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Motivation

• What is the theoretical description of the underlying event?


• MPI model in parton showers


• Multi-parton scattering in factorization


• Factorization violation*
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Figure 8. Interaction between spectators composed from ‘collinear Glauber’ uprights and a central
soft rung. The scaling of the momenta at the collinear Glauber + central soft pinch is denoted on
the figure. Each momentum ri on the uprights is now referred to as ‘collinear Glauber’ because one
of |r+

i
| or |r−

i
| is now non-negligible compared to the transverse momentum, but the momentum

satisfies the basic condition for a Glauber momentum |r+
i
r−
i
| ! r2Ti.

the simpler two-Glauber-gluon graph.

Figure 8 is suppressed by an additional power of αS , but it is known from BFKL physics

that when the rapidities are strongly ordered (as indeed they are in figure 8) then one picks

up an additional enhancement from rapidity logarithms that acts to counterbalance the

αS suppression (see for example [53]). Indeed, we can actually insert arbitrary numbers of

gluon rungs into the Glauber process, forming something akin to a Pomeron, and still be

at leading logarithmic order in the BFKL sense (the connection between Glauber gluons

and the Pomeron/BFKL physics is also highlighted in [4, 27–29, 36]). These objects, as

well as other effects from Pomeron physics such as Pomeron splitting and merging, are

not included in e.g. default Pythia and Herwig (except in the parts of these programs

designed to describe diffractive observables), but could well be important. Due to this

fact we cannot be completely confident that the contribution to ET from the underlying

event generated by Herwig++ in the studies [30, 32] will be completely accurate. We note

here that the Monte Carlo codes SHRiMPS [54] and DIPSY [55] do incorporate some of the

necessary BFKL/Pomeron-type effects.

2.2 Other Observables

With the connection between standard factorisation violation, two Glauber exchange and

soft MPI, we expect any observable sensitive to MPI OS not to obey factorisation when

the value of that observable is parametrically small compared to the hard scale (where here

again we have taken OS to have mass dimension 1). Consider for example beam thrust. In

this case the function inside the square brackets in (2.12) becomes:
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Factorization violation 

[figure from Gaunt]
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Figure 8. Example graphs and power behavior for different combinations of single and double hard
scattering contributions to gauge boson pair production. It is understood that internal lines of the
hard-scattering subgraphs are off shell by order Q2, whereas partons emerging from the proton
matrix elements are off shell by order Λ2.

where dΩ1 is the solid angle of p1 in the rest frame of qi. We recall that xi = q+i /p
+

and x̄i = q−i /p̄
− are defined in terms of final-state momenta and thus directly observable.

According to (2.127) the scaling behavior of the squared hard-scattering amplitudes changes

by 1/Q2 when going from (2.128) to (2.129), which is compensated by the phase space

volume sdΩ1 ∼ Q2. One may put restrictions on the phase space integration, such as a

minimum transverse momentum of p1, as long as dΩ1 remains of order 1. For each further

final-state particle, the squared amplitude acquires an extra 1/Q2, which is compensated

by an extra phase space integration with volume of order Q2.

After these preliminaries we can establish the power behavior of the conventional

mechanism with a single hard scattering, shown in figure 8a. The cross section formula

can be obtained in exactly the same way as in section 2.1.2. Omitting all factors that are

– 34 –

Double parton scattering 

[figure from Diehl et al]

Parton shower

[figure from Hoeche]



Double parton scattering vs. factorization violation

• Double parton scattering


• Two hard collisions


• Factorization proven for double Drell-Yan 

[Diehl, Gaunt, Ostermeier, Ploessl, Schafer]


• Factorization violation


• Hard collision + Glauber exchanges


• Observable dependent: no violation for Drell-Yan qT

[Collins, Soper, Sterman; Bodwin]


• Glauber ladders don’t violate fact., need soft emission 
(Lipatov vertex) [Schwartz, Yan, Zhu]
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by an extra phase space integration with volume of order Q2.
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the simpler two-Glauber-gluon graph.

