Hadronisation and Decay of Excited Heavy Hadrons in

Aidin Masouminia

In collaboration with **Peter Richardson**

IPPP, Durham University

November 23rd, 2023 MPI@LHC, University of Manchester

This Study

- Enhancing Herwig's Hadronisation Model: Aiming to simulate the formation and decay of hadrons more accurately, particularly by transmitting polarization information of heavy quarks to the hadronization handler.
- Applying Heavy Quark Effective Theory: Utilizing HQET to systematically describe heavy quark behavior within hadrons, considering heavy quark spin-flavour symmetry for model-independent predictions of heavy hadron properties.
- Modeling Excited Heavy Hadron Decays: Refining strong isospin-conserving and isospin-violating as well as electromagnetic decay modes of excited heavy mesons, crucial due to limited experimental data.
- **Kinematics of Cluster splitting**: Introduction of a "dynamic thereshold scheme" for cluster hadronization.
- General Tuning of Hadronization and Shower Parameters: For both hadronization and parton shower parameters.

Heavy Quark Effective Theory in Cluster Hadronisation

- Passing through the polarization of heavy hadrons at the end of parton shower.
 - For $m_Q \gg \Lambda_{\text{QCD}}$, the light degrees of freedom become insensitive to m_Q . For the iso-spin heavy hadron multiplet (H, H^*) we can have:

 $\Gamma(H \to X) \gg \Delta m \gg \gamma(H \to H^* X)$

 $\gamma(H^{\star} \to HX) \propto \Phi_{\text{phase-space}}^{H^{\star} \to HX} \times |\mathcal{M}(H^{\star} \to HX)|^2 \sim \mathcal{O}(m_q^{-(2+n)}), \quad n \ge 1$

- Heavy quarks act as non-recoiling sources of color at the end of PS.
- A spin-flavor symmetry appears for heavy quarks.
- A net polarization of the initial heavy quark may be detected, either in a polarization of the final ground state or in the decay products of the **excited heavy mesons** and **heavy baryons**.
- Falk-Peskin "no-win" theorem: [Falk, Peskin, Phys.Rev.D 49 (1994) 3320-3332] No polarization information would be found in non-excited mesons. This could be realized for other possible cases, i.e.

$$\Delta m \gg \Gamma \gg \gamma$$
 or $\Delta m \gg \gamma \gg \Gamma$

Hadronisation & Decay of Heavy Hadrons in Herwig 7

Polarization of Excited Heavy Mesons

- Considering charm mesons with a left handed c quark, $j_Q = -1/2$.
- Colour magnetic interaction becomes decoupled leaving the spin-orientation of the light degrees independent of the charm quark and distributed uniformly:

$j_{q}^{(3)}$	-3/2	-1/2	1/2	3/2
Probability	$\frac{1}{2}\omega_{\frac{3}{2}}$	$\tfrac{1}{2}(1-\omega_{\frac{3}{2}})$	$\tfrac{1}{2}(1-\omega_{\frac{3}{2}})$	$\frac{1}{2}\omega_{\frac{3}{2}}$

- ω_j is the likelihood of fragmentation leading to a state with maximum value $|j_q^{(3)}|$.
- Coherent linear superposition of the charmed state helicity probabilities $P_{H^*}(j_q + j_Q)$:

$j^{(3)}$	$^{-2}$	$^{-1}$	0	$^{+1}$	+2
D	-	_	$\frac{1}{4}$	-	_
D^{\star}	-	$\frac{1}{2}$	$\frac{1}{4}$	0	_
D_1	-	$\tfrac{1}{8}(1-\omega_{\frac{3}{2}})$	$\tfrac{1}{4}(1-\omega_{\frac{3}{2}})$	$\tfrac{3}{8}(1-\omega_{\frac{3}{2}})$	_
D_2^{\star}	$\frac{1}{2}\omega_{\frac{3}{2}}$	$\tfrac{3}{8}(1-\omega_{\frac{3}{2}})$	$\tfrac{1}{4}(1-\omega_{\frac{3}{2}})$	$\frac{1}{8}\omega_{\frac{3}{2}}$	0

