar{q},g}^{(1)}(z) = T_F(z^2 + (1 - z)^2)
$$

The perturbative $1 \rightarrow 2$ splitting at LO.

The $1 \rightarrow 2$ splitting kernels can be calculated from Feynman diagrams for partonic DPDs a_1a_2 in a parton a_0 :

LO splitting formula:

$$
F_{a_1a_2}^{\text{spl}, (1)}(x_1, x_2, \mathbf{y}; \mu, \mu) = \frac{1}{\pi \mathbf{y}^2} \frac{\alpha_s(\mu)}{2\pi} V_{a_1a_2, a_0}^{(1)}\left(\frac{x_1}{x_1 + x_2}\right) f_{a_0}(x_1 + x_2; \mu)
$$

where:

$$
V_{qg,q}^{(1)}(z) = C_F \, \frac{1+z^2}{1-z}
$$

MPI@LHC 2023 Manchester 11/21/2023 3/16

The "splitting scale".

At which scale μ_{spl} should the splitting be evaluated?

The natural scale of the splitting is set by the interparton distance y of the observed partons:

$\mu_{\rm spl}(y) \sim \frac{1}{y}$ *y*

How to avoid evaluation of the perturbative splitting at non-perturbative scales for large *y*?

Regularized splitting scale:

$$
\mu_{\rm spl}(y) = \frac{b_0}{y^*(y)}\,, \qquad \qquad {\rm e.g.} \quad y^*(y) = \frac{y}{\sqrt[4]{1+y^4/y_{\rm max}^4}}\,, \qquad \qquad y_{\rm max} = \frac{b_0}{\mu_{\rm min}}\,.
$$

The "splitting scale".

At which scale μ_{spl} should the splitting be evaluated?

The natural scale of the splitting is set by the interparton distance y of the observed partons:

$\mu_{\rm spl}(y) \sim \frac{1}{y}$ *y*

How to avoid evaluation of the perturbative splitting at non-perturbative scales for large *y*?

Regularized splitting scale:

$$
\mu_{\rm spl}(y) \approx \frac{1.123}{y^*(y)},
$$
\n $e.g.$ \n $y^*(y) = \frac{y}{\sqrt[4]{1 + y^4/y_{\rm max}^4}},$ \n $y_{\rm max} = \frac{b_0}{\mu_{\rm min}}$

How to treat heavy quarks *Q* in the small-*y* DPDs?

Neglecting mass effects:

- ▶ *Q* decouples for $\mu_{\rm{spl}} < \gamma m_Q \sim m_Q$.
- *Q* massless for $\mu_{\rm spl} > \gamma m_Q \sim m_Q$.

[Diehl, Nagar, PP, 2023]

Including mass effects:

- ▶ *Q* decouples for $\mu_{\text{spl}} < \alpha m_Q \ll m_Q$.
- $▶$ *Q* massive for $\alpha m_Q < \mu_{\rm{spl}} < \beta m_Q$.
- $▶$ *Q* massless for $\mu_{\text{spl}} > \beta m_Q \gg m_Q$.

Mass effects in splitting DPDs.

How to treat heavy quarks *Q* in the small-*y* DPDs?

Neglecting mass effects:

- ▶ *Q* decouples for $\mu_{\rm spl} < \gamma m_Q \sim m_Q$.
- $▶$ *Q* massless for $\mu_{\rm spl} > \gamma m_Q \sim m_Q$.

Including mass effects:

- ▶ *Q* decouples for $\mu_{\text{spl}} < \alpha m_Q \ll m_Q$.
- *Q* massive for $\alpha m_Q < \mu_{\rm spl} < \beta m_Q$.
- *Q* massless for $\mu_{\rm spl} > \beta m_Q \gg m_Q$.

Splitting scale dependence at LO.

In order to estimate the dependence of DPS cross sections on $\mu_{\rm spl}$ consider DPD luminosities:

DPS factorization theorem:

$$
\sigma_{\mathrm{DPS}}^{AB} = \frac{1}{1 + \delta_{AB}} \sum_{a_1, a_2, b_1, b_2} \hat{\sigma}_{a_1 b_1}^{A} \otimes \hat{\sigma}_{a_2 b_2}^{B} \otimes \underbrace{\int}_{b_0/\nu}^{\infty} d^2 \mathbf{y} F_{a_1 a_2}(x_1, x_2, \mathbf{y}; Q_A, Q_B) F_{b_1 b_2}(\bar{x}_1, \bar{x}_2, \mathbf{y}; Q_A, Q_B)
$$
\n
$$
\mathcal{L}_{a_1 a_2, b_1 b_2}(x_1, x_2, \bar{x}_1, \bar{x}_2; Q_A, Q_B)
$$