Figure 8 is suppressed by an additional power of αS , but it is known from BFKL physics

that when the rapidities are strongly ordered (as indeed they are in figure 8) then one picks

up an additional enhancement from rapidity logarithms that acts to counterbalance the

αS suppression (see for example [53]). Indeed, we can actually insert arbitrary numbers of

gluon rungs into the Glauber process, forming something akin to a Pomeron, and still be

at leading logarithmic order in the BFKL sense (the connection between Glauber gluons

and the Pomeron/BFKL physics is also highlighted in [4, 27–29, 36]). These objects, as

well as other effects from Pomeron physics such as Pomeron splitting and merging, are

not included in e.g. default Pythia and Herwig (except in the parts of these programs

designed to describe diffractive observables), but could well be important. Due to this

fact we cannot be completely confident that the contribution to ET from the underlying

event generated by Herwig++ in the studies [30, 32] will be completely accurate. We note

here that the Monte Carlo codes SHRiMPS [54] and DIPSY [55] do incorporate some of the
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2.2 Other Observables
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soft MPI, we expect any observable sensitive to MPI OS not to obey factorisation when
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Vector angularities

• Motivation: 


• Smoothly connects to qT (a=0), which factorizes with (approx.) 
N4LL predictions [Neumann, Campbell; Camarda, Cieri, Ferrera; Moos, Scimemi, Vladimirov, Zurita]


• Angularities well studied [Berger, Kucs, Sterman; Almeida, Lee, Perez, Sterman, Sung, Virzi; 

Ellis, Hornig, Lee, Vermilion, Walsh;  Bell, Hornig, Lee, Talbert, ...]. Vector sum key difference


This talk:


Study effect of MPI in Pythia as proxy of fact. violation [Gaunt]


Predictions without fact. violation offer baseline for studying this
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Vector angularities

• Motivation: 


• Smoothly connects to qT (a=0), which factorizes with (approx.) 
N4LL predictions [Neumann, Campbell; Camarda, Cieri, Ferrera; Moos, Scimemi, Vladimirov, Zurita]


• Angularities well studied [Berger, Kucs, Sterman; Almeida, Lee, Perez, Sterman, Sung, Virzi; 

Ellis, Hornig, Lee, Vermilion, Walsh;  Bell, Hornig, Lee, Talbert, ...]. Vector sum key difference


• This talk:


• Study effect of MPI in Pythia as proxy of fact. violation [Gaunt]


• Predictions without fact. violation → baseline for studying this

5[Bijl, Niedenzu, WW - arXiv:2307.02521]
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Effect of MPI in Pythia for a=0

• No fact. violation for a=0, matches negligible effect of MPI


• This is not true for scalar sum of pT (=HT)


• Effect of hadronization is small
6

a=0
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Effect of MPI in Pythia for a=0.5, 1

• For , substantial effect of MPI → suggest fact. violation


• Same seen for Herwig

a ≠ 0
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Predictions without factorization violation
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• Factorize cross section for small


into hard, collinear and soft functions. Ignore Glaubers
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FIG. 2: Different final-state configurations for pp collisions. The top row corresponds to Drell-Yan factorization theorems for
the (a) inclusive, (b) threshold, and (c) isolated cases. The bottom row shows the corresponding pictures with the lepton pair
replaced by dijets.

the beam. The colliding partons emit collinear radiation
along the beams that can be observed in the final state,
shown by the green lines labeled “Jet a” and “Jet b” in
Fig. 2(c). This radiation cannot be neglected in the fac-
torization theorem and necessitates the beam functions.
In the threshold case, these jets are not allowed by the
limit τ → 1, which forces all available energy into the
leptons and leaves only soft hadronic radiation.1 In the
inclusive case there are no restrictions on additional hard
emissions, in which case initial-state radiation is included
in the partonic cross section in H incl

ij .