Polarization of Excited Heavy Mesons

– To evaluate the parameter ω_j :

$$\frac{d\Gamma(H^{\star} \to H\pi)}{d\cos\theta} \propto \int d\phi \sum_{j} P_{H^{\star}}(j) |Y_{j}^{\ell}(\theta,\phi)|^{2}$$

$$\frac{1}{\Gamma} \frac{d\Gamma(D_2^{\star} \to D\pi)}{d\cos\theta} = \frac{1}{4} \left[1 + 3\cos^2\theta - 6\omega_{\frac{3}{2}} \left(\cos^2\theta - \frac{1}{3} \right) \right]$$

- Comparing to the available experimental data, $\omega_{\frac{3}{2}} < 0.24$ with in 90% CL.
- Default value in Herwig is set $\omega_{\frac{3}{2}} = 0.20$.
- Generalise for the possible spin polarisations of excited charmed mesons:

$\hat{ ho}$	$\rho_{0,0}$	$ ho_{1,1}$	$ ho_{2,2}$	ρ3,3	$\rho_{4,4}$
D	1	_	_	_	-
D^{\star}	$rac{1}{2}(1- ho_Q)$	$\frac{1}{2}$	$\frac{1}{2}(1+ ho_Q)$	_	-
D_1	$\frac{1}{16} [1 - \rho_Q + \omega_{\frac{3}{2}} (3 - 5\rho_Q)]$	$\tfrac{1}{4}(1-\omega_{\frac{3}{2}})$	$\frac{1}{16}[1 - \rho_Q + \omega_{\frac{3}{2}}(3 + 5\rho_Q)]$	-	-
D_2^{\star}	$rac{1}{4}\omega_{rac{3}{2}}(1- ho_Q)$	$\frac{3}{16}(1-\rho_Q) - \frac{1}{8}\omega_{\frac{3}{2}}(1-\rho_Q)$	$\tfrac{1}{4}(1-\omega_{\frac{3}{2}})$	$\tfrac{3}{16}(1+\rho_Q) - \tfrac{1}{8}\omega_{\frac{3}{2}}(1+\rho_Q)$	$\tfrac{1}{4}\omega_{\frac{3}{2}}(1+\rho_Q)$

Hadronisation & Decay of Heavy Hadrons in Herwig 7

 $\mathbf{5}$

Polarization of Heavy Baryons

- For ground state heavy baryons, $j_q = 0$ so the initial polarization will be preservated without dilution.
- Considering charm baryons with a left handed c quark, $j_Q = -1/2$.
- $-\omega_1 = 2/3.$
- ω_a is the rate of spin-0 to spin-1 diquark producion, which we take to be $\omega_a = 1$.

$j^{(3)}$	-3/2	-1/2	+1/2	+ 3/2
Λ_c	_	$\frac{1}{1+\omega_a}$	0	_
Σ_c	_	$\frac{(1-\omega_1)\omega_a}{3(1+\omega_a)}$	$\frac{\omega_1\omega_a}{3(1+\omega_a)}$	_
Σ_c^\star	$\frac{\omega_1\omega_a}{2(1+\omega_a)}$	$\frac{2(1-\omega_1)\omega_a}{3(1+\omega_a)}$	$\frac{\omega_1\omega_a}{6(1+\omega_a)}$	0

– Generalise for the possible spin polarisations of charmed baryons:

$\hat{ ho}$	$ ho_{0,0}$	$ ho_{1,1}$	$ ho_{2,2}$	$ ho_{3,3}$
Λ_c	$\frac{1}{2}(1-\rho_Q)$	$\tfrac{1}{2}(1+\rho_Q)$	_	_
Σ_c	$\frac{1}{2}(1-\rho_Q)+\omega_1\rho_Q$	$\frac{1}{2}(1+\rho_Q)-\omega_1\rho_Q$	_	_
Σ_c^\star	$\frac{3}{8}\omega_1(1-\rho_Q)$	$\frac{1}{2}(1-\rho_Q) - \frac{1}{8}\omega_1(3-5\rho_Q)$	$\frac{1}{2}(1-\rho_Q) - \frac{1}{8}\omega_1(3+5\rho_Q)$	$\frac{3}{8}\omega_1(1+\rho_Q)$