Include factorised model for intrinsic part of DPDs:

$$
F_{a_1a_2}^{\text{int}}(x_1, x_2, \mathbf{y}; \mu, \mu) = (1 - \delta_{a_1a_2}^{d_v d_v} - 0.5 \delta_{a_1a_2}^{u_v u_v}) \frac{(1 - x_1 - x_2)^2}{(1 - x_1)^2 (1 - x_2)^2} \frac{\exp\left(\frac{-\mathbf{y}^2}{4h_{a_1a_2}}\right)}{4\pi h_{a_1a_2}} f_{a_1}(x_1; \mu) f_{a_2}(x_2; \mu)
$$

Contributions to the luminosities: $1v1$ (spl \times spl), $1v2$ (spl \times int), $2v1$ (int \times spl), $2v2$ (int \times int). **MPI@LHC 2023 Manchester 11/21/2023 6/16**

Splitting scale dependence at LO.

Vary $\mu_{\rm spl}$ by a factor of 2 around its central value:

Sum of all contributions to $\mathcal{L}_{u\bar{d},\bar{d}u}$ (80 GeV, 80 GeV) with:

$$
x_1 = \frac{Q_A}{\sqrt{s}} e^Y
$$

$$
x_2 = \frac{Q_B}{\sqrt{s}} e^{-Y}
$$

$$
\bar{x}_1 = \frac{Q_A}{\sqrt{s}} e^{-Y}
$$

$$
\bar{x}_2 = \frac{Q_B}{\sqrt{s}} e^Y
$$

where $\sqrt{s} = 14 \,\text{GeV}$.

Splitting scale dependence at LO.

Vary $\mu_{\rm spl}$ by a factor of 2 around its central value:

 $\mathcal{L}_{u\bar{d},\bar{d}u}$

Relative contributions of 1v1, $1v2+2v1$, and $2v2$ to the complete $\mathcal{L}_{u\bar{d},\bar{d}u}$ luminosity for central *ν*.

Splitting scale dependence at LO.

Vary $\mu_{\rm spl}$ by a factor of 2 around its central value:

Sum of all contributions to $\mathcal{L}_{ua,\bar{da}}$ (80 GeV, 25 GeV) with:

$$
x_1 = \frac{Q_A}{\sqrt{s}} e^Y
$$

$$
x_2 = \frac{Q_B}{\sqrt{s}} e^{-Y}
$$

$$
\bar{x}_1 = \frac{Q_A}{\sqrt{s}} e^{-Y}
$$

$$
\bar{x}_2 = \frac{Q_B}{\sqrt{s}} e^Y
$$

where $\sqrt{s} = 14 \,\text{GeV}$.

Splitting scale dependence at LO.

Vary $\mu_{\rm{spl}}$ by a factor of 2 around its central value:

Relative contributions of 1v1, $1v2+2v1$, and $2v2$ to the complete $\mathcal{L}_{uq,\bar{d}q}$ luminosity for central *ν*.

Splitting DPDs at NLO.

[Diehl, Gaunt, PP, Schäfer, 2019; Diehl, Gaunt, PP, 2021]

LO splitting DPDs exhibit a huge dependence on $\mu_{\rm spl}$, hinting at the importance of higher orders!

Computation of the NLO $1 \rightarrow 2$ splitting kernels ${}^{R_1R_2}V_{a_1a_2,a_0}^{(2)}$:

- ▶ Bare kernels from two-loop Feynman diagrams for partonic DPDs a_1a_2 in parton a_0 .
- Consistent regularization of rapidity divergences.
- Renormalized kernels obtained through RGE analysis.

Structure of NLO kernels:

$$
V^{(2)}_{a_1a_2,a_0}(z_1,z_2,\boldsymbol{y};\mu,\zeta) = V^{[2,0]}_{a_1a_2,a_0}(z_1,z_2) + L V^{[2,1]}_{a_1a_2,a_0}(z_1,z_2)
$$

where
$$
L = \log \frac{y^2 \mu^2}{b_0^2}
$$
.

MPI@LHC 2023 Manchester 7/16 11/21/2023 11/21/2023 12/21/2023 12/21/2023 12/21/2023

State of the art for perturbative splitting DPDs.

At which perturbative orders are the $1 \rightarrow 2$ position space splitting kernels known?

Consider now the impact of including the NLO contributions, focus on the colour singlet!

Part II

[NLO numerics.](#page-19-0)

Numerical evolution with ChiliPDF

[Diehl, Nagar, PP, Tackmann, 2023]

ChiliPDF is a C**++** library for the evolution and interpolation of PDFs and position space DPDs!

Design:

- **DPDs** are discretized in x_1 , x_2 , and y on Chebyshev grids, allowing for high interpolation accuracy with fewer points than e.g. splines.
- ▶ No gridding in μ_1 and μ_2 evolution is performed on the fly using higher-order Runge-Kutta algorithms.

