
Strategic and Implementation Plan
of the

NSF AI Institute for
Artificial Intelligence & Fundamental Interactions

IAIFI /aI-faI/ https://iaifi.org

Jesse Thaler, Director Mike Williams, Deputy Director

Version 1.1 (in progress) March 8, 2021

This project is supported by National Science Foundation under Cooperative Agreement PHY-2019786.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

Robust & Monotonic Neural Networks 
for Particle Physics & Beyond

Mike Williams

May 10, 2023

Department of Physics 
NSF AI Institute for Artificial Intelligence and Fundamental Interactions 

Laboratory for Nuclear Science 
Statistics & Data Science Center 

MIT



Strategic and Implementation Plan
of the

NSF AI Institute for
Artificial Intelligence & Fundamental Interactions

IAIFI /aI-faI/ https://iaifi.org

Jesse Thaler, Director Mike Williams, Deputy Director

Version 1.1 (in progress) March 8, 2021

This project is supported by National Science Foundation under Cooperative Agreement PHY-2019786.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

Strategic and Implementation Plan
of the

NSF AI Institute for
Artificial Intelligence & Fundamental Interactions

IAIFI /aI-faI/ https://iaifi.org

Jesse Thaler, Director Mike Williams, Deputy Director

Version 1.1 (in progress) March 8, 2021

This project is supported by National Science Foundation under Cooperative Agreement PHY-2019786.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation.

Institute for Artificial Intelligence and Fundamental 
Interactions (IAIFI /ai fai/ https://iaifi.org)

Enable physics discoveries by developing and deploying the next generation of AI technologies 
Galvanize AI research innovation by incorporating physics intelligence into artificial intelligence

Power of AI/ML to process 
large, rich datasets

First principles and best 
practices from physics

https://iaifi.org


Shameless Advertisements

IAIFI Postdoctoral Fellowships PhD in Physics, Statistics, & Data Science

Each year we hold a competition to find the best early-
career researchers at the intersection of AI+physics. 

Fellows are given complete freedom to choose their 
research direction (as long as it is in the broad area of 
AI+physics).

This year’s competition will open this summer with 
applications due in the fall. Come join us! 

Current Fellows: https://iaifi.org/current-fellows.html 3

Created in Fall 2020, this partnership between the 
Physics Department and Statistics & Data Science 
Center provides a formal education in statistics and data 
science in addition to the traditional physics PhD. 

Co-chairs: Jesse Thaler & MW

| Physics

https://physics.mit.edu/academic-programs/graduate-
students/psds-phd/

https://iaifi.org/current-fellows.html


Basis for this Talk
This talk is based on work with my post-doc Niklas Nolte and my PhD student Ouail Kitouni:

• Kitouni, Nolte, MW, Robust and provably monotonic networks, NeurIPS 2021 Physical Sciences. 
[2112.00038] 

• Kitouni, Nolte, MW, Expressive monotonic neural networks, ICLR 2023. https://openreview.net/pdf?
id=w2P7fMy_RH 

• Kitouni, Nolte, MW, Finding NEEMo: Geometric fitting using neural estimation of the energy mover’s 
distance, NeurIPS 2022 Physical Sciences [2209.15624] 

• See also: Liu, Kitouni, Nolte, Michaud, Tegmark, MW, Towards Understanding Grokking: An 
Effective Theory of Representation Learning, Oral Highlight at NeurIPS 2022. [2205.10343] (sadly, 
no time to talk about this today)

Niklas Nolte 
Post-doc 
IAIFI & LHCb 

Starting at Meta AI 
Research in June

Ouail Kitouni 
Candidate for PhD in Physics, Statistics, 
and Data Science 
IAIFI 

Interning this summer at Microsoft Research 

https://openreview.net/pdf?id=w2P7fMy_RH
https://openreview.net/pdf?id=w2P7fMy_RH


Making Decisions @ 40 MHz  
(and living with the consequences)

5 TB/s post zero 
suppression 

(30 EB / year)

All collisions processed in real time on 
GPUs to infer what particles were 

produced and what their properties 
were. Mixture of traditional and AI 

algorithms used.

Vast majority of data must 
be discarded. AI used to 

make most of these 
decisions.

Data analyzed later by 
physicists. Mixture of AI and 
traditional methods used to 
produce published results.

Algorithms used in the real-time environment must be 
robust and interpretable — they must account for 
detector resolution, instability, known unknowns, and must 
provide formal behavioral/performance guarantees to 
convince us that they are fit for purpose.  

In short, we must be able to trust them to make important 
irreversible decisions. 5



Robust AI

-1

+1

-1

+1

Neural networks can be universal function approximators even in high dimensions, which allows them 
to solve some incredibly hard problems — but in the real world our ideal solution is NOT found in the 
set of all functions, but a restricted set of robust ones. 