Also shown in Fig. 2(c) is the fact that the leptons
in isolated Drell-Yan need not be back-to-back, though
they are still back-to-back in the transverse plane [see
Sec. IVB]. In this regard, isolated Drell-Yan is in-

1 Note that the proof of factorization for the partonic cross section
in the partonic threshold limit z → 1 is not sufficient to establish
the factorization of the hadronic cross section, unless one takes
the limit τ → 1. The hadronic factorization theorem assumes
that all real radiation is soft with only virtual hard radiation
in the hard function. The weaker limit z → 1 still allows the
incoming partons to emit energetic real radiation that cannot
be described by the threshold soft function. Only the τ → 1
limit forces the radiation to be soft. This point is not related to
whether or not the threshold terms happen to dominate numer-
ically away from τ → 1 due to the shape of the PDFs or other
reasons.

between the threshold case, where the leptons are fully
back-to-back with Y ≈ 0, and the inclusive case, where
they are unrestricted.

In Figs. 2(d) and 2(e) we show analogs of threshold
Drell-Yan and isolated Drell-Yan where the leptons are
replaced by final-state jets. We will discuss the extension
to jets in Sec. IIG below.

To formulate isolated Drell-Yan we must first discuss
how to veto hard emissions in the central region. For this
purpose, it is important to use an observable that covers
the full phase space. Jet algorithms are good tools to
identify jets, but not necessarily to veto them. Imagine
we use a jet algorithm and require that it does not find
any jets in the central region. Although this procedure
covers the full phase space, the restrictions it imposes
on the final state depend in detail on the algorithm and
its criteria to decide if something is considered a jet or
not. It is very hard to incorporate such restrictions into
explicit theoretical calculations, and in particular into a
rigorous factorization theorem. Even if possible in prin-
ciple, the resulting beam and soft functions would be
very complicated objects, and it would be difficult to sys-
tematically resum the large logarithms arising at higher
orders from the phase-space restrictions. Therefore, to
achieve the best theoretical precision, it is important to
implement the central jet veto using an inclusive kine-
matic variable. This allows us to derive a factorization
theorem with analytically manageable ingredients, which
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Factorization of scales

9

• Factorization separates the physics at different scales:


• From which we read off:


• Vector or scalar sum doesn’t matter for one emission →    
check on beam [Kang, Maji, Zhu] and soft function [Hornig, Lee, Ovanesyan]
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Resummation

10

• Resummation is different from scalar angularities, and must be 
performed in impact parameter space, as for TMDs: 

[Frixione, Nason, Ridolfi; Ebert, Tackmann, …]


• Resum logarithms of        using renormalization group


• Treat Landau pole with b* prescription
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FIG. 2. Normalized cross sections di↵erential in the vector angularity |~⌧a|, for a = �0.25 (top left), 0 (top right), 0.5 (bottom
left), 1 (bottom right), obtain using our resummed calculation at LL (blue dotted) and NLL0 (purple). The bands indicate
the perturbative uncertainty, estimated using the scale variations in Sec. III B. The Pythia result without MPI and without
hadronization (green dashed) from Fig. 1, is shown for comparison.

is extrapolated from the LL cross section using:
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Finally, we note that for large b, b⇤? ! bmax and the
cross section in b approaches a constant. A constant in
b-space transform to a delta function in ~⌧a, and we there-
fore subtract of this contribution to improve the numeri-
cal stability. Alternatively, one can include a nonpertur-
bative model exp(�⇤~b 2

?) to suppress this region, which
for ⇤ = 0.35 GeV yields the same within a few percent.

