
Using Alpaka in CMSSW framework

Matti Kortelainen
HSF Frameworks WG meeting
28 June 2023

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• CMSSW is the data processing software (framework) of CMS
• Implements multithreading using oneTBB utilizing tasks as

concurrent units of work
• Event data is processed through a DAG of algorithms

(“framework modules”)
– DAG is defined by data dependencies between the modules

• Declared by the module constructors
– No explicit notion of the DAG though, scheduling decisions are local

• Model for offloading: modules talk directly to the offloading API
– Run kernels concurrently, overlap with data transfers
– Offload chains or DAGs of modules
– Minimize data transfers between CPU and GPU

CMSSW

2

Output

Tracks

Seeds

Tracker
hits

ECAL
clusters

Electrons

RAW

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• Templated, header-only C++ library for compute accelerator development
• Aims to provide performance portability through the abstraction of the underlying

levels of parallelism
– Abstraction level is similar to CUDA

• Backends include CPU serial, OpenMP 2, TBB, CUDA, HIP, SYCL (experimental)
• Code for each backend is compiled with the “native compiler” of the platform
• Backend(s) are enabled at compilation time with macros

– E.g. -DALPAKA_ACC_GPU_CUDA_ENABLED to enable CUDA backend
– With -DALPAKA_HOST_ONLY can restrict the code to a subset that can be compiled with

the host compiler

• Has CMake integration, but we have not tried it out

Alpaka: https://github.com/alpaka-group/alpaka

3

https://github.com/alpaka-group/alpaka

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• Platform: e.g. CPU, CUDA, HIP
• Device: e.g. CPU, CUDA, HIP

– >= 1 per platform

• Queue (“CUDA stream”)
– Work queue, blocking or non-blocking
– Arbitrary number of Queues per Device

• Event (“CUDA event”)
– Communicate completion of queued work
– Arbitrary number of Events per Device

• Accelerator
– Provides Kernel its current work index,

access to shared memory and atomics, etc

• Buffer: like std::shared_ptr that knows size

Alpaka concepts

4

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• Requirement: portable code between CPU and NVIDIA GPU
– Other GPU vendors (AMD, Intel) added bonus

• Take advantage of Alpaka-CPU and Alpaka-CUDA modules defining the same (or
very close) algorithm
– Was not the case with CUDA modules: functionality was split in different ways in (legacy)

CPU and CUDA modules

• Be able to run Alpaka-CPU and Alpaka-CUDA modules in the same process
– Allows comparing outputs event-by-event or object-by-object

• Minimize the amount of code we need to compile with device compiler
– Once upon a time we got bit by nvcc not supporting C++17 yet

• Portable configuration
– Single configuration file describes the behavior on all platforms
– Framework uses a hash of the configuration to segregate data

What we wanted to achieve

5

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• Alpaka’s “backend” “concept” is
somewhat loosely defined

• In CMSSW, for each backend we
define several type aliases specifying
– Platform, Device, Queue, Event,

Accelerator types
– Queue can be blocking or non-blocking

• We use blocking queue for CPU, and
non-blocking for CUDA and ROCm

– Currently enabled: CPU serial, CUDA,
ROCm

– We also define a macro to specify a
namespace for all per-backend user
code

Backend definition

6

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Framework module code

7

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Framework module code

8

Backend-specific namespace
guarantees unique symbols

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Framework module code

9

Some of the behavior depends on
the backend. These components are
also defined in
ALPAKA_ACCELERATOR_NAMESPACE

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

HeterogeneousCore/AlpakaTest/

├── BuildFile.xml

├── interface/

│ │

│ │

│ └── AlpakaESTestData.h

├── plugins/

│ │

│ │

│ │

│ │

│ ├── BuildFile.xml

│ └── TestAlpakaAnalyzer.cc

└── src/

 │

 │

 └── ES_AlpakaESTestData.cc

Directory structure and compilation

10

• Each CMSSW package may result in
– 0 or 1 shared library

• Other libraries can depend on
– Any number (usually 1 if any) of plugin libraries

• Other libraries may not depend on
• Framework loads the plugins that provide the components

defined by the job configuration file

• CMSSW package has subdirectories that have
specific meaning
– interface: public interface of the shared library
– src: implementation of the shared library
– plugins: implementation of the plugin library/libraries

