Office of
Science

Using Alpaka in CMSSW framework

Matti Kortelainen
HSF Frameworks WG meeting
28 June 2023

CMSSW

CMSSW is the data processing software (framework) of CMS

concurrent units of work

Event data is processed through a DAG of algorithms

Implements multithreading using oneTBB utilizing tasks as W

(“framework modules”) ;;tijker ffjs‘};rs
— DAG is defined by data dependencies between the modules Seeds i
* Declared by the module constructors ;
— No explicit notion of the DAG though, scheduling decisions are local | Tracks
* Model for offloading: modules talk directly to the offloading API Electrons
— Run kernels concurrently, overlap with data transfers
— Offload chains or DAGs of modules %
— Minimize data transfers between CPU and GPU
2 Fermilab

2 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Alpaka: https://github.com/alpaka-group/alpaka

Templated, header-only C++ library for compute accelerator development

Aims to provide performance portability through the abstraction of the underlying
levels of parallelism

— Abstraction level is similar to CUDA

Backends include CPU serial, OpenMP 2, TBB, CUDA, HIP, SYCL (experimental)
Code for each backend is compiled with the “native compiler” of the platform
Backend(s) are enabled at compilation time with macros

— E.g. -DALPAKA_ACC_GPU_CUDA ENABLED to enable CUDA backend

— With -DALPAKA HOST_ONLY can restrict the code to a subset that can be compiled with
the host compiler

Has CMake integration, but we have not tried it out

2% Fermilab

3 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

https://github.com/alpaka-group/alpaka

Execution
Domain

Code Main Concepts

Alpaka concepts

Platform: e.g. CPU, CUDA, HIP

Device: e.g. CPU, CUDA, HIP

— >=1 per platform

Queue (“CUDA stream”)

— Work queue, blocking or non-blocking

— Arbitrary number of Queues per Device
Event (“CUDA event”)

— Communicate completion of queued work
— Arbitrary number of Events per Device

Accelerator

— Provides Kernel its current work index,
access to shared memory and atomics, etc

Buffer: like std::shared_ptr that knows size

enumerate !
vy

.
7 ‘enqleud =~ use

N -~
', \ll \\\ -o

'execute

h

.yse

Accelerator

ki _ .

JE H
3¢ Fermilab
4 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

What we wanted to achieve

* Requirement: portable code between CPU and NVIDIA GPU

— Other GPU vendors (AMD, Intel) added bonus

Take advantage of Alpaka-CPU and Alpaka-CUDA modules defining the same (or
very close) algorithm

— Was not the case with CUDA modules: functionality was split in different ways in (legacy)
CPU and CUDA modules

Be able to run Alpaka-CPU and Alpaka-CUDA modules in the same process
— Allows comparing outputs event-by-event or object-by-object

Minimize the amount of code we need to compile with device compiler

— Once upon a time we got bit by nvcc not supporting C++17 yet

Portable configuration

— Single configuration file describes the behavior on all platforms
— Framework uses a hash of the configuration to segregate data

2% Fermilab

5 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Backend definition

#ifdef ALPAKA_ACC_GPU_CUDA_ENABLED
namespace alpaka_cuda_async {

» Alpaka’s “backend” “concept” is
somewhat loosely defined

e |In CMSSW, for each backend we using Platform = alpaka::PltfCudaRt;
define several type aliases specifying ~ !Sin9 bevice = alpaka::DevCudaRt;
. using Queue = alpaka::QueueCudaRtNonBlocking;
— Platform, Device, Queue, Event,
Accelerator types

- Queue can be bIOCklng or non'b|OCk|ng template <typename TDim>

using namespace alpaka_common;

using Event = alpaka::EventCudaRt;

» We use blocking queue for CPU, and using Acc = alpaka::AccGpuCudaRt<TDim, Idx>;
non-blocking for CUDA and ROCm using AcclD = Acc<DimiD>;
— Currently enabled: CPU serial, CUDA, using Acc2D = Acc<Dim2D>;
ROCm using Acc3D = Acc<Dim3D>;

— We also define a macro to specify a
namespace for all per-backend user
code #define ALPAKA_ACCELERATOR_NAMESPACE alpaka_cuda_async