Noisy  
example

Deep NN overfits on training noise Robust NN respects resolution scale, etc.

6

Domain experts have a priori knowledge about what scales in each feature direction could contain 
meaningful information — goal is to input this a priori in a way that provides formal guarantees on the 
learned model.



want this

don’t want that



Robust AI
One solution to the problem on the previous slides is to create a neural network architecture that 
guarantees a bound on the gradient of the learned function in each direction in feature space. 

The following can be proved without any approximations, but it’s easier to see quickly by doing a 
Taylor expansion of the learned function (NN response):

| f( ⃗x + ⃗ϵ ) − f( ⃗x ) | ≈ ∑
i

∂f
∂xi

ϵi

Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]8

≤ max [ ∂f
∂xi ]∑

i
|ϵi | ≡ ∥ ⃗∇ f∥∞∥ ⃗ϵ ∥1

Therefore, how much the function can change is bounded by the maximum absolute gradient value 
and the 1-norm of the feature-space displacement.



Robust AI
Restricting to the set of functions with a bounded Lipschitz constant then also bounds the gradient:

| f( ⃗x + ⃗ϵ ) − f( ⃗x ) | ≤ λ∥ ⃗ϵ ∥1 → ∂f
∂xi

≤ λ

Dependence of the desired Lipschitz constant on the location in feature space can easily be 
accounted for by rescaling the features, where we can also without loss of generality set lambda to 
unity. Such functions are said to be 1-Lipschitz continuous. 

Domain experts (us for LHCb) specify a priori inductive bias on feature scales, i.e. experts define the 
Lipschitz constants in each feature direction prior to training. 

N.b., we can instead bound the changes in the function due to displacement in any direction 
independently. This is done by replacing the 1 norm with the infinity norm here and on the subsequent 
slides (which places a bound on the 1-norm of the function gradient, rather than its infinity norm).

Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]9

Lipschitz constant, true for all x, epsilon



Monotonic NNs

Furthermore, we can also make the learned function monotonic in any feature direction by simply 
adding a linear function in that direction! For the trigger this lets us guarantee outliers are better.

Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]10

g( ⃗x ) = f( ⃗x ) + λ ∑
i∈ℳ

xi → ∂g
∂xi

= ∂f
∂xi

+ λ ≥ 0 ∀ i ∈ ℳ



Lipschitz Bounding a Neural Network

To see how we can put a bound on the Lipschitz constant of a NN, consider this toy model NN:

f(x, y) = 1 ⋅ (1,1) ⋅ ⃗σ [(wxx wxy
wyx wyy) ⋅ (x

y)]
= σ(wxxx + wxyy) + σ(wyxx + wyyy)

∂f
∂x

= wxxσ′ + wyxσ′ 

this is normally 
another activation

these are normally 
more weights

11

The partial derivatives of this function are then simply:

Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]



Lipschitz Bounding a Neural Network

∂f
∂x

= wxxσ′ + wyxσ′ ≤ |wxx + wyx | ≤ |wxx | + |wyx | ≤ ∥w∥1

∥w∥1 ≡ max
cols [ ∑

rows
|wrc |]

The gradient elements are thus bounded as follows (assuming the activation function has a Lipschitz 
constant itself of at most unity, which most common ones do):

where the 1-norm of a matrix is defined as

12

Thus, the standard approach (for lambda=1) is to rescale the 
weights of each layer as follows:

wi → wi

max[1,∥wi∥1]

However, as can easily be seen above, rescaling all elements is not required, we can get away with 
column-wise rescaling, which trains better 

wi → widiag ( 1
max[1,∑r |wirc | ] )

Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]



Lipschitz Bounding a Neural Network

To summarize, we can easily formally enforce a bound on the partial derivatives of the learned 
function (the neural network response) by norming the weight matrices using

13

—OR—wi → wi

max[1,∥wi∥1]
wi → widiag ( 1

max[1,∑r |wirc | )

Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]

For a CNN, only the left option should be used (the right one breaks translational equivariance); 
however, for most use cases the right option trains better (since it touches the weights less often).

This only needs to be done during training, as the learned model can be exported with the weight 
matrices properly normed — hence, on the inference side, the fact that this is a Lipschitz function 
does not even need to be known (nothing special is required to run these networks).



Toy Example

https://github.com/niklasnolte/MonotoneNorm14

A simple demonstration for 1-d regression with one extremely noisy outlier. The unconstrained NN will 
go through all points if given enough capacity, whereas our robust NN is smooth (to the degree 
specified a priori by the Lipschitz constant).