C. Numerical results

We have implemented our resummation in Eq. (5) at
leading logarithmic (LL) and next-to-leading logarithmic
(NLL0) order. The former only involves the tree-level
hard, beam and soft function as well as the lowest or-
der cusp anomalous dimension �0 and running coupling
(�0). At NLL0 we include all ingredients in Appendix A,

and consistently expand the cross section, e.g. dropping
cross terms involving a one-loop beam and one-loop soft
function. We do not include the matching to next-to-
leading order (NLO) cross section, so our results become
less reliable for large values of |~⌧a|. For this reason, we
normalize the distribution on the plotted interval.
Our results for a = �0.25, 0, 0.5, 1 at LL and NLL0

are shown in Fig. 2. The bands indicate the pertur-
bative uncertainty and are obtained by scale variations,
as discussed in Sec. III B. We apply the same factor for
the scale variations as was used to normalize the cen-
tral curve, instead of separately normalizing each of the
scale variations. This makes our uncertainty estimate
more conservative. Formally our expressions diverge at
a = 0, so in this case we take the limit numerically by
setting a = 0.01. 5. This yields a reasonable result at
LL, but the NLL0 curve is unstable due to large cancella-

5 The divergence at a = 0 in the one-loop soft- and beam func-
tions requires a rapidity regulator, see e.g. Refs. [40–42]. We
have checked that the 1/a poles cancel when summing the one-
loop contributions from the soft- and beam functions, and that
the result in the a ! 0 limit agrees with the known result for

(N)LL’ results compared to Pythia for a=0, 0.5

• Resummed perturbation theory converges


• Agrees with Pythia in peak, difference in tail (no matching yet)


• For a=0, there are rapidity divergences. At LL this limit is smooth 
[Larkoski, Neill, Thaler]
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FIG. 2. Normalized cross sections di↵erential in the vector angularity |~⌧a|, for a = �0.25 (top left), 0 (top right), 0.5 (bottom
left), 1 (bottom right), obtain using our resummed calculation at LL (blue dotted) and NLL0 (purple). The bands indicate
the perturbative uncertainty, estimated using the scale variations in Sec. III B. The Pythia result without MPI and without
hadronization (green dashed) from Fig. 1, is shown for comparison.

is extrapolated from the LL cross section using:
Z

dY
d�NLL0

dY d2~⌧a
=


d�NLL0

dY d2~⌧a

�
d�LL

dY d2~⌧a
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Y=0

⇥
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Finally, we note that for large b, b⇤? ! bmax and the
cross section in b approaches a constant. A constant in
b-space transform to a delta function in ~⌧a, and we there-
fore subtract of this contribution to improve the numeri-
cal stability. Alternatively, one can include a nonpertur-
bative model exp(�⇤~b 2

?) to suppress this region, which
for ⇤ = 0.35 GeV yields the same within a few percent.

C. Numerical results

We have implemented our resummation in Eq. (5) at
leading logarithmic (LL) and next-to-leading logarithmic
(NLL0) order. The former only involves the tree-level
hard, beam and soft function as well as the lowest or-
der cusp anomalous dimension �0 and running coupling
(�0). At NLL0 we include all ingredients in Appendix A,

and consistently expand the cross section, e.g. dropping
cross terms involving a one-loop beam and one-loop soft
function. We do not include the matching to next-to-
leading order (NLO) cross section, so our results become
less reliable for large values of |~⌧a|. For this reason, we
normalize the distribution on the plotted interval.
Our results for a = �0.25, 0, 0.5, 1 at LL and NLL0

are shown in Fig. 2. The bands indicate the pertur-
bative uncertainty and are obtained by scale variations,
as discussed in Sec. III B. We apply the same factor for
the scale variations as was used to normalize the cen-
tral curve, instead of separately normalizing each of the
scale variations. This makes our uncertainty estimate
more conservative. Formally our expressions diverge at
a = 0, so in this case we take the limit numerically by
setting a = 0.01. 5. This yields a reasonable result at
LL, but the NLL0 curve is unstable due to large cancella-

5 The divergence at a = 0 in the one-loop soft- and beam func-
tions requires a rapidity regulator, see e.g. Refs. [40–42]. We
have checked that the 1/a poles cancel when summing the one-
loop contributions from the soft- and beam functions, and that
the result in the a ! 0 limit agrees with the known result for

a=0.5
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NLL’ results compared to Pythia for a=1