Features:

- ▶ Evolution and flavour matching for DPDs (unpolarized and polarized, colour singlet and non-singlet) at the highest available order.
- ▶ Small-*y* splitting DPDs at NLO.
- Evaluation of sum rules for unpolarized colour singlet DPDs.
- Computation of DPS luminosities.

Numerical implementation of NLO splitting DPDs.

At NLO the splitting DPD no longer is a simple product kernel \times PDF, but involves a convolution:

NLO splitting:

$$
F_{a_1a_2}^{\text{spl},(2)}(x_1,x_2,\mathbf{y};\mu,\mu) = \frac{1}{\pi \mathbf{y}^2} \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \left[V_{a_1a_2,a_0}^{(2)}(\mathbf{y},\mu) \underset{12}{\otimes} f_{a_0}(\mu)\right](x_1,x_2)
$$

where:

$$
x = x_1 + x_2,
$$
 $u = \frac{x_1}{x},$ $\bar{u} = 1 - u = \frac{x_2}{x}$

How to discretize this convolution?

MPI@LHC 2023 Manchester 11/21/2023 10/16

Numerical implementation of NLO splitting DPDs.

At NLO the splitting DPD no longer is a simple product kernel \times PDF, but involves a convolution:

NLO splitting:

$$
F^{\rm spl, (2)}_{a_1 a_2}(x_1, x_2, y; \mu, \mu) = \frac{1}{\pi y^2} \left(\frac{\alpha_s(\mu)}{2\pi} \right)^2 \int\limits_{x_1+x_2}^{1} \frac{dz}{z^2} V^{(2)}_{a_1 a_2, a_0} \left(\frac{x_1}{z}, \frac{x_2}{z}, y; \mu \right) f_{a_0}(z; \mu)
$$

where:

$$
x = x_1 + x_2,
$$
 $u = \frac{x_1}{x},$ $\bar{u} = 1 - u = \frac{x_2}{x}$

How to discretize this convolution?

MPI@LHC 2023 Manchester 11/21/2023 10/16

Numerical implementation of NLO splitting DPDs.

At NLO the splitting DPD no longer is a simple product kernel \times PDF, but involves a convolution:

NLO splitting:

$$
F_{a_1a_2}^{\text{spl},(2)}(x_1,x_2,\mathbf{y};\mu,\mu) = \frac{1}{\pi \mathbf{y}^2} \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \frac{1}{x} \int\limits_x^1 dz \ V_{a_1a_2,a_0}^{(2)}(uz,\bar{u}z,\mathbf{y};\mu) f_{a_0}\left(\frac{x}{z};\mu\right)
$$

where:

$$
x = x_1 + x_2,
$$
 $u = \frac{x_1}{x},$ $\bar{u} = 1 - u = \frac{x_2}{x}$

How to discretize this convolution?

MPI@LHC 2023 Manchester 11/21/2023 10/16

Numerical implementation of NLO splitting DPDs.

In ChiliPDF rescaled PDFs, $xf(x)$, and DPDs, $x_1x_2F(x_1, x_2)$ are discretized:

$$
x_1 x_2 F_{a_1 a_2}^{\text{spl},(2)}(x_1, x_2, y; \mu, \mu) = \frac{1}{\pi y^2} \left(\frac{\alpha_s(\mu)}{2\pi} \right)^2 \int_x^1 \frac{dz}{z} \left(uz \,\bar{u} z \, V_{a_1 a_2, a_0}^{(2)}(uz, \bar{u} z, y; \mu) \right) \left(\frac{x}{z} f_{a_0} \left(\frac{x}{z}; \mu \right) \right)
$$

R.h.s. has the structure of an ordinary Mellin convolution with an additional parameter *u*!

Discretizing the convolution:

\n- Discretize
$$
(\tilde{K}_{a_1a_2,a_0}(u,x))_k
$$
 in u and x :
$$
(\tilde{K}_{a_1a_2,a_0}(u,x))_k = \sum_{i,j} (\tilde{K}_{a_1a_2,a_0})_k^{ij} b_u^i(u) b_x^j(x)
$$
\n- Regrid $\sum_k (\tilde{K}_{a_1a_2,a_0}(u,x))_k \tilde{f}_{a_0}^k$ in x_1 and x_2 using Chebyshev interpolation.
\n- Store the computationally expensive $(\tilde{K}_{a_1a_2,a_0})_k^{ij}$ kernels externally and reuse them.
\n

Note: Starting at NLO the evolution equation for momentum space DPDs contains a convolution term of this form!

Numerical implementation of NLO splitting DPDs.