HQET and the Decay Modes of the Excite Heavy Mesons

- Improving the strong isospin-conserving decay modes
 - $J^P = 0^-, 1^-$ doublet; D and D^*
 - $J^P = 1^+, 2^+$ doublet; D_1 and D_2^*
 - $J^P = 0^+, 1^+$ doublet; D_0^* and D_1'
- The electromagnetic and strong isospin-violating decay modes
 - Particular importance where the strong isospin conserving decays are either **not allowed** or **kinematically suppressed**.
 - $\circ~D^*$ and B^* mesons, where the strong decays are kinematically suppressed and radiative modes are important.
 - D_{s}^{*+} , D_{s0}^{*+} and $D_{s1}^{+}(2460)$ mesons, where both radiative and isospin-violating decay modes are important as the strong isospin conserving DK modes are kinematically forbidden.
 - the B_s^{*0} where only the radiative mode is kinematically allowed.
 - $\circ~$ The D_s system is the most complicated as there are many excited mesons below the strong decay threshold.
 - Has been used for heavy baryon decays since Herwig++.

Decay Modes

For 2-body decay modes in HQET:

[Falk, M. E. Luke, 1992; Falk, Mehen, 1996]

$$\begin{split} \mathcal{M}(D^{*} \to D\pi) &= -\frac{2g}{f_{\pi}} \left(m_{D} m_{D^{*}} \right)^{\frac{1}{2}} p_{0} \cdot \epsilon_{0} \\ \mathcal{M}(D_{2}^{*} \to D\pi) &= -\frac{2h}{f_{\pi} \Lambda} \left(m_{D_{2}} m_{D}^{*} \right)^{\frac{1}{2}} \epsilon_{0}^{\mu \nu} p_{0,\mu} p_{0,\nu} \\ \mathcal{M}(D_{2}^{*} \to D^{*} \pi) &= -i \frac{2h}{f_{\pi} \Lambda} \left(\frac{m_{D^{*}}}{m_{D_{2}}} \right)^{\frac{1}{2}} \epsilon^{\alpha \beta \mu \nu} \epsilon_{\alpha \gamma}^{0} p_{0}^{\gamma} p_{0,\mu} p_{1\nu} \epsilon_{1\beta}, \\ \mathcal{M}(D_{1} \to D^{*} \pi) &= \frac{h}{f_{\pi} \Lambda} \left(\frac{2}{3} m_{D_{1}} m_{D} \right)^{\frac{1}{2}} \left[\epsilon_{0} \cdot \epsilon_{1} \left(p_{0}^{2} - \left[\frac{p_{0} \cdot p_{1}}{m_{0}} \right]^{2} \right) - 3\epsilon_{0} \cdot p_{0} \epsilon_{1} \cdot p_{0} \right] \\ \mathcal{M}(D_{0}^{*} \to D\pi) &= \frac{f''}{f_{\pi}} \left(m_{D_{0}^{*}} m_{D} \right)^{\frac{1}{2}} p_{0} \cdot \left(\frac{p_{1}}{m_{D_{0}^{*}}} + \frac{p_{2}}{m_{D}} \right) \\ \mathcal{M}(D_{1}' \to D^{*} \pi) &= -\frac{f''}{f_{\pi}} \left(m_{D_{1}'} m_{D} \right)^{\frac{1}{2}} \left[-p_{0} \cdot \left(\frac{p_{1}}{m_{D_{0}^{*}}} + \frac{p_{2}}{m_{D}} \right) \epsilon_{0} \cdot \epsilon_{1} \\ &\quad + \frac{1}{m_{D_{1}'}} \epsilon_{1} \cdot p_{1} \epsilon_{0} \cdot p_{0} + \frac{1}{m_{D}} \epsilon_{0} \cdot p_{2} \epsilon_{1} \cdot p_{0} \right] \end{split}$$