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

HeterogeneousCore/AlpakaTest/

├── BuildFile.xml

├── interface/

│ ├── alpaka/

│ │ └── AlpakaESTestData.h

│ └── AlpakaESTestData.h

├── plugins/

│ ├── alpaka/

│ │ ├── TestAlgo.dev.cc

│ │ ├── TestAlgo.h

│ │ └── TestAlpakaProducer.cc

│ ├── BuildFile.xml

│ └── TestAlpakaAnalyzer.cc

└── src/

 ├── alpaka/

 │ └── ES_AlpakaESTestData.cc

 └── ES_AlpakaESTestData.cc

Directory structure with Alpaka

11

• Added alpaka/ subdirectory to all interface/, src/,
plugins/

• The code in the alpaka/ subdirectory is compiled
once for each Alpaka backend, and results a separate
shared object
– Shared libraries

• One Alpaka-independent library
• One Alpaka-dependent library per backend

– Plugin libraries
• One Alpaka-independent plugin library
• One Alpaka-dependent plugin library per backend

• The code in alpaka/ subdirectory generally enclosed
in ALPAKA_ACCELERATOR_NAMESPACE

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

HeterogeneousCore/AlpakaTest/

├── BuildFile.xml

├── interface/

│ ├── alpaka/

│ │ └── AlpakaESTestData.h

│ └── AlpakaESTestData.h

├── plugins/

│ ├── alpaka/

│ │ ├── TestAlgo.dev.cc

│ │ ├── TestAlgo.h

│ │ └── TestAlpakaProducer.cc

│ ├── BuildFile.xml

│ └── TestAlpakaAnalyzer.cc

└── src/

 ├── alpaka/

 │ └── ES_AlpakaESTestData.cc

 └── ES_AlpakaESTestData.cc

Compilation of Alpaka-dependent code

12

• There are files that need to be compiled for each
backend, but do not contain any device code
– E.g. framework module definition
– Have .cc suffix, compiled with the host compiler (gcc)
– Are allowed to call host-side API, e.g. allocate memory

• There are files that need to be compiled for each
backend and contain device code
– Algorithm implementation

• Device functions, kernel launches
– Have .dev.cc suffix, compiled with the device compiler

of the backend (gcc, nvcc, hipcc)

• Linked into one shared object according to the rules
of the corresponding device compiler

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Handling dependencies on Alpaka-enabled packages

13

• Package A depends on package B
– Shared library of A is linked against the shared library of B

A

B

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Handling dependencies on Alpaka-enabled packages

14

• Alpaka-enabled package A depends on Alpaka-enabled package B
– Alpaka-independent shared library of A is linked against the Alpaka-independent shared

library of B

A

B

A-serial A-cuda A-rocm

B-serial B-cuda B-rocm

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Handling dependencies on Alpaka-enabled packages

15

• Alpaka-enabled package A depends on Alpaka-enabled package B
– Alpaka-independent shared library of A is linked against the Alpaka-independent shared

library of B
– Each alpaka-dependent shared library of A is linked against

• Alpaka-independent shared library of B

A-serial A-cuda A-rocmA

B-serial B-cuda B-rocmB

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Handling dependencies on Alpaka-enabled packages

16

• Alpaka-enabled package A depends on Alpaka-enabled package B
– Alpaka-independent shared library of A is linked against the Alpaka-independent shared

library of B
– Each alpaka-dependent shared library of A is linked against

• Alpaka-independent shared library of B
• Alpaka-dependent shared library of B of the same backend

A-serial A-cuda A-rocmA

B-serial B-cuda B-rocmB

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• Our CUDA framework module pattern required
all data transfers between host and device to be
explicitly implemented by the user as modules,
and specified in the job configuration
– Tedious to develop and maintain

Implicit event data product copy from device to host

17

raw

hits

tracks

hitsFromGPU

tracksFromGPU

Explicitly defined

trackConsumer

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Explicitly defined

• Constraints placed in the Alpaka module pattern
allowed to make some of the device-to-host
transfers implicit
– Alpaka module is considered to produce its data

products in “device memory space”
– Framework registers another “node” in the module

DAG to copy the device-side data product to the host
• User still needs to define the function for the copy

– But at least the copy code is now placed close to the
data format class definition

• The node copying the data is scheduled and run only
if some other module consumes the host-side data

– Same label used for both device-side and host-side
data products
• Device-side data product has different, wrapped type

Implicit event data product copy from device to host

18

raw

hits

tracks

hits

tracks

trackConsumer

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Explicitly defined

• Constraints placed in the Alpaka module pattern
allowed to make some of the device-to-host
transfers implicit
– In CPU serial backend the copying is avoided

• “Device-side” data product is used directly by all
host-side consumers

Implicit event data product copy from device to host

19

raw

hits

tracks

trackConsumer

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• Want jobs for a workflow to be able to run at any site
• Want same configuration for all jobs in a workflow