In ChiliPDF rescaled PDFs, $xf(x)$, and DPDs, $x_1x_2F(x_1, x_2)$ are discretized:

$$
x_1 x_2 F_{a_1 a_2}^{\rm spl, (2)}(x_1, x_2, y; \mu, \mu) = \frac{1}{\pi y^2} \left(\frac{\alpha_s(\mu)}{2\pi} \right)^2 \int_x^1 \frac{dz}{z} \ \tilde{V}_{a_1 a_2, a_0}^{(2)}(u, z, y; \mu) \ \tilde{f}_{a_0} \left(\frac{x}{z}; \mu \right)
$$

R.h.s. has the structure of an ordinary Mellin convolution with an additional parameter *u*!

Discretizing the convolution:

\n- Discretize
$$
(\tilde{K}_{a_1a_2,a_0}(u,x))_k
$$
 in u and x :
$$
(\tilde{K}_{a_1a_2,a_0}(u,x))_k = \sum_{i,j} (\tilde{K}_{a_1a_2,a_0})_k^{ij} b_u^i(u) b_x^j(x)
$$
\n- Regrid $\sum_k (\tilde{K}_{a_1a_2,a_0}(u,x))_k \tilde{f}_{a_0}^k$ in x_1 and x_2 using Chebyshev interpolation.
\n- Store the computationally expensive $(\tilde{K}_{a_1a_2,a_0})_k^{ij}$ kernels externally and reuse them.
\n

Note: Starting at NLO the evolution equation for momentum space DPDs contains a convolution term of this form!

MPI@LHC 2023 Manchester 11/21/2023 11/21/2023 11/21/2023 12/2023

Numerical implementation of NLO splitting DPDs.

In ChiliPDF rescaled PDFs, $xf(x)$, and DPDs, $x_1x_2F(x_1, x_2)$ are discretized:

$$
x_1 x_2 F_{a_1 a_2}^{\text{spl},\,(2)}(x_1, x_2, \mathbf{y}; \mu, \mu) = \frac{1}{\pi \mathbf{y}^2} \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \int_x^1 \frac{dz}{z} \ \tilde{V}_{a_1 a_2, a_0}^{(2)}(u, z, \mathbf{y}; \mu) \sum_k \tilde{f}_{a_0}^k(\mu) \, b^k\left(\frac{x}{z}\right)
$$

R.h.s. has the structure of an ordinary Mellin convolution with an additional parameter *u*!

Discretizing the convolution:

\n- Discretize
$$
(\tilde{K}_{a_1a_2,a_0}(u,x))_k
$$
 in u and x :
$$
(\tilde{K}_{a_1a_2,a_0}(u,x))_k = \sum_{i,j} (\tilde{K}_{a_1a_2,a_0})_k^{ij} b_u^i(u) b_x^j(x)
$$
\n- Regrid $\sum_k (\tilde{K}_{a_1a_2,a_0}(u,x))_k \tilde{f}_{a_0}^k$ in x_1 and x_2 using Chebyshev interpolation.
\n- Store the computationally expensive $(\tilde{K}_{a_1a_2,a_0})_k^{ij}$ kernels externally and reuse them.
\n

Note: Starting at NLO the evolution equation for momentum space DPDs contains a convolution term of this form!

Numerical implementation of NLO splitting DPDs.

In ChiliPDF rescaled PDFs, $xf(x)$, and DPDs, $x_1x_2F(x_1, x_2)$ are discretized:

$$
x_1 x_2 F_{a_1 a_2}^{\text{spl},\,(2)}(x_1,x_2,\boldsymbol{y};\mu,\mu) = \frac{1}{\pi \boldsymbol{y}^2} \left(\frac{\alpha_s(\mu)}{2\pi}\right)^2 \sum_{k} \left(\tilde{K}_{a_1 a_2,a_0}(u,x,\boldsymbol{y};\mu)\right)_k \tilde{f}_{a_0}^k(\mu)
$$

R.h.s. has the structure of an ordinary Mellin convolution with an additional parameter *u*!

Discretizing the convolution:

\n- Discretize
$$
(\tilde{K}_{a_1a_2,a_0}(u,x))_k
$$
 in u and x :
$$
(\tilde{K}_{a_1a_2,a_0}(u,x))_k = \sum_{i,j} (\tilde{K}_{a_1a_2,a_0})_k^{ij} b_u^i(u) b_x^j(x)
$$
\n- Regrid $\sum_k (\tilde{K}_{a_1a_2,a_0}(u,x))_k \tilde{f}_{a_0}^k$ in x_1 and x_2 using Chebyshev interpolation.
\n- Store the computationally expensive $(\tilde{K}_{a_1a_2,a_0})_k^{ij}$ kernels externally and reuse them.
\n

Note: Starting at NLO the evolution equation for momentum space DPDs contains a convolution term of this form!

Numerical setup

For the study of the massless and massive $1 \rightarrow 2$ splitting at NLO the following setup is used:

PDFs:

- ▶ PDF set for LO splitting: MSHT201o_as130.
- ▶ PDF set for NLO splitting: MSHT20n1o_as118.

