

Multiple Parton Scattering: Symmetrising PYTHIA's Model of nPDFs

Lawrie Smith (U. of Manchester)

Jonathan Gaunt (U. of Manchester)

MPI@LHC 2023

November 21st 2023

PYTHIA Model of MPI

How Does PYTHIA approach MPI?

Models the Hardest Interaction first, with SPDFs $f_i^r(x,Q)$ as in single parton scattering

"Subsequent" interactions modelled with modified SPDFs $f_{j_n}^{m \leftarrow j_1 x_1, \dots, j_{n-1} x_{n-1}}(x, Q)$

ISR handled for each of these interactions as it would be done in SPS

Sjostrand, Skands, hep-ph/0402078, hep-ph/0408302

PYTHIA Model of MPI

Four Principal Modifications:

(I) MOMENTUM "SQUEEZING":
$$f_{j_n}^{m \leftarrow j_1, x_1 \dots j_{n-1}, x_{n-1}}(x, Q) = \frac{1}{X} f_i^r \left(\frac{x}{X}, Q\right)$$
 $[X = 1 - \sum_{j=1}^{n-1} x_j]$ Ensures $\sum_{j_n} \int dx \, x \, f_{j_n}^{m \leftarrow j_1, x_1 \dots j_{n-1}, x_{n-1}}(x, Q) = X$.

(II) VALENCE NUMBER SUBTRACTION:

$$f_{i_v}^{m \leftarrow j_1, x_1 \dots j_{n-1}, x_{n-1}}(x, Q) = \frac{N_{i_v n}}{N_{i_v 0}} \frac{1}{X} f_{i_v}^r \left(\frac{x}{X}, Q\right)$$

(III) COMPANION QUARK ADDITION:

$$f_{i_{v}}^{m \leftarrow j_{1}, x_{1} \dots j_{n-1}, x_{n-1}}(x, Q) = \frac{N_{i_{v}n}}{N_{i_{v}0}} \frac{1}{x} f_{i_{v}}^{r} \left(\frac{x}{x}, Q\right)$$

$$q_{c}(x, x_{s}) = C(x_{s}) P_{g \rightarrow q\bar{q}} \left(\frac{x_{s}}{x_{s} + x}\right) \frac{g(x_{s} + x)}{x_{s} + x}$$

(IV) SEA QUARK AND GLUON RESCALING: Steps (II) and (III) break (I). To fix, rescale all sea quark and gluon distributions by a factor "a".

PYTHIA Model of MPI

Full expression for for multi-parton PDFs in PYTHIA:

$$F_{j_1\dots j_n}(x_1\dots x_n,Q_1\dots Q_n)=f_{j_1}^r(x_1,Q_1)f_{j_2}^{m\leftarrow j_1,x_1}(x_2,Q_2)\dots f_{j_n}^{m\leftarrow j_1,x_1\dots j_{n-1},x_{n-1}}(x_n,Q_n)$$

PYTHIA thus uses the nPDFs, instead of y_i -dependent nPDs

$$F_{j_1...j_n}(x_1 ... x_n, Q_1 ... Q_n) \equiv \int d^2 y_1 ... d^2 y_{n-1} \Gamma(x_1 ... x_n, y_1 ... y_{n-1}, Q_1 ... Q_n)$$

Can these objects be constrained by theory?

The Sum Rules

For DPS (n = 2), we know for $Q_1 = Q_2 = Q$ the sum rules:

Gaunt, Stirling, 0910.4347 Blok, Dokshitzer, Frankfurt, Strikman, 1306.3763 Diehl, Plößl, Schäfer, 1811.00289

Momentum rule: $\sum_{j_2} \int dx_2 \, x_2 \, D_{j_1 j_2}(x_1, x_2, Q) = (1 - x_1) \, f_{j_1}(x_1, Q)$

Available momentum after "taking out" j_1

Number rule: $\int dx_2 \ D_{j_1 j_2 v}(x_1, x_2, Q) = \left(N_{j_2 v} - \delta_{j_1 j_2} + \delta_{j_1 \bar{j}_2}\right) f_{j_1}(x_1, Q)$

Number of j_2 quarks - number of \bar{j}_2 quarks after "taking out" j_1

In TPS (n = 3), it has been shown that similar rules hold:

Gaunt, Fedkevych, 2208.08197

Momentum rule: $\sum_{j_3} \int dx_3 \ x_3 \ T_{j_1 j_2 j_3}(x_1, x_2, x_3, Q) = (1 - x_1 - x_2) \ D_{j_1 j_2}(x_1, x_2, Q)$

Number rule: $\int dx_3 \ T_{j_1 j_2 j_{3v}}(x_1, x_2, x_3, Q)$ $= (N_{j_3v} - \delta_{j_1 j_3} - \delta_{j_2 j_3} + \delta_{j_1 \bar{j}_3} + \delta_{j_2 \bar{j}_3}) D_{j_1 j_2}(x_1, x_2, Q)$

Similar rules have been proven for the QPDS (n=4) case.