• Resummed perturbation theory converges


• Looks more like Pythia+MPI in peak


• Baseline without Glaubers important to study fact. violation
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FIG. 2. Normalized cross sections di↵erential in the vector angularity |~⌧a|, for a = �0.25 (top left), 0 (top right), 0.5 (bottom
left), 1 (bottom right), obtain using our resummed calculation at LL (blue dotted) and NLL0 (purple). The bands indicate
the perturbative uncertainty, estimated using the scale variations in Sec. III B. The Pythia result without MPI and without
hadronization (green dashed) from Fig. 1, is shown for comparison.

is extrapolated from the LL cross section using:
Z

dY
d�NLL0

dY d2~⌧a
=


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Finally, we note that for large b, b⇤? ! bmax and the
cross section in b approaches a constant. A constant in
b-space transform to a delta function in ~⌧a, and we there-
fore subtract of this contribution to improve the numeri-
cal stability. Alternatively, one can include a nonpertur-
bative model exp(�⇤~b 2

?) to suppress this region, which
for ⇤ = 0.35 GeV yields the same within a few percent.

C. Numerical results

We have implemented our resummation in Eq. (5) at
leading logarithmic (LL) and next-to-leading logarithmic
(NLL0) order. The former only involves the tree-level
hard, beam and soft function as well as the lowest or-
der cusp anomalous dimension �0 and running coupling
(�0). At NLL0 we include all ingredients in Appendix A,

and consistently expand the cross section, e.g. dropping
cross terms involving a one-loop beam and one-loop soft
function. We do not include the matching to next-to-
leading order (NLO) cross section, so our results become
less reliable for large values of |~⌧a|. For this reason, we
normalize the distribution on the plotted interval.
Our results for a = �0.25, 0, 0.5, 1 at LL and NLL0

are shown in Fig. 2. The bands indicate the pertur-
bative uncertainty and are obtained by scale variations,
as discussed in Sec. III B. We apply the same factor for
the scale variations as was used to normalize the cen-
tral curve, instead of separately normalizing each of the
scale variations. This makes our uncertainty estimate
more conservative. Formally our expressions diverge at
a = 0, so in this case we take the limit numerically by
setting a = 0.01. 5. This yields a reasonable result at
LL, but the NLL0 curve is unstable due to large cancella-

5 The divergence at a = 0 in the one-loop soft- and beam func-
tions requires a rapidity regulator, see e.g. Refs. [40–42]. We
have checked that the 1/a poles cancel when summing the one-
loop contributions from the soft- and beam functions, and that
the result in the a ! 0 limit agrees with the known result for

MPI

a=1
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• Baseline predictions without fact. 
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• Can we calculate effect of fact. 
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FIG. 2. Normalized cross sections di↵erential in the vector angularity |~⌧a|, for a = �0.25 (top left), 0 (top right), 0.5 (bottom
left), 1 (bottom right), obtain using our resummed calculation at LL (blue dotted) and NLL0 (purple). The bands indicate
the perturbative uncertainty, estimated using the scale variations in Sec. III B. The Pythia result without MPI and without
hadronization (green dashed) from Fig. 1, is shown for comparison.

is extrapolated from the LL cross section using:
Z

dY
d�NLL0

dY d2~⌧a
=


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Finally, we note that for large b, b⇤? ! bmax and the
cross section in b approaches a constant. A constant in
b-space transform to a delta function in ~⌧a, and we there-
fore subtract of this contribution to improve the numeri-
cal stability. Alternatively, one can include a nonpertur-
bative model exp(�⇤~b 2

?) to suppress this region, which
for ⇤ = 0.35 GeV yields the same within a few percent.

