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Abstract

At TeV beam energies and in small radius collider rings, muons will radiate
synchrotron photons. A Muon Collider will scan a certain mass range in

√
s

as the beam muons lose energy turn-by-turn, in contrast to an e+e− or pp
machine. This gradual decrease will have few consequential effects, other than
the precisely known energy decrease per turn, but could be beneficial in searches
for narrow high-mass states. It is like an “energy vernier” measuring small
precise energy changes as the beams circulate.

Introduction: mean radiation

A 1.5 TeV muon in a 1 km radius ring will radiate about 0.245 MeV on the first turn,
and in 1500 turns it will radiate an accumulated 0.735 GeV. This is not much energy loss,
and it may play a small role in machine optics, but it can be employed to allow more
efficient mass searches as the

√
s of the colliding muons scans down turn-by-turn. One

argument against electron-positron colliders (pre-Nov. 1974) was that a mass scan would
be very time-consuming since the beam energy spread was so narrow, whereas the whole
mass range is scanned at once in pN collisions. This is actually a correct argument: The
J/ψ was found in pN collisions months earlier than in e+e− collisions, as was the Υ.

A muon collider has a beam energy spread[1] of about 0.1%, and the central beam
energy will be reduced as the muons gradually lose energy turn-by-turn by synchrotron
radiation during a single fill. In the context of synchrotron radiation, it might be useful to
think about extreme undulators or wigglers in the straight section of a RLA.

Derivation of useful formulas

Relativistic synchrotron radiation power is often simply written as the non-relativistic
Larmor radiated power formula times the Lorentz boost (γ = E/m) to the fourth power,
or

Power radiated, P =
[ 1

6πε0

e2a2

c3

]
γ4,

where e2, the acceleration a, and the time for one revolution T are given by

α =
e2

4πε0~c
a =

v2

R
and T =

2πR

v
.

The energy loss per turn (substituting and multiply by T and taking v = c) is

∆E (energy loss/turn) =
4π

3
(α~c)

γ4

R
=

4π

3

(α~c
m4

)E4

R
,

Choosing the units of ~c sets the energy unit: ~c ≈ 0.197 GeV·F ≈ 0.197× 10−18 GeV·km.
For γ = E/m, inserting masses in TeV units for the electron (me = 0.511 × 10−6 TeV),
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the muon (0.10566× 10−3 TeV), and the proton (mp = 0.938256× 10−3 TeV) yields these
expressions for radiative energy loss in GeV, for beam energy E in TeV and bending radius
R in km:

e± ∆E (GeV/turn) = (8.85× 104)
E4

R
(E in TeV, R in km)

µ± ∆E (GeV/turn) = (4.84× 10−5)
E4

R
”

p, p̄ ∆E (GeV/turn) = (7.78× 10−9)
E4

R
”

Numerical checks: LEP II: ∆E = (8.85× 104)(0.10)4/3.026 = 2.92 GeV/turn.
LHC: ∆E = (7.78 × 10−9)(7.0)4/3.026 = 6.65 × 10−6 GeV/turn = 6.65 keV/turn. Both
of these agree with the numbers in Prat [2].

Beam radiative energy spread during each fill (Γ)

The total number of useful turns of the beams in one fill is approximately equal to 300B
(for B the bending field in Tesla)1.

A muon beam will lose ∆E(GeV/turn) on the first turn, and on the second turn E(TeV)
is smaller by ∆E, and E4 is smaller by 4E3∆E, so the subsequent energy losses rapidly
grow smaller.

Let’s define Γ to be the “full width beam radiative energy spread” during one fill, or

Γ = ∆E (GeV/fill)

and since both beams lose energy the same way, the center-of-mass energy
√
s spread is

2Γ. At low energy, E is essentially constant and

Γ ≈
[
(4.84× 10−5)

E4

R

]
(GeV/turn)× [300B (turns)]

or

Γ(GeV) = [1.45× 10−2]
B

R
E4.

The integration to get the total energy spread in the table below was done is steps of
1/10 of the circumference over which E is assumed constant. A table of values of 2Γ for
several cm energies, beam energies, radii and bending fields are shown in the table. The
last column is the fraction of the original

√
s that is scanned, 2Γ/

√
s. For lower energy

muon colliders, below 3 TeV, synchrotron radiation plays a small role and a muon collider
mass scan will resemble that of an electron collider, viz., one

√
s-run at a time and the

natural energy spread of the beams, 0.1%, is the mass reach. For an R = 1 km ring, the
cross-over point (between electron machine mass scan and muon machine mass scan, where
2Γ/
√
s ≈ 0.1%) is a little below 10 TeV, and for an R = 2 km ring, it is a little below 14

TeV.