Saturating the Bound & Expressiveness

Enforcing the gradient bound is not sufficient for monotonic classifiers, which by necessity will need to 
take on a constant value in some one-class dominated regions. This requires: 

g( ⃗x ) = f( ⃗x ) + λ ∑
i∈ℳ

xi → ∂g
∂xi

= ∂f
∂xi

+ λ ≥ 0 ∀ i ∈ ℳ

g( ⃗x ) = constant → ∂f
∂xi

= − λ

More generally, for our NN to be a universal approximator of all Lipschitz functions, we must be able 
to saturate the gradient bound at all x.

15

If you go back to the toy-model NN derivation, you can easily see that we need an activation function 
whose gradient is unity for all x — but of course any activation function must be non-linear, so we 
need a non-linear function whose derivative is always 1???



Saturating the Bound & Expressiveness

Anil, Lucas, Grosse [1811.05381]16

We can define a non-linear activation function with gradient one everywhere by using a non-
element-wise function! In this case, GroupSort (sorting chunks of the element vector), whose 
vector elements are just the original ones rearranged — activations do NOT need to be scalars!

Anil+ prove that GroupSort is 
a universal approx. 

Added bonus: builds up 
complicated shapes with few 
elements resulting in high 
expressivity for tiny networks!



Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]



Toy Monotonic Example

The light lines are regressions done with different seeds, the dark lines are the averages over the 
seeds. The gray regions do not contain any training data.

18 Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]

Learned function is guaranteed to be monotonic even where there is no training data, for both 
extrapolation beyond the domain of the training data and interpolation through an empty region.



LHCb Inclusive Heavy Flavor

b-hadron lifetime [ps]

Our NNs have been adopted for the primary trigger selections at LHCb in Run 3. These inclusively 
look for secondary vertices consistent with heavy-flavor decays.  

There are many input features, all of which are Lipschitz bounded based on domain knowledge. In 
addition, features related to pT and lifetime are required to be monotonic (increasing for signal).

19 Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]



AI Ethics/Fairness
A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle EAAMO ’21, October 5–9, 2021, –, NY, USA

(a) Data Generation

(b) Model Building and Implementation

Figure 1: (a) The data generation process begins with data collection. This process involves de�ning a target population and
sampling from it, as well as identifying and measuring features and labels. This dataset is split into training and test sets.
Data is also collected (perhaps by a di�erent process) into benchmark datasets. (b) A model is de�ned, and optimized on the
training data. Test and benchmark data is used to evaluate it, and the �nal model is then integrated into a real-world context.
This process is naturally cyclic, and decisions in�uenced by models a�ect the state of the world that exists the next time data
is collected or decisions are applied. In red, we indicate where in this pipeline di�erent sources of downstream harm might
arise.

the person paid back a previous loan). They might also train a num-
ber of di�erent models (e.g., with varying architectures or training
procedures) and choose the one that performs best on the validation
set.

Model Evaluation
After the �nal model is chosen, the performance of the model on
the test data is reported. The test data is not used before this step,
to ensure that the model’s performance is a true representation of
how it performs on unseen data. Aside from the test data, other
available datasets — also called benchmark datasets — may be used
to demonstrate model robustness or to enable comparison to other

existing methods. The particular performance metric(s) used during
evaluation are chosen based on the task and data characteristics.

Example.Here, the model developed in the previous step would
be evaluated by its performance on the test set. There might be
several performance metrics to consider— for example, applicants
might be concerned with false negatives (i.e., being denied a loan
when they actually are deserving), while lenders might care more
about false positives (i.e., recommending loans to people who don’t
pay them back). In addition, the model might be evaluated on ex-
isting datasets used for similar tasks (e.g., the dataset from the U.S.
Small Business Association described in Li et al. [32]).

Suresh, Guttag [1901.10002]

Lipschitz bounds and monotonicity can more generally alleviate biases in AI/ML solutions, which has 
direct application in the areas of AI ethics and AI fairness.

20



Robust & Monotonic AI Applications

21

Kitouni, Nolte, MW [ICLR 2023]

We applied our LHC technology out of the box to various benchmark problems where some features 
are desired to be monotonic, and we beat state-of-the-art models everywhere — with tiny networks!



Optimal Loss Function?

Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]22

Below is an example of a 2-class problem (2 moons) where the classes are separated. Clearly there 
exists a classifier F that will give 100% accuracy for this problem. 

Since F exists, there must also exist a 1-Lipschitz classifier that also gives 100% accuracy, namely F 
divided by its Lipschitz constant (whatever that is).



Optimal Loss Function?

Kitouni, Nolte, MW [NeurIPS 2021, 2112.00038]23

Even though a 100% accurate 1-Lipschitz F must 
exist, we cannot find it using common loss 
functions like MSE or BCE. 