} // namespace alpaka_cuda_async

2% Fermilab

6 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Framework module code

namespace ALPAKA_ACCELERATOR_NAMESPACE {

class TestAlpakaProducer : public global::EDProducer<> {
public:
TestAlpakaProducer(edm: :ParameterSet const& config)
deviceToken_{produces()}, size_{config.getParameter<int32_t>("size")} {}

void produce(edm::StreamID sid, device::Event& event, device::EventSetup const&) const override {
// run the algorithm, potentially asynchronously
portabletest::TestDeviceCollection deviceProduct{size_, event.queue()};
algo_.fill(event.queue(), deviceProduct);

// put the asynchronous product into the event without waiting
event.emplace(deviceToken_, std::move(deviceProduct));

i

const device::EDPutToken<portabletest::TestDeviceCollection> deviceToken_;
const int32_t size_;

// implementation of the algorithm
TestAlgo algo_;
3
JEt :
3¢ Fermilab

7 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Framework module code .
Backend-specific namespace

namespace ALPAKA_ACCELERATOR_NAMESPACE K&

guarantees unique symbols

class TestAlpakaProducer : public global::EDProducer<> {
public:
TestAlpakaProducer(edm: :ParameterSet const& config)
: deviceToken_{produces()}, size_{config.getParameter<int32_t>("size")} {}

void produce(edm::StreamID sid, device::Event& event, device::EventSetup const&) const override {
// run the algorithm, potentially asynchronously
portabletest::TestDeviceCollection deviceProduct{size_, event.queue()};
algo_.fill(event.queue(), deviceProduct);

// put the asynchronous product into the event without waiting
event.emplace(deviceToken_, std::move(deviceProduct));
i

const device::EDPutToken<portabletest::TestDeviceCollection> deviceToken_;
const int32_t size_;

// implementation of the algorithm
TestAlgo algo_;
3
Jt :
af Fermilab

8 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Framework module code

namespace ALPAKA_ACCELERATOR_NAMESPACE {

class TestAlpakaProducer : public|global::EDProducer<>

public:
TestA; terSet const& config)
:|deviceToken_{produces()} ize— : Parameter<int32_t>("size")} {}
void produce(edm::StreamID sid, |device: :Event& event, device::Evéﬁ?gETUp\Qgﬂft& verride {

//_run the algorithm, potentially asynchronously
iceProduct{size_, event.queue()},

portabletest::TestDeviceCollection

algo_.fill(event.queue(), deviceProduct

// put the asynchronous product into the event witho
event.emplace(deviceToken_, std::move(deviceProduct));

} Some of the behavior depends on

et e S ST TR et ™™ the backend. These components are
also defined in

ALPAKA ACCELERATOR_NAMESPACE

// implementation of the algorithm
TestAlgo algo_;
}i
JE :
3¢ Fermilab

9 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Directory structure and compilation

Iﬁego?jﬁ?iscor‘j/ AlpakaTest/ - Each CMSSW package may result in
ul l1le.Xm
l— interface/ — 0 or 1 shared library

I « Other libraries can depend on

| _ : - .
L AlpakaESTestData.h Any number (usually 1 if any) of plugin libraries

|
|
|
— plugins/ » Other libraries may not depend on
| « Framework loads the plugins that provide the components
| defined by the job configuration file
: : « CMSSW package has subdirectories that have
| }— BuildFile.xml specific meaning
!_ '_/TeStAlpakaAnalyzer‘cc — interface: public interface of the shared library
| — src: implementation of the shared library
| — plugins: implementation of the plugin library/libraries
L

ES AlpakaESTestData.cc

2% Fermilab

10 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Directory structure with Alpaka

HeterogeneousCore/Alpakalest/ « Added alpaka/ subdirectory to all interface/, src/,
I— BuildFile.xml .

|— interface/ pluglns/

| b alpaka/ * The code in the alpaka/ subdirectory is compiled

L
B Alpa::Ep::::f;:::D: ca-n once for each Alpaka backend, and results a separate

|

| .