How well do the Pythia double and triple PDFs satisfy these?

Pythia nPDFs and the sum rules

Sum rules satisfied by construction when integrating over final parton

$$F_{j_1...j_n}(x_1 ... x_n, Q) = f_{j_1}^r(x_1, Q) f_{j_2}^{m \leftarrow j_1, x_1}(x_2, Q) ... f_{j_n}^{m \leftarrow j_1, x_1...j_{n-1}, x_{n-1}}(x_n, Q)$$

Rules violated when integration conducted over any other x_i

In an nPDF we expect $\{x_i, j_i\} \leftrightarrow \{x_k, j_k\}$ symmetry

$$F_{j_1...j_i...j_k...j_n}(x_1...x_i...x_k...x_n,Q) = F_{j_1...j_k...j_i...j_n}(x_1...x_k...x_i...x_n,Q)$$

A symmetry not maintained by the PYTHIA model

Pythia nPDFs and the sum rules

Can construct 'naïve' symmetrisation for arbitrary nPDF:

$$F_{j_1...j_n}^{symm}(x_1...x_n,Q) = \frac{1}{n!} \sum_{\{1,...,n\}} F_{j_1...j_n}(x_1...x_n,Q)$$

Gaunt, Fedkevych, 2208.08197

DPDF
$$(n=2)$$

$$D_{j_1 j_2}^{sym}(x_1, x_2, Q) = \frac{1}{2!} \sum_{\{1,2\}} D_{j_1 j_2}(x_1, x_2, Q)$$

$$T_{j_1 j_2 j_3}^{sym}(x_1, x_2, x_3, Q) = \frac{1}{3!} \sum_{\{1, 2, 3\}} T_{j_1 j_2 j_3}(x_1, x_2, x_3, Q)$$

Pythia nPDFs and the sum rules

Symmetrised DPDF: satisfies sum rules to ~10-25% level across most x_1 , but very large deviations elsewhere

0.1 0.2 0.8 Momentum sum rule (MSR) $(j_1 = u)$. Should = 1.

0.979
0.980
1.014
1.047
1.133
1.679

 $u\bar{u}$ number sum rule (NSR). Should = -1.

-1.227
-0.847
-0.925
-0.928
-0.884
-0.740

 $\bar{u}u$ NSR. Should = 3.

2.961
3.351
3.491
3.580
3.858
(7.048)
1

Connected to companion quark mechanism when both quarks have large x

Symmetrised TPDF: broadly similar trends, extreme values of x_1 problematic

$$x_2 = 10^{-4}$$

	x_1	
	10-6	
	10 ⁻³	
	0.1	
	0.2	
	0.4	
Ī	0.8	

 $j_1 = j_2 = u$ MSR. Should = 1.

_	
	0.965
	0.967
	0.998
	1.029
	1.117
	1.719

uuu NSR. Should = 0.

0.108
-0.276
-0.232
-0.242
-0.317
-0.589

 $u\bar{u}u$ NSR. Should = 2.

2.542
2.154
2.188
2.189
2.161
2.079

Improving Symmetrisation

COMPANION QUARK ASYMMETRY

$$D_{j_1j_2}^{comp}(x_1, x_2, Q) = f_{j_1}^s(x_1, Q)q_c(x_2, x_1) = f_{j_1}^s(x_1, Q)C(x_1)P_{g \to q\bar{q}}\left(\frac{x_1}{x_1 + x_2}\right)\frac{g(x_1 + x_2)}{x_1 + x_2}$$
Companion term asymmetric

Proposed Modification

Change companion function:

$$q_{c}(x, x_{s}) = \frac{C(x_{s} + x)}{f_{j_{1}}^{s}(x_{s})} \left\langle P_{g \to q\bar{q}} \left(\frac{x_{s}}{x_{s} + x} \right) \right\rangle \frac{g(x_{s} + x)}{x_{s} + x} = \frac{-\left[\partial_{y} f_{j_{1}}^{s}(y) \right] \Big|_{y = x + x_{s}}^{Gaunt, Stirling, 0910.4347}}{f_{j_{1}}^{s}(x_{s})}$$

Gives a symmetric companion contribution:

$$D_{j_1j_2}^{comp}(x_1, x_2, Q) = f_{j_1}^s(x_1, Q)q_c(x_2, x_1) = -\left[\partial_y f_{j_1}^s(y)\right]\Big|_{y=x_2+x_1}$$

Improving Symmetrisation

$High-x_1$ Deviation

 $j_1 = u \text{ MSR Should} = 1.$ 0.8
1.679

 $u\overline{u}$ NSR. Should = -1.