Hadronisation & Decay of Heavy Hadrons in Herwig 7

MPI@LHC, 20-24 November 2023

Decay Modes

Decay Widths:

[Richardson, AM, 2023]

$$\begin{split} \Gamma(D^{\star} \to D\pi) &= \frac{g^2}{6\pi f_{\pi}^2} \frac{m_D}{m_{D^{\star}}} p_{\rm cm}^3 \\ \Gamma(D_2^{\star} \to D^{\star}\pi) &= \frac{h^2}{15\pi f_{\pi}^2 \Lambda^2} \frac{m_{D^{\star}}}{m_{D_2^{\star}}} p_{\rm cm}^5 \\ \Gamma(D_2^{\star} \to D\pi) &= \frac{h^2}{10\pi f_{\pi}^2 \Lambda^2} \frac{m_D}{m_{D_2^{\star}}} p_{\rm cm}^5 \\ \Gamma(D_1 \to D^{\star}\pi) &= \frac{h^2}{144\pi f_{\pi}^2 \Lambda^2} \frac{\left[-2m_{D^1}^2(m_{D^{\star}}^2 - 5m_{\pi}^2) + (m_{\pi}^2 - m_{D^{\star}}^2)^2 + 25m_{D^1}^4\right]}{m_{D^{\star}} m_{D^1}^3} p_{\rm cm}^5 \\ \Gamma(D_0^{\star} \to D\pi) &= \frac{f''^2}{32f_{\pi}^2 \pi} \frac{\left(m_{D_0^{\star}} - m_D\right)^2}{m_D m_{D_0^{\star}}^3} \left[\left(m_{D_0^{\star}} + m_D\right)^2 - m_{\pi}^2\right]^2 p_{\rm cm} \\ \Gamma(D_1' \to D^{\star}\pi) &= \frac{f''^2}{32f_{\pi}^2 \pi} \frac{\left(m_{D_1'} - m_{D^{\star}}\right)^2}{m_D \star m_{D_1'}^3} \left[\left(m_{D_0'} + m_D^{\star}\right)^2 - m_{\pi}^2\right]^2 p_{\rm cm} \end{split}$$

Hadronisation & Decay of Heavy Hadrons in Herwig 7

MPI@LHC, 20-24 November 2023 9

Decay Data

Multiplet	State	Meson	Mass [GeV]	Width	Δm
$(0^-, 1^-)$	0-	D^+	1.8697 ± 0.0001	N/A	4.82 ± 0.07
		D^0	1.8648 ± 0.0001	N/A	0.00 ± 0.00
		D_s^+	1.9683 ± 0.0001	N/A	103.51 ± 0.09
	1-	D^{*+}	2.0103 ± 0.0001	$(0.0834 \pm 0.0018) \times 10^{-3}$	3.41 ± 0.07
		D^{*0}	2.0069 ± 0.0001	< 0.0021	0.00 ± 0.00
		D_{s}^{*+}	2.1122 ± 0.0004	< 0.0019	105.35 ± 0.40
$(1^+, 2^+)$	1^{+}	D_1^+	2.4232 ± 0.0024	0.0250 ± 0.0060	2.40 ± 2.45
		D_1^0	2.4208 ± 0.0005	0.0317 ± 0.0025	0.00 ± 0.00
		D_{s1}^{+}	2.5351 ± 0.0001	0.0009 ± 0.0001	114.31 ± 0.50
	2^{+}	D_{2}^{*+}	2.4654 ± 0.0013	0.0467 ± 0.0012	4.70 ± 1.36
		D_{2}^{*0}	2.4607 ± 0.0004	0.0475 ± 0.0011	0.00 ± 0.00
		$D_{s2}^{\bar{*}+}$	2.5691 ± 0.0008	0.0169 ± 0.0007	108.40 ± 0.89
$(0^+, 1^+)$	0^{+}	D_0^+	2.3490 ± 0.0070	0.2210 ± 0.0180	49.00 ± 20.25
		D_0^0	2.3000 ± 0.0190	0.2740 ± 0.0400	0.00 ± 0.00
		D_{s0}^{+}	2.3178 ± 0.0005	< 0.0038	17.80 ± 19.01
	1+	$D_{1}^{\prime +}$	Ν	ot observed	
		$D_{1}^{\prime 0}$	2.4270 ± 0.0400	$0.38^{+0.13}_{-0.11}$	0.00 ± 0.00
		$D_{s1}^{'+}$	2.4595 ± 0.0006	< 0.0035	32.50 ± 40.00

Observed masses and widths of the charm mesons, from BaBar and LHCb.