|— plugins/ Shal’ed ObJeCt
| alpaka/ — Shared libraries
| — TestAlgo.dev.cc
|

|

|

|

|— Testalgo.h * One Alpaka-independent library

|
|
|
I Buildrile.xnl — Plugin libraries

L TestAlpakaProducer.cc * One Alpaka-dependent library per backend
L Src/TeStAlpakaAnalyzer°CC * One Alpaka-independent plugin library
|— alpaka/ * One Alpaka-dependent plugin library per backend

| L— ES AlpakaESTestData.cc
L— ES AlpakaESTestData.cc

* The code in alpaka/ subdirectory generally enclosed
in ALPAKA ACCELERATOR_NAMESPACE

2% Fermilab

11 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Compilation of Alpaka-dependent code

Iﬁeroge“eousme/ AlpakaTest/ « There are files that need to be compiled for each
BuildFile.xml . .

| interface backend, but do not contain any device code

| b alpaka/ — E.g. framework module definition

| L— AlpakaESTestData.h

I | AlpakaESTestData.h — Have . cc suffix, compiled with the host compiler (gcc)

— plugins/ — Are allowed to call host-side API, e.g. allocate memory

| alpaka/ » There are files that need to be compiled for each

I I ||: e sev.ee backend and contain device code

| | L TestAlpakaProducer.cc — Algorithm implementation

I !: i’:ii;iaif;yzer y « Device functions, kernel launches

L src/ — Have .dev. cc suffix, compiled with the device compiler
— alpaka/ of the backend (gcc, nvcc, hipcc)

| L— ES AlpakaESTestData.cc
L— ES AlpakaESTestData.cc

 Linked into one shared object according to the rules
of the corresponding device compiler

2% Fermilab

12 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Handling dependencies on Alpaka-enabled packages

» Package A depends on package B
— Shared library of A is linked against the shared library of B

13 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

2% Fermilab

Handling dependencies on Alpaka-enabled packages
» Alpaka-enabled package A depends on Alpaka-enabled package B

— Alpaka-independent shared library of A is linked against the Alpaka-independent shared
library of B

2% Fermilab

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Handling dependencies on Alpaka-enabled packages

» Alpaka-enabled package A depends on Alpaka-enabled package B

— Alpaka-independent shared library of A is linked against the Alpaka-independent shared
library of B

— Each alpaka-dependent shared library of A is linked against
» Alpaka-independent shared library of B

2% Fermilab

15 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Handling dependencies on Alpaka-enabled packages

» Alpaka-enabled package A depends on Alpaka-enabled package B

— Alpaka-independent shared library of A is linked against the Alpaka-independent shared
library of B

— Each alpaka-dependent shared library of A is linked against
» Alpaka-independent shared library of B
« Alpaka-dependent shared library of B of the same backend

5 > Ceseril > C st D srom O

16 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

2% Fermilab

Implicit event data product copy from device to host

» Our CUDA framework module pattern required

all data transfers between host and device to be i
explicitly implemented by the user as modules,
and specified in the job configuration

— Tedious to develop and maintain / \

tracks

tracksFromGPU
- /

trackConsumer

2% Fermilab

17 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Implicit event data product copy from device to host

18

Constraints placed in the Alpaka module pattern

allowed to make some of the device-to-host

transfers implicit

— Alpaka module is considered to produce its data
products in “device memory space”

— Framework registers another “node” in the module
DAG to copy the device-side data product to the host

» User still needs to define the function for the copy

— But at least the copy code is now placed close to the
data format class definition

* The node copying the data is scheduled and run only
if some other module consumes the host-side data

— Same label used for both device-side and host-side
data products

» Device-side data product has different, wrapped type

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Explicitly defined !
a

~

trackConsumer

2% Fermilab

Implicit event data product copy from device to host

» Constraints placed in the Alpaka module pattern

allowed to make some of the device-to-host >
transfers implicit m
Explicitly defined

— In CPU serial backend the copying is avoided

» “Device-side” data product is used directly by all A
host-side consumers
\& >
trackConsumer
Z& Fermilab

19 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Unified configuration for CPU and non-CPU algorithms

« Want jobs for a workflow to be able to run at any site

» Want same configuration for all jobs in a workflow

— Be agnostic to the kind of hardware being used for a given job
— Hash of configuration already used by framework to segregate data from different
workflows

Earlier with CUDA wanted to be able to keep CPU and GPU algorithms separate
Now want to unify the CPU and GPU algorithms as much as feasible