– Be agnostic to the kind of hardware being used for a given job
– Hash of configuration already used by framework to segregate data from different

workflows

• Earlier with CUDA wanted to be able to keep CPU and GPU algorithms separate
• Now want to unify the CPU and GPU algorithms as much as feasible

– To minimize maintenance effort and chances for e.g. configuration mistakes

• Use provenance tracking to store the choice of technology along the Event
– Framework already tracks the input data of each module Event-by-Event

• Such workflows need to be validated with all technology permutations

Unified configuration for CPU and non-CPU algorithms

20

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• SwitchProducer
– Allows specifying multiple modules associated to same module label
– At runtime picks one to be run based on available technologies

• Consumers dictate which producers are scheduled and run

Semi-portable configuration with “SwitchProducer”

21

hits = Producer(“HitsProducer”,
 input = “raw”
)

tracks = SwitchProducer(
 cpu = Producer(“TrackProducer”,
 input = “hits”),
 gpu = Producer(“TrackProducerGPU”,
 input = “raw”)
)

trackConsumer = Producer(“TrackConsumer”,
 input = “tracks”
)

raw

hits

tracks@cpu tracks@gpu

tracks

trackConsumer

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

hits = Producer(“HitsProducer”,
 input = “raw”
)

tracks = SwitchProducer(
 cpu = Producer(“TrackProducer”,
 input = “hits”),
 gpu = Producer(“TrackProducerGPU”,
 input = “raw”)
)

trackConsumer = Producer(“TrackConsumer”,
 input = “tracks”
)

• SwitchProducer
– Allows specifying multiple modules associated to same module label
– At runtime picks one to be run based on available technologies

• Consumers dictate which producers are run

Semi-portable configuration with “SwitchProducer”

22

Problem: need to define (and construct)
the modules for all platforms. What if some
platform does not support (all) GPUs?
For example
• CUDA doesn’t support a new GCC

version yet
• We haven’t bothered with ROCm

support on ARM or PPC

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• Added several customization points in the module plugin loading code
– Decorate relevant module C++ types in configuration with @alpaka suffix
– At runtime pick one concrete module C++ type based on worker node hardware

• Mechanism extensible for other technologies
with hardware-specific backends as well
– E.g. Tensorflow or other ML inference

Portable configuration with “module type resolver”

23

tracks = Producer(“TrackProducer@alpaka”,
 input = “raw”
)

trackConsumer = Producer(“TrackConsumer”,
 input = “tracks”
)

raw

tracks
one of

alpaka_cuda_async::TrackProducer
alpaka_rocm_async::TrackProducer

trackConsumer

tracks
Implicit copy to host

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• Added several customization points in the module plugin loading code
– Decorate relevant module C++ types in configuration with @alpaka suffix
– At runtime pick one concrete module C++ type based on worker node hardware

• Mechanism extensible for other technologies
with hardware-specific backends as well
– E.g. Tensorflow or other ML inference

Portable configuration with “module type resolver”

24

tracks = Producer(“TrackProducer@alpaka”,
 input = “raw”
)

trackConsumer = Producer(“TrackConsumer”,
 input = “tracks”
)

raw

tracks
alpaka_serial_sync::TrackProducer

trackConsumer

Or

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

• Reviewed how Alpaka is used in CMSSW framework
– Want to have as unified overall look and feel between the backends as feasible

• Configuration, framework module code, algorithm code, data structures
– Additional layer of framework module base classes to deal with data product memory

spaces, synchronization, differences between backend behavior
– Separate non-Alpaka host code, Alpaka host-only code, and Alpaka device code into

separate files
• Non-Alpaka code and Alpaka code linked into separate shared libraries

– Implicit event data product copies

• We don’t have much operational experience yet with this pattern
– Expect to evolve based on experience
– We have some ideas how to improve and automate some things more

Summary

25

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

Spares

26

2023-06-28 Matti Kortelainen | Using Alpaka in CMSSW framework

External worker mechanism

27

• Replace blocking waits with a callback-style solution
• Traditionally the algorithms have one function called by the framework, produce()
• That function is split into two stages

– acquire(): Called first, launches the asynchronous work
– produce(): Called after the asynchronous work has finished

• acquire() is given a reference-
counted smart pointer to the task
that calls produce()
– Decrease reference count when

asynchronous work has finished
– Capable of delivering exceptions

CPU

Accelerator

acquire() produce()other work

GPU, FPGA,
etc

Ev
en

t d
at

a

Callback