Grids:

\n- Same grids for
$$
x_1
$$
 and x_2 : $\left[10^{-5}, 0.005, 0.5, 1\right]_{(16,16,24)}$.
\n- ▶ *y*-grid for massless splitting: $\left[\frac{b_0}{2\min(Q_A,Q_B)}, \frac{b_0}{m_b}, \frac{b_0}{m_c}, 5, \infty\right]_{(16,16,16,24)}$.
\n- ▶ *y*-grid for massive splitting: $\left[\frac{b_0}{2\min(Q_A,Q_B)}, \frac{b_0}{\beta m_b}, \frac{b_0}{\beta m_c}, \frac{b_0}{\alpha m_b}, 5, \infty\right]_{(16,16,16,16,24)}$.
\n

Various parameters:

$$
\mu_{\min} = m_c.
$$

\n
$$
h_{gg} = 4.66 \,\text{GeV}^{-1}, h_{qg} = 5.86 \,\text{GeV}^{-1}, h_{qq} = 7.06 \,\text{GeV}^{-1}.
$$

MPI@LHC 2023 Manchester 11/21/2023 12/16

Splitting DPDs at LO and NLO.

- At LO $F_{u\bar{d}}$ is not produced by splitting, only through evolution.
- Starting from NLO $F_{u\bar{d}}$ can be produced by splitting.
- \blacktriangleright The NLO splitting mechanism is the leading contribution.

Figure: $F_{u\bar{d}}^{\text{spl}}$ at $(\mu_1, \mu_2) = (80 \,\text{GeV}, 80 \,\text{GeV})$ and $y = \frac{b_0}{80 \,\text{GeV}}$ for $x_1 = x_2$ as a function of x_1 . Relevant in W^+W^+ production. **MPI@LHC 2023 Manchester 11/21/2023** 13/16

Splitting DPDs at LO and NLO.

- At LO $F_{u\bar{d}}$ is not produced by splitting, only through evolution.
- Starting from NLO $F_{u\bar{d}}$ can be produced by splitting.
- \blacktriangleright The NLO splitting mechanism is the leading contribution.

Figure: $F_{u\bar{d}}^{\text{spl}}$ at $(\mu_1, \mu_2) = (80 \,\text{GeV}, 80 \,\text{GeV})$ and $y = \frac{b_0}{80 \,\text{GeV}}$ for $x_1 = x_2$ as a function of x_1 . Relevant in W^+W^+ production. **MPI@LHC 2023 Manchester 11/21/2023** 13/16

Splitting DPDs at LO and NLO.

- \blacktriangleright F_{ua} is already produced by splitting at LO.
- ▶ The difference between LO and NLO is non-negligible $(\mathcal{O}(10\%))$.

Figure: F_{ug}^{spl} at $(\mu_1, \mu_2) = (80 \,\text{GeV}, 25 \,\text{GeV})$ and $y = \frac{b_0}{80 \,\text{GeV}}$ for $x_1 = x_2$ as a function of x_1 . Relevant in W^+ + jet production. **MPI@LHC 2023 Manchester 11/21/2023** 13/16

Splitting DPDs at LO and NLO.

- \blacktriangleright F_{ua} is already produced by splitting at LO.
- ▶ The difference between LO and NLO is non-negligible $(\mathcal{O}(10\%))$.

Figure: F_{ug}^{spl} at $(\mu_1, \mu_2) = (80 \,\text{GeV}, 25 \,\text{GeV})$ and $y = \frac{b_0}{80 \,\text{GeV}}$ for $x_1 = x_2$ as a function of x_1 . Relevant in W^+ + jet production. **MPI@LHC 2023 Manchester 11/21/2023** 13/16

DPD luminosities at LO and NLO: splitting scale dependence.

- ▶ From LO to NLO the splitting scale dependence of $\mathcal{L}_{u\bar{d},\bar{d}u}$ is reduced by a factor of ∼2 for all rapidities.
- As expected, this reduction is most pronounced for the 1v1 contribution.

Figure: Splitting scale dependence of $\mathcal{L}_{u\bar{d}}\bar{d}_{u}$ (80 GeV, 80 GeV) at LO and NLO. Relevant for W^+W^+ production. **MPI@LHC 2023 Manchester 11/21/2023** 14/16

DPD luminosities at LO and NLO: splitting scale dependence.

- ▶ From LO to NLO the splitting scale dependence of $\mathcal{L}_{u\bar{d},\bar{d}u}$ is reduced by a factor of ∼2 for all rapidities.
- As expected, this reduction is most pronounced for the 1v1 contribution.

MPI@LHC 2023 Manchester 11/21/2023 14/16

DPD luminosities at LO and NLO: splitting scale dependence.