The reason is that MSE/BCE try to push 
responses as close to +-1 as possible; however, 
if the Lipschitz bound is too tight, such that the 
LR is inaccessible, then minimizing these loss 
functions is NOT the same as optimizing 
classification performance. 

For this case, we can simply modify the loss 
function to minimize max[0,d/2 - y*yhat], where d 
is the distance between the 2 samples at each 
point and y(hat) is the predicted(true) score.  

There is likely a more generic loss that works for 
any Lipschitz problem (people are studying this). 

This seems to be an academic problem though 
given that you get to choose the Lipschitz 
constant — and this problem should really only 
be noticeable for a non-optimal choice. 



Energy Mover’s Distance

24 Komiske, Metodiev, Thaler [1902.02346]

The Energy Mover’s Distance (EMD), modeled after the earth mover’s distance or Wasserstein metric, 
is the minimum work required to rearrange one event (or jet) into another.

For the case where the 2 jets have equal energy E  
(just to simplify the expressions):

EMD({Ei}, {E′ j}) = min
fij ∑

ij
fijθij

fij ≥ 0, ∑
j

fij ≤ Ei, ∑
i

fij ≤ E′ j, ∑
ij

fij = E

See The hidden geometry of particle collisions for 
detailed discussion on the relationship between 
the EMD metric and many fundamental concepts 
in QFT and collider physics.

Komiske, Metodiev, Thaler [2004.04159]



KR Duality

25 Kitouni, Nolte, MW [NeurIPS 2022, 2209.15624]

EMD({Ei}, {E′ j}) = max
f ∑

i
Ei f(yi, ϕi) − ∑

j
E′ j f(y′ j, ϕ′ j)

The Kantorovich-Rubinstein duality allows us to recast the EMD calculation as a problem of finding 
the 1-Lipschitz function f that maximizes the RHS of

Since it’s now possible to obtain highly expressive Lipschitz functions, we can determine the EMD by 
maximizing this expression using gradient descent and a sufficiently large 1-Lipschitz NN. 

More interestingly, Gambhir, Thaler+ [2302.12266] propose rather than comparing 2 jets, replace one 
with a parametrized distribution to both define and quantify shape-based observables using EMD.  

In their SHAPER algorithm, they use the well-known Sinkhorn approximation technique to make the 
EMD calculation differentiable, at the cost of sacrificing exactness (they use an iterative procedure to 
minimize the impact of the use of the approximate method). 

We can achieve this instead using Lipschitz networks, which provide an exact differentiable method 
for determining the EMD for any given shape-based distributions (n.b. this is a minimax problem). 



NEEMo

27 Kitouni, Nolte, MW [NeurIPS 2022, 2209.15624]

Repurposing our Lipschitz NN code quickly allowed us to enable parametric regression using the 
Wasserstein metric in an exact and differentiable formulation. 

Neural Estimation of the Energy Mover’s distance

Toy example of fitting 3 circles of unknown location, radius (cyan points) to a fixed data set (magenta 
points). The goal is to minimize the EMD by solving the minimax problem from the previous slide.  

The color map is the Kantorovich potential (Lipschitz NN), whose gradients (arrows) exert pseudo-
forces on the cyan points during the gradience descent. In this toy example, the minimum EMD is 
zero because the data is a realization of the parametric shapes; in general, this will not be the case.



Summary

• Lipschitz networks are NNs where the gradient of the learned model is bounded with respect to some chosen norm by a 
chosen Lipschitz constant. Bounding the gradient of the function reduces overfitting and makes the learning more robust.  

• Choosing the 1 norm leads to bounds on each element of the gradient independently. We have derived a new way to do 
this that results in better learning dynamics. 

• By adding a simple linear function to the NN we can force the learned function to be monotonic in any direction(s) we 
want. For a trigger, this lets us enforce outliers are better.  

• Using the non-element-wise (vector) activation function GroupSort allows us to universally approximate any Lipschitz 
function — using tiny networks.  

• This architecture likely has many applications in physics due to the inevitable appearance of scales due to resolution, 
stability, simulation quality, known unknowns, etc — and we showed that it also works well in other domains such as 
criminal justice, medicine, finance, etc.  

• A perhaps academic concern: classification is not regression, which can result in standard loss functions not leading to 
the optimal Lipschitz-bounded functions, though it’s not obvious this will happen in any real-world examples. 

• Due to the KR duality, we can use Lipschitz NNs to determine the Energy Mover’s Distance in an exact and differentiable 
way, which enables performing parametric regression without the need for the Sinkhorn approximation. 

TLDR: Lipschitz networks are great https://github.com/niklasnolte/MonotoneNorm

28

https://github.com/niklasnolte/MonotOneNorm