C. Numerical results

We have implemented our resummation in Eq. (5) at
leading logarithmic (LL) and next-to-leading logarithmic
(NLL0) order. The former only involves the tree-level
hard, beam and soft function as well as the lowest or-
der cusp anomalous dimension �0 and running coupling
(�0). At NLL0 we include all ingredients in Appendix A,

and consistently expand the cross section, e.g. dropping
cross terms involving a one-loop beam and one-loop soft
function. We do not include the matching to next-to-
leading order (NLO) cross section, so our results become
less reliable for large values of |~⌧a|. For this reason, we
normalize the distribution on the plotted interval.
Our results for a = �0.25, 0, 0.5, 1 at LL and NLL0

are shown in Fig. 2. The bands indicate the pertur-
bative uncertainty and are obtained by scale variations,
as discussed in Sec. III B. We apply the same factor for
the scale variations as was used to normalize the cen-
tral curve, instead of separately normalizing each of the
scale variations. This makes our uncertainty estimate
more conservative. Formally our expressions diverge at
a = 0, so in this case we take the limit numerically by
setting a = 0.01. 5. This yields a reasonable result at
LL, but the NLL0 curve is unstable due to large cancella-

5 The divergence at a = 0 in the one-loop soft- and beam func-
tions requires a rapidity regulator, see e.g. Refs. [40–42]. We
have checked that the 1/a poles cancel when summing the one-
loop contributions from the soft- and beam functions, and that
the result in the a ! 0 limit agrees with the known result for
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Figure 8. Interaction between spectators composed from ‘collinear Glauber’ uprights and a central
soft rung. The scaling of the momenta at the collinear Glauber + central soft pinch is denoted on
the figure. Each momentum ri on the uprights is now referred to as ‘collinear Glauber’ because one
of |r+

i
| or |r−

i
| is now non-negligible compared to the transverse momentum, but the momentum

satisfies the basic condition for a Glauber momentum |r+
i
r−
i
| ! r2Ti.

the simpler two-Glauber-gluon graph.

Figure 8 is suppressed by an additional power of αS , but it is known from BFKL physics

that when the rapidities are strongly ordered (as indeed they are in figure 8) then one picks

up an additional enhancement from rapidity logarithms that acts to counterbalance the

αS suppression (see for example [53]). Indeed, we can actually insert arbitrary numbers of

gluon rungs into the Glauber process, forming something akin to a Pomeron, and still be

at leading logarithmic order in the BFKL sense (the connection between Glauber gluons

and the Pomeron/BFKL physics is also highlighted in [4, 27–29, 36]). These objects, as

well as other effects from Pomeron physics such as Pomeron splitting and merging, are

not included in e.g. default Pythia and Herwig (except in the parts of these programs

designed to describe diffractive observables), but could well be important. Due to this

fact we cannot be completely confident that the contribution to ET from the underlying

event generated by Herwig++ in the studies [30, 32] will be completely accurate. We note

here that the Monte Carlo codes SHRiMPS [54] and DIPSY [55] do incorporate some of the

necessary BFKL/Pomeron-type effects.

2.2 Other Observables

With the connection between standard factorisation violation, two Glauber exchange and

soft MPI, we expect any observable sensitive to MPI OS not to obey factorisation when

the value of that observable is parametrically small compared to the hard scale (where here

again we have taken OS to have mass dimension 1). Consider for example beam thrust. In

this case the function inside the square brackets in (2.12) becomes:

[

− δ

(

b+a =
(k′

T − qT )2

2(P+
A − q+)

)

δ

(

b+b =
k′2

T

2(P−
B − q−)

)

(2.19)

+ δ

(

b+a =
(lT + qT )2

2(P+
A − q+)

)

δ

(

b+b =
l2T

2(P−
B − q−)

)]
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FIG. 2. Normalized cross sections di↵erential in the vector angularity |~⌧a|, for a = �0.25 (top left), 0 (top right), 0.5 (bottom
left), 1 (bottom right), obtain using our resummed calculation at LL (blue dotted) and NLL0 (purple). The bands indicate
the perturbative uncertainty, estimated using the scale variations in Sec. III B. The Pythia result without MPI and without
hadronization (green dashed) from Fig. 1, is shown for comparison.

is extrapolated from the LL cross section using:
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Finally, we note that for large b, b⇤? ! bmax and the
cross section in b approaches a constant. A constant in
b-space transform to a delta function in ~⌧a, and we there-
fore subtract of this contribution to improve the numeri-
cal stability. Alternatively, one can include a nonpertur-
bative model exp(�⇤~b 2

?) to suppress this region, which
for ⇤ = 0.35 GeV yields the same within a few percent.