Figure: Splitting scale dependence of $\mathcal{L}_{uq,\bar{d}q}(80 \,\mathrm{GeV}, 25 \,\mathrm{GeV})$ at LO and NLO. Relevant for W^+ + jet production. **MPI@LHC 2023 Manchester 11/21/2023** 14/16

▶ For $\mathcal{L}_{uq,\bar{d}q}$ the splitting scale dependence is reduced by more than a factor of 2 for all rapidities, when going from LO to NLO.

 \blacktriangleright The largest reduction is again observed for the 1v1 contribution.

Similar reduction observed in other channels and for colour non-singlet luminosities!

Sizeable reduction also for the remnant cut-off scale dependence!

DPD luminosities at LO and NLO: splitting scale dependence.

Figure: Splitting scale dependence of the (relative) 1v1 contribution to $\mathcal{L}_{uq,\bar{d}q}(80\,\text{GeV},25\,\text{GeV})$ at LO and NLO.

MPI@LHC 2023 Manchester 11/21/2023 14/16

- ▶ For $\mathcal{L}_{uq,\bar{d}q}$ the splitting scale dependence is reduced by more than a factor of 2 for all rapidities, when going from LO to NLO.
- \blacktriangleright The largest reduction is again observed for the 1v1 contribution.

Similar reduction observed in other channels and for colour non-singlet luminosities!

Sizeable reduction also for the remnant cut-off scale dependence!

Massive splitting scheme: Issues at LO.

In the massive splitting scheme α and β should be $\ll 1$ and $\gg 1$, respectively. Issue at LO:

- Going to smaller α decreases the absolute size of the discontinuity.
- **►** Going to $\beta \ge 2$ is not possible due to a large discontinuity that arises in this limit.
- ▶ How does this discontinuity arise?

Figure: F_{gb}^{spl} at $\mu_{1,2} = 25\,\textrm{GeV}$ with $x_{1,2} \approx 0.0018$ as function of $\mu_y = b_0/y$. **MPI@LHC 2023 Manchester 11/21/2023 15/16**

Massive splitting scheme: Issues at LO.

In the massive splitting scheme α and β should be $\ll 1$ and $\gg 1$, respectively. Issue at LO:

- Going to smaller α decreases the absolute size of the discontinuity.
- **►** Going to $\beta \ge 2$ is not possible due to a large discontinuity that arises in this limit.
- \blacktriangleright How does this discontinuity arise?

Figure: $F_{gb}^{\rm spl}$ at $\mu_{1,2} = 25\,\text{GeV}$ with $x_{1,2} \approx 0.0018$ as function of $\mu_y = b_0/y$. **MPI@LHC 2023 Manchester 11/21/2023 15/16**

Massive splitting scheme: Issues at LO.

In the massive splitting scheme α and β should be $\ll 1$ and $\gg 1$, respectively. Issue at LO:

- Going to smaller α decreases the absolute size of the discontinuity.
- **►** Going to $\beta \ge 2$ is not possible due to a large discontinuity that arises in this limit.
- \blacktriangleright How does this discontinuity arise?

Figure: $F_{gb}^{\rm spl}$ at $\mu_{1,2} = 25\,\text{GeV}$ with $x_{1,2} \approx 0.0018$ as function of $\mu_y = b_0/y$. **MPI@LHC 2023 Manchester 11/21/2023 15/16**

Massive splitting scheme: Issues at LO.

Consider now how the *gb* DPD can be produced in the different schemes:

▶ The direct $b \rightarrow ab$ splitting is only accessible in the massless scheme.

- \triangleright The *b* PDF is obtained by flavour matching from a $n_F = 4$ gluon PDF.
- ▶ At NLO this production channel becomes available also in the massive scheme!

Massive splitting scheme: Issues at LO.

Consider now how the *gb* DPD can be produced in the different schemes:

- \blacktriangleright This production channel, involving one evolution step, is accessible both in the massive and massless schemes.
- In the massless scheme the initial gluon PDF is a $n_F = 5$ distribution, whereas in the massive scheme it is $n_F = 4$.

Massive splitting scheme: Issues at LO.

Consider now how the *gb* DPD can be produced in the different schemes:

- \blacktriangleright This production channel, involving one evolution step, is accessible both in the massive and massless schemes.
- In the massless scheme the initial gluon PDF is a $n_F = 5$ distribution, whereas in the massive scheme it is $n_F = 4$.
- ▶ In the massive scheme the massive $g \to b\bar{b}$ kernel is used.

Massive splitting scheme: Issues at LO.

In the massive splitting scheme α and β should be $\ll 1$ and $\gg 1$, respectively. No more issue at NLO:

- Going to smaller α decreases the absolute size of the discontinuity.
- ▶ Unfortunately going to *β* ≳ 2 is not possible due to a large discontinuity that arises in this limit.
- Going to NLO avoids this discontinuity!