Hadronisation & Decay of Heavy Hadrons in Herwig 7

MPI@LHC, 20-24 November 2023 10

Fitting HQET Parameters

Parameter	f''	f_{π}	h	Λ	g	$\theta_{u,d}$	θ_s
Fitted Value	-0.465 ± 0.017	$0.130\pm0.001~{\rm GeV}$	0.824 ± 0.007	$1.000 \pm 0.000 \text{ GeV}$	0.565 ± 0.006	0.000 ± 0.100	-0.047 ± 0.002

HQET in Herwig 7

Efficiency-corrected decay rates of D_{s1}^+ meson.

HQET in Herwig 7

Average polarization of Λ_b baryons in hadronic Z^0 decays at LEP by ALEPH and OPAL.

General Tune for Herwig-7.3.0

- First general tune of Herwig 7.3.0 since the 7.2.0 release.
- Fitting to e^-e^+ mesurments from LEP, PETRA, SLAC, SLC and TRISTAN, for over 9,200 data bins.
- Tune weighted around both light and heavy hadron production rates and multiplicities, prioritising more dominant processes.
- Initial attempts to use Professor II yielded inconsistencies.
- We resorted to a multi-layered, brute-force approach to minimizing the χ^2 parameter.
- 5 consecutive runs, making the parameter range smaller, focusing on the best tune in the previous run. Each run for 5000 samples.
- 2 parton shower parameters and 10 hadronization parameters, including 3 new ones related to the kinematic handling of cluster splittings.

Kinematic Optimization in Cluster Hadronisation

Static vs Dynamic kinematic thersholds in cluster splitting:

Probability of cluster splittings for heavy clusters:

$$P_{\text{cluster}} = \frac{1}{1 + \left|\frac{M-\delta}{M_{\text{th}}}\right|^{r}} > \text{Rand}(0,1)$$

General Tune for Herwig-7.3.0

- The values of tuned parameters in Herwig-7.3.0 compared to Herwig-7.2.0.

Tuned Parameter	Herwig-7.3.0	Herwig-7.2.0
ClMaxLight [GeV]	3.529	3.649
ClPowLight	1.849	2.780
PSplitLight	0.914	0.899
PwtSquark	0.374	0.292
PwtDIquark	0.331	0.298
SngWt	0.891	0.740
DecWt	0.416	0.620
ProbabilityPowerFactor	6.486	—
ProbabilityShift	-0.879	—
${\tt KineticThresholdShift} \ [{ m GeV}]$	0.088	—
AlphaIn	0.102	0.126
pTmin [GeV]	0.655	0.958

- χ^2 improved by 12.76% (compared to Herwig 7.2.0 tune).

- χ^2 improved by 50.75% (compared to the untuned Herwig-7.3.0).

Comparison of heavy meson production rates at LEP, from various experimental data sets.

Summary

- Integration of HQET and spin-flavour symmetry in Herwig 7's cluster hadronization, via SpinHadronizer.
- Introduction of HQETStrongDecayer and HQETRadiativeDecayer for improved heavy meson and baryon decay handling.
- New kinematic regime for cluster splitting, enhancing model accuracy.
- Dynamic probability function for smoother cluster splitting distributions.
- Brute-force, multilayered approach to minimize χ^2 .
- Tuning of 12 parameters, including parton shower-related ones.
- Substantial improvement in predictive capabilities for heavy hadron production.

Conclusion: "The integration of HQET and spin-flavour symmetry into Herwig 7 marks a major step forward in predictive modelling of heavy hadron production. The forthcoming Herwig-7.3.0 will offer a powerful tool for precise investigations in this field."

std::cout«"Thank You!"«"\n";