 $\overline{u}u$ NSR. Should = 3.

Large deviation from expectation when x_1 large Implies $D_{j_1j_2}^{sym}(x_1,x_2,Q)$ behaving unlike an accurate PDF

INTRODUCE 'X-ORDERING'

Step 1) Force the largest x 'first'

Step 2) Smoothly interpolate between the PYTHIA and naïvely symmetrised terms away from problem areas

SMOOTH VS. STRICT

Modified nPDFs and the sum rules

Modified DPDF: satisfies sum rules to <10% level across most x_1 , introduced >10% deviations at low x_1 .

 $\begin{array}{c|c}
x_1 \\
\hline
10^{-6} \\
\hline
10^{-3} \\
\hline
0.1 \\
\hline
0.2 \\
\hline
0.4 \\
\hline
0.8 \\
\end{array}$

 $(j_1 = u)$ MSR. Should = 1.

0.974 0.968 1.023 1.022 1.007 $u\bar{u}$ NSR. Should = -1.

-1.137 -1.085 -1.003 -0.996 -0.994 -0.997 $\bar{u}u$ NSR. Should = 3.

3.134 3.089 2.928 2.923 2.965 2.934

NB: All numbers hereon out are preliminary!

 $j_1 = s$ MSR. Should = 1.

0.974 0.967 0.957 0.976 0.986 1.014 $s\bar{s}$ NSR. Should = -1.

-0.999 -1.000 -1.000 -1.000 -1.000 -0.964 $\bar{s}s$ NSR. Should = 1.

0.999 1.000 1.000 1.000 1.000 0.964

 $\begin{array}{c|c}
x_1 \\
\hline
10^{-6} \\
\hline
10^{-3} \\
\hline
0.1 \\
0.2 \\
\hline
0.4 \\
0.8 \\
\end{array}$

Improving Symmetrisation

LOW- x_1 DEVIATION POST-MODIFICATION

INTRODUCE DAMPING FACTOR

Weight the quark components by $(x_1 + x_2)^{\alpha}$, $0 < \alpha \ll 1$, reducing overcontributions when x_1 and x_2 are both low

Mødified DPDF, $\alpha = 0.007$: satisfies sum rules to <10% level across all sampled x_1

and
$$x_1$$

x_1	
10-6	0.964
10-3	0.958
0.1	1.018
0.2	1.018
0.4	1.005
0.8	0.999

 $j_1 = u$ MSR. Should = 1.

-1.075
-1.033
-0.987
-0.986
-0.989
-0.996

 $u\bar{u}$ NSR. Should = -1.

 $\bar{u}u$ NSR. Should = 3.

Damping Effect

Comparison between schemes

DPDF NSR Response Function

$$R_{j_1j_2}(x_1, x_2, Q) = \frac{x_2 D_{j_1j_2}(x_1, x_2, Q)}{f_{j_1}^r(x_1)}$$

NSR Integrand

RESPONSE FUNCTIONS

Comparison between schemes

DPDF NSR Response Function

$$R_{j_1j_2}(x_1, x_2, Q) = \frac{x_2 D_{j_1j_2}(x_1, x_2, Q)}{f_{j_1}^r(x_1)}$$

NSR Integrand

Summary

- Proposed three modifications to the PYTHIA model of MPI that improve adherence to the GS sum rules:
 - Change the companion quark mechanism to one that is manifestly symmetric
 - X-order the PDFs instead of naïvely symmetrise to avoid overcontribution from "incorrect" PDFs
 - Damp out the low x_1 , x_2
- These changes are all symmetric in $\{x_i, j_1\} \leftrightarrow \{x_k, j_k\}$, and have improved the GS sum rule adherence of the symmetrised DPDFs to a <10% deviation from theory
- Implementing these changes into PYTHIA to quantify phenomenological effects remains outstanding
 - Similarity of modified response functions and DPDFs to unmodified PYTHIA encouraging