Figure: F_{gb}^{spl} at $\mu_{1,2} = 25\,\textrm{GeV}$ with $x_{1,2} \approx 0.0018$ as function of $\mu_y = b_0/y$. **MPI@LHC 2023 Manchester 11/21/2023 15/16**

Massive splitting scheme: Issues at LO.

In the massive splitting scheme α and β should be $\ll 1$ and $\gg 1$, respectively. No more issue at NLO:

- Going to smaller α decreases the absolute size of the discontinuity.
- ▶ Unfortunately going to *β* ≳ 2 is not possible due to a large discontinuity that arises in this limit.
- Going to NLO avoids this discontinuity!

Figure: $F_{gb}^{\rm spl}$ at $\mu_{1,2} = 25\,\text{GeV}$ with $x_{1,2} \approx 0.0018$ as function of $\mu_y = b_0/y$. **MPI@LHC 2023 Manchester 11/21/2023 15/16**

Massive splitting scheme: Issues at LO.

In the massive splitting scheme α and β should be $\ll 1$ and $\gg 1$, respectively. No more issue at NLO:

- Going to smaller α decreases the absolute size of the discontinuity.
- ▶ Unfortunately going to *β* ≳ 2 is not possible due to a large discontinuity that arises in this limit.
- Going to NLO avoids this discontinuity!

Figure: $F_{gb}^{\rm spl}$ at $\mu_{1,2} = 25\,\text{GeV}$ with $x_{1,2} \approx 0.0018$ as function of $\mu_y = b_0/y$. **MPI@LHC 2023 Manchester 11/21/2023 15/16**

Part III

[Summary.](#page-46-0)

[Summary.](#page-47-0)

State of the art for small interparton distance splitting DPDs:

- ▶ NLO for unpolarized massless colour singlet and non-singlet kernels.
- ▶ Approximate NLO for unpolarized massive colour singlet kernels.
- ▶ LO for all other cases.

Effects of going to NLO:

- \triangleright $\mathcal{O}(10\%)$ for DPDs produced already by LO splitting.
- ▶ Leading contribution for DPDs not directly produced by LO splitting.
- \triangleright Substantial reduction of scale uncertainty related to the splitting scale $\mu_{\rm spl}$.
- ▶ Sizeable reduction of the remnant dependence on the DGS cut-off scale *ν*.
- \triangleright More consistent treatment of heavy quark effects in the perturbative splitting.

[Summary.](#page-47-0)

State of the art for small interparton distance splitting DPDs:

- ▶ NLO for unpolarized massless colour singlet and non-singlet kernels.
- ▶ Approximate NLO for unpolarized massive colour singlet kernels.
- ▶ LO for all other cases.

Effects of going to NLO:

- \triangleright $\mathcal{O}(10\%)$ for DPDs produced already by LO splitting.
- ▶ Leading contribution for DPDs not directly produced by LO splitting.
- Substantial reduction of scale uncertainty related to the splitting scale μ_{sol} .
- ▶ Sizeable reduction of the remnant dependence on the DGS cut-off scale *ν*.
- \triangleright More consistent treatment of heavy quark effects in the perturbative splitting.

Thank you for your attention!

MPI@LHC 2023 Manchester 11/21/2023 16/16

Part IV

[Backup.](#page-49-0)

[Small distance limit of DPDs.](#page-50-0)

Diehl-Gaunt-Schönwald subtraction formalism: basic idea. [Diehl, Gaunt, Schönwald, 2017]Avoid double counting between SPS and DPS by introducing a subtraction term satisfying:

This is achieved by replacing the DPS luminosity in the factorized cross section by:

$$
\mathcal{L}_{a_1a_2,b_1b_2}^{\text{sub}} = 2\pi \int_{b_0/\nu}^{\infty} dy \, y \, F_{a_1a_2}^{\text{spl},\text{FO}}(y;\mu(y,Q_A,\mu_h),\mu(y,Q_B,\mu_h)) F_{b_1b_2}^{\text{spl},\text{FO}}(y;\mu(y,Q_A,\mu_h),\mu(y,Q_B,\mu_h))
$$

where the splitting DPDs are computed at FO with:

$$
\mu(y, Q, \mu_h) \stackrel{y \to 0}{\longrightarrow} Q, \qquad \mu(y, Q, \mu_h) \stackrel{y \to \infty}{\longrightarrow} \mu_h.
$$

How to treat the case $Q_A \neq Q_B$ where the subtraction term is not a pure FO quantity?

MPI@LHC 2023 Manchester 11/21/2023 i/iv

[Small distance limit of DPDs.](#page-50-0)

Diehl-Gaunt-Schönwald subtraction formalism: unequal scales.