— To minimize maintenance effort and chances for e.g. configuration mistakes

Use provenance tracking to store the choice of technology along the Event

— Framework already tracks the input data of each module Event-by-Event

Such workflows need to be validated with all technology permutations

2% Fermilab

20 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Semi-portable configuration with “SwitchProducer”

» SwitchProducer

— Allows specifying multiple modules associated to same module label
— At runtime picks one to be run based on available technologies
« Consumers dictate which producers are scheduled and run

hits = Producer(“HitsProducer”,
input = “raw”

)

tracks = SwitchProducer(
cpu = Producer(“TrackProducer”,
input = “hits”),
gpu = Producer(“TrackProducerGPU”,
input = “raw”)

tracks@gpu

)

trackConsumer = Producer(“TrackConsumer”, trackConsumer
input = “tracks”

)

2% Fermilab

21 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Semi-portable configuration with “SwitchProducer”

» SwitchProducer
— Allows specifying multiple modules associated to same module label
— At runtime picks one to be run based on available technologies
« Consumers dictate which producers are run

hits = Producer(“HitsProducer”, Problem: need to define (and construct)
) input = “raw” the modules for all platforms. What if some
platform does not support (all) GPUs?

tracks = SwitchProducer(

cpu = Producer(“TrackProducer” For example
nput —=_“tits™y); . ’
gpu = Producer(“TrackProducerG;J> CUDA dOGSﬂ t Support a new GCC
TAPUT = " Taw”) version yet
) , :
* We haven’t bothered with ROCm
trackConsumer = Producer(“TrackConsumer”, SUppOFt on ARM or PPC
input = “tracks”
)

2% Fermilab

22 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Portable configuration with “module type resolver”

« Added several customization points in the module plugin loading code
— Decorate relevant module C++ types in configuration with @alpaka suffix
— At runtime pick one concrete module C++ type based on worker node hardware
* Mechanism extensible for other technologies
with hardware-specific backends as well

— E.g. Tensorflow or other ML inference
tracks
tracks = Producer(“TrackProducer@alpaka®, one of

input = “raw” alpaka_cuda_async::TrackProducer
) alpaka rocm_async::TrackProducer

trackConsumer = Producer(“TrackConsumer”, -
input = “tracks” Implicit copy to host
)

trackConsumer

2% Fermilab

23 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Portable configuration with “module type resolver”

« Added several customization points in the module plugin loading code

— Decorate relevant module C++ types in configuration with @alpaka suffix

— At runtime pick one concrete module C++ type based on worker node hardware
* Mechanism extensible for other technologies

>
with hardware-specific backends as well Or w
— E.g. Tensorflow or other ML inference

tracks = Producer(“TrackProducer@alpaka®, tracks
input = “raw”
)

alpaka serial sync::TrackProducer

trackConsumer = Producer(“TrackConsumer”,
input = “tracks”

trackConsumer

2% Fermilab

24 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Summary

* Reviewed how Alpaka is used in CMSSW framework
— Want to have as unified overall look and feel between the backends as feasible
» Configuration, framework module code, algorithm code, data structures

— Additional layer of framework module base classes to deal with data product memory
spaces, synchronization, differences between backend behavior

— Separate non-Alpaka host code, Alpaka host-only code, and Alpaka device code into
separate files

» Non-Alpaka code and Alpaka code linked into separate shared libraries
— Implicit event data product copies
« We don’t have much operational experience yet with this pattern
— Expect to evolve based on experience
— We have some ideas how to improve and automate some things more

2% Fermilab

25 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Spares

2% Fermilab

26 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

External worker mechanism

* Replace blocking waits with a callback-style solution
 Traditionally the algorithms have one function called by the framework, produce()

« That function is split into two stages

— acquire(): Called first, launches the asynchronous work
— produce(): Called after the asynchronous work has finished

* acquire() is given a reference-
counted smart pointer to the task
that calls produce()

— Decrease reference count when
asynchronous work has finished

— Capable of delivering exceptions

27 2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Accelerator
' GPU, FPGA, o
! tc A7
g/ N,
\b STTTTTTTTTTTmToomos O’f
&7 X
CPU %/ N
‘acquire() ! ~ otherwork produce()
3£ Fermilab