C. Numerical results

We have implemented our resummation in Eq. (5) at
leading logarithmic (LL) and next-to-leading logarithmic
(NLL0) order. The former only involves the tree-level
hard, beam and soft function as well as the lowest or-
der cusp anomalous dimension �0 and running coupling
(�0). At NLL0 we include all ingredients in Appendix A,

and consistently expand the cross section, e.g. dropping
cross terms involving a one-loop beam and one-loop soft
function. We do not include the matching to next-to-
leading order (NLO) cross section, so our results become
less reliable for large values of |~⌧a|. For this reason, we
normalize the distribution on the plotted interval.
Our results for a = �0.25, 0, 0.5, 1 at LL and NLL0

are shown in Fig. 2. The bands indicate the pertur-
bative uncertainty and are obtained by scale variations,
as discussed in Sec. III B. We apply the same factor for
the scale variations as was used to normalize the cen-
tral curve, instead of separately normalizing each of the
scale variations. This makes our uncertainty estimate
more conservative. Formally our expressions diverge at
a = 0, so in this case we take the limit numerically by
setting a = 0.01. 5. This yields a reasonable result at
LL, but the NLL0 curve is unstable due to large cancella-

5 The divergence at a = 0 in the one-loop soft- and beam func-
tions requires a rapidity regulator, see e.g. Refs. [40–42]. We
have checked that the 1/a poles cancel when summing the one-
loop contributions from the soft- and beam functions, and that
the result in the a ! 0 limit agrees with the known result for
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Figure 8. Interaction between spectators composed from ‘collinear Glauber’ uprights and a central
soft rung. The scaling of the momenta at the collinear Glauber + central soft pinch is denoted on
the figure. Each momentum ri on the uprights is now referred to as ‘collinear Glauber’ because one
of |r+

i
| or |r−

i
| is now non-negligible compared to the transverse momentum, but the momentum

satisfies the basic condition for a Glauber momentum |r+
i
r−
i
| ! r2Ti.

the simpler two-Glauber-gluon graph.

Figure 8 is suppressed by an additional power of αS , but it is known from BFKL physics

that when the rapidities are strongly ordered (as indeed they are in figure 8) then one picks

up an additional enhancement from rapidity logarithms that acts to counterbalance the

αS suppression (see for example [53]). Indeed, we can actually insert arbitrary numbers of

gluon rungs into the Glauber process, forming something akin to a Pomeron, and still be

at leading logarithmic order in the BFKL sense (the connection between Glauber gluons

and the Pomeron/BFKL physics is also highlighted in [4, 27–29, 36]). These objects, as

well as other effects from Pomeron physics such as Pomeron splitting and merging, are

not included in e.g. default Pythia and Herwig (except in the parts of these programs

designed to describe diffractive observables), but could well be important. Due to this

fact we cannot be completely confident that the contribution to ET from the underlying

event generated by Herwig++ in the studies [30, 32] will be completely accurate. We note

here that the Monte Carlo codes SHRiMPS [54] and DIPSY [55] do incorporate some of the

necessary BFKL/Pomeron-type effects.

2.2 Other Observables

With the connection between standard factorisation violation, two Glauber exchange and

soft MPI, we expect any observable sensitive to MPI OS not to obey factorisation when

the value of that observable is parametrically small compared to the hard scale (where here

again we have taken OS to have mass dimension 1). Consider for example beam thrust. In

this case the function inside the square brackets in (2.12) becomes:

[

− δ

(

b+a =
(k′

T − qT )2

2(P+
A − q+)

)

δ

(

b+b =
k′2

T

2(P−
B − q−)

)

(2.19)

+ δ

(

b+a =
(lT + qT )2

2(P+
A − q+)

)

δ

(

b+b =
l2T

2(P−
B − q−)

)]
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Thanks!