Instead of using profile scales $\mu(y, Q, \mu_h)$ define two sets of DPDs:

$$
\blacktriangleright F^{\text{large }y}(y) = F^{\text{spl},\text{FO}}(y;\mu_h,\mu_h).
$$

 \blacktriangleright *F*^{small *y*}(*y*) obtained from evolving $F^{\text{spl},\text{FO}}(y;\nu,\nu)$ to the scales $(\mu_1,\mu_2)=(Q_A,Q_B)$.

Unequal scale DGS subtraction:

$$
\mathcal{L}_{a_1 a_2, b_1 b_2}^{\text{sub}} = 2\pi \int_{b_0/\nu}^{\infty} dy \, y \left[\sigma(y\nu) F^{\text{large } y}(y) F^{\text{large } y}(y) + \left(1 - \sigma(y\nu)\right) F^{\text{small } y}(y) F^{\text{small } y}(y) \right]
$$

with a function $\sigma(u)$ that interpolates smoothly between 0 at $u \sim 1$ and 1 at $u \gg 1$, i.e.:

$$
\sigma(u) = \begin{cases} 0 & \text{for } u < u_0, \\ \sin^2\left(\frac{\pi}{2} \frac{u - u_0}{u_1 - u_0}\right) & \text{for } u_0 < u < u_1, \\ 1 & \text{for } u > u_1. \end{cases}
$$

MPI@LHC 2023 Manchester 11/21/2023 ii/iv

DPD luminosities at LO and NLO: cut-off scale dependence.

- \blacktriangleright The subtracted $\mathcal{L}_{u\bar{d},\bar{d}u}$ luminosity exhibits little dependence on the cut-off scale already at LO.
- ▶ The cut-off scale dependence of the subtracted 1v1 contribution is noticably reduced from LO to NLO.

DPD luminosities at LO and NLO: cut-off scale dependence.

- \blacktriangleright The subtracted $\mathcal{L}_{u\bar{d},\bar{d}u}$ luminosity exhibits little dependence on the cut-off scale already at LO.
- ▶ The cut-off scale dependence of the subtracted 1v1 contribution is noticably reduced from LO to NLO.

Figure: Cut-off scale dependence of the (relative) subtracted 1v1 contribution to $\mathcal{L}_{u\bar{d},\bar{d}u}$ (80 GeV, 80 GeV) at LO and NLO.

DPD luminosities at LO and NLO: cut-off scale dependence.

Figure: Cut-off scale dependence of the subtracted luminosity $\mathcal{L}_{uq,\bar{d}q}(80\,\text{GeV},25\,\text{GeV})$ at LO and NLO. **MPI@LHC 2023 Manchester 11/21/2023 iii/iv**

- \blacktriangleright For the subtracted $\mathcal{L}_{uq,\bar{d}q}$ luminosity the remnant cut-off scale dependence is rather small already at LO.
- At NLO this is further reduced, especially for central rapidities.

Similar reduction observed in other channels and for colour non-singlet **luminosities!**

Except ...

DPD luminosities at LO and NLO: cut-off scale dependence.

Figure: Cut-off scale dependence of the (relative) subtracted 1v1 contribution to $\mathcal{L}_{uq,\bar{d}q}(80 \,\mathrm{GeV}, 25 \,\mathrm{GeV})$ at LO and NLO. **MPI@LHC 2023 Manchester 11/21/2023 iii/iv**

Except ...

- \blacktriangleright For the subtracted $\mathcal{L}_{uq,\bar{d}q}$ luminosity the remnant cut-off scale dependence is rather small already at LO.
- ▶ At NLO this is further reduced, especially for central rapidities.

Similar reduction observed in other channels and for colour non-singlet **luminosities!**

DPD luminosities at LO and NLO: cut-off scale dependence.

- In this case the cut-off scale dependence increases from LO to NLO.
- Most likely due to absence of Sudakov suppression in the large NLO subtraction term.
- Expect that the dependence decreases at NNLO (subtraction term only starts at NLO).

DPD luminosities at LO and NLO: cut-off scale dependence.

- In this case the cut-off scale dependence increases from LO to NLO.
- Most likely due to absence of Sudakov suppression in the large NLO subtraction term.
- Expect that the dependence decreases at NNLO (subtraction term only starts at NLO).

Figure: Cut-off scale dependence of the (relative) subtracted 1v1 contribution to ${}^{88,88}C_{u\bar{d},\bar{d},u}$ (80 GeV, 80 GeV) at LO and NLO.
MPI@LHC 2023 Manchester **MPI@LHC 2023 Manchester 11/21/2023 iii/iv**

Cut-off scale dependence in the colour non-singlet.

- In the singlet the subtraction term becomes non-zero at NLO(right).
- It stays small compared to the 1v1 term.

- \blacktriangleright In the non-singlet the 1v1 term is strongly Sudakov suppressed.
- No such suppression is present for the non-zero subtraction term at NLOI