1This can be derived from p = 0.3BR, the mean beam lifetime, τ = γτµ and the time per turn,
T = 2πR/c. After 300B turns, each beam is down by 1/e and the luminosity is down to 1/e2 ≈ 13.5%.
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R = 1.0 km

√
s Ebeam R B Number ∆E(GeV) 2Γ 2Γ/

√
s

(TeV) (TeV) (km) (T) turns/fill (first turn) (GeV)

0.125 0.062 1.0 0.208 63 7.39×10−10 9.31×10−8 7.44×10−10

1.000 0.500 1.0 1.667 500 3.03×10−6 3.02×10−3 3.02×10−6

1.500 0.750 1.0 2.500 750 1.53×10−5 0.023 1.53×10−5

3.000 1.500 1.0 5.000 1500 2.45×10−4 0.735 2.45×10−4

0.1%
10.000 5.000 1.0 16.67 5000 0.030 286. 0.029
14.000 7.000 1.0 23.33 7000 0.116 1330. 0.095
30.000 15.000 1.0 50.00 15000 2.45 1.52×104 0.507
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R = 2.0 km

√
s Ebeam R B Number ∆E(GeV) 2Γ 2Γ/

√
s

(TeV) (TeV) (km) (T) turns/fill (first turn) (GeV)

0.125 0.062 2.0 0.104 31 3.69×10−10 2.29×10−8 1.83×10−10

1.000 0.500 2.0 0.833 250 1.51×10−6 7.56×10−4 7.56×10−7

1.500 0.750 2.0 1.250 375 7.66×10−6 5.74×10−3 3.83×10−6

3.000 1.500 2.0 2.500 750 1.23×10−4 0.184 6.12×10−5

10.000 5.000 2.0 8.333 2500 0.015 74.6 7.46×10−3

0.1%
14.000 7.000 2.0 11.67 3500 0.058 385. 0.028
30.000 15.000 2.0 25.00 7500 1.23 8.81×103 0.294
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√
s

2Γ
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√
s

This same simple code was run for
√
s = 102 and 103 TeV to check the dependence of Γ/

√
s

on
√
s. Below 30 TeV, it is approximately a power-law, and above 30 TeV it saturates:

2Γ/
√
s ≈ 0.98 at 103 TeV.
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0.1 What’s the use, if any, for this?

Here is an interesting case: at
√
s = 30 TeV in an R = 1 km ring, the energy loss on the

first turn is about ∆E = 2.45 GeV. The beams will continue for 15,000 more turns, at
which point

√
s ≈ 14, 800 GeV, that is, the beam has lost about half its energy and the

total energy spread is 2Γ ≈ 15, 200 GeV. The turn-by-turn step down is ∆E ≈ 2.45 GeV
at the start (30 TeV) and ∆E ≈ 0.12 GeV at the end (near

√
s ∼ 15 TeV) of the fill.

The natural beam width is 0.1%, or 30 GeV. This is a way to search for a high mass state
anywhere between 30 TeV and 15 TeV and with a width larger than 1-10 GeV. It would
be interesting to simulate this search, which neither an electron nor a proton machine can
do.

The same is possible for R = 2 km: The first turn loses 1.23 GeV (at 30 TeV) and after
7500 turns, 2Γ ≈ 8.81 TeV, so the last turn loses about 0.08 GeV (at

√
s ≈ 21 TeV). Of

course, these are both extreme cases.

This type of mass scan will be useful in a muon collider down to about
√
s = 10 TeV.

For 10 TeV in an R = 1 km ring, 286 GeV in mass is scanned in approximately 0.06 GeV
steps. For 10 TeV in a R = 2 km ring, 74.5 GeV is scanned in approximately 0.03 GeV
steps. These steps are smaller than the beam energy spread of 0.1% at these energies,
which is 10 GeV, so the full mass scan range is many times larger than the energy spread
of 10 GeV.

As expected, any new or dramatic effects involving synchrotron radiation will be at the
higher energies.

0.2 Machine considerations, RF both positive and negative (crazy stuff)

Clearly, the machine is first. A stable design orbit, at a reachable energy, with an acceptable
luminosity is the sine qua non of a muon collider.

I do not know how critical a decreasing beam energy is to a stable orbit but, simply
speaking, it must be OK to vary within the natural beam spread of 0.1%. In any case, as in
the LHC and in every electron machine, RF cavities restore the energy lost to synchrotron
radiation. For the LHC, this is 6.65 keV/turn, a very modest task for an RF cavity.

For the muon collider, RF cavities could restore the energy loss in all cases in the table.
But, RF could be used to “manipulate”

√
s but retarding the energy loss or, amazingly,

but increasing the energy loss. The might be easily done by slipping the phase of the RF,
rather than actually raising or lowering the electric field in the cavities.

The only point to be made is that these RF gymnastics and turn-by-turn control of
√
s

for a high-mass scan can only be precisely done at a muon collider.

Work to be done

1. Introduce stochastic fluctuations: beam spread vs. stochastic radiative energy spread

2. Incorporate the machine lattice (bending field that turns on and off): how much will
that change things?

3. Understand better the complications with the machine lattice and stable orbits.
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4. Solve a problem about beam energy spread damping since ∆E/turn ∝ (E+δE)4 and
the δE spread in the muon beam energy in the coasting beam would result in the
high energy end damping down faster than the low energy end. This would narrow
the beam spread, but would compete with the natural width (determined by the
production, cooling and acceleration of the muon beams), and with the stochastic
fluctuations introduced by the synchrotron radiation itself.
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