Entanglement Enabled Spin Interference

(STAR Collaboration) Phys. Rev. Lett. 127, 052302 (2021)
STAR Collaboration, Sci. Adv. 9, eabq3903 (2023).

James Daniel Brandenburg
(D) The Ohio State University

Top Quark Physics at the Precision Frontier 2023

Purdue University, West Lafayette, IN 47906

UPCs : The Strongest Electromagnetic Fields

\triangleright In heavy-ion collisions:
$E_{\max }=\frac{Z e \gamma}{b^{2}} \approx 5 \times 10^{16}-10^{18} \mathrm{~V} / \mathrm{cm}$ $B_{\max } \sim 10^{14}-10^{16} \mathrm{~T}$
\triangleright Strongest EM fields in the Universe
\triangleright But very short lifetime - not constant
Must be treated in terms of photon quanta

$$
E_{\gamma, \max } \approx \gamma \hbar c / R
$$

$80 \mathrm{GeV} @ \operatorname{LHC}$
3 GeV @ RHIC

Types of Processes in UPCs

Photon + photon

1. Explore non-linear QED
2. Discoveries -> now tools
3. Test for Physics Beyond Standard Model 4. ...

Types of Processes in UPCs

Photon + photon

1. Explore non-linear QED
2. Discoveries -> now tools
3. Test for Physics Beyond Standard Model 4. ...

Photon Polarization In Ultra-Peripheral Collisions

$$
-\vec{E}-\vec{B}
$$

Qz:Beam Direction

For decades it was believed the polarization info was lost due to random event-by-event orientation!

- Polarization vector ξ : aligned radially with the "emitting" source
- Intrinsic photon spin converted into orbital angular momentum
- Observable as anisotropy in $e^{ \pm}$ momentum

Experimental access to photon polarization demonstrated

Applications of $\gamma \gamma \rightarrow l^{+} l^{-}$

Sensitivity to spin states \rightarrow novel approach for constraining massive dark photons

Isabel Xu, Nicole Lewis, Xiaofeng Wang, James Daniel Brandenburg, Lijuan Ruan arxiv:2211.02132

Relevant for LHC Axion search in Light-by-Light scattering JDB, W. Zha, and Z. Xu, Eur. Phys. J. A 57, 299 (2021)

Imaging the Nucleus with Polarized Photons

What is NEW with transversely polarized photons?

Gluons from nucleus

We can use the same experimental observable as the Breit-Wheeler process to access photon polarization

Access to initial photon polarization

I will take just this one experiment, which has been designed to contain all of the mystery of quantum mechanics, to put you up against the paradoxes and mysteries and peculiarities of nature one hundred per cent. Any other situation in quantum mechanics, it turns out, can always be explained by saying, 'You remember the case of the experiment with the two holes? It's the same thing'.
-Richard Feynman

Imaging the Nucleus with Polarized Photons

What is NEW with transversely polarized photons?

Imaging the Nucleus with Polarized Photons

What is NEW with transversely polarized photons?

Imaging the Nucleus with Polarized Photons

What is NEW with transversely polarized photons?

Both possibilities occur simultaneously

Observation of Interference in $\rho^{0} \rightarrow \pi^{+} \pi^{-}$

Observation of Interference in $\rho^{0} \rightarrow \pi^{+} \pi^{-}$

n STAR: Signal $\pi^{+} \pi^{-}$pairs with $\mathrm{P}_{\mathrm{T}}<60 \mathrm{MeV}$

- Intrinsic photon spin transferred to ρ^{0}
- ρ^{0} spin converted into orbital angular momentum between pions
- Observable as anisotropy in $\pi^{ \pm}$ momentum
H. Xing, C. Zhang, J. Zhou and Y. J. Zhou, JHEP 10(2020), 064.

Interference of two amplitudes

Interference of Amplitudes, so what!?

Analogy to

Interferometry in
Astro-Physics

Quantum Interference provides subdiffraction limited imaging

M87 Supermassive Black hole

Analogy to

Interferometry in Astro-Physics

Quantum Interference provides subdiffraction limited imaging

Access to details of gluon distribution and neutron skin of high energy

Nuclear Gluon distribution

Interference Reveals Event Configurations

- Case I: Photon \& Pomeron are (anti-) parallel

- Case II : Photon \& Pomeron are perpendicular

Motivation for 2D Analysis : P_{x} vs P_{y}

- Photon polarization is aligned with \vec{b} (exactly for point source)
- Two source interference takes place in x-axis (impact parameter direction)

Phys. Rev. D 103, 033007 (2021), https://arxiv.org/abs/2006.12099

2D "Imaging" : Clear difference in P_{x} vs. P_{y}

- Express ρ^{0} transverse momentum in two-dimensions:
- $P_{x}=p_{T} \times \cos \phi$
- $P_{y}=p_{T} \times \sin \phi$
- Clear asymmetry in P_{x} vs. P_{y} due to interference effect in both $\mathrm{Au}+\mathrm{Au}$ and $\mathrm{U}+\mathrm{U}$
- Illustrated "2D" tomography

STAR Collaboration, Sci. Adv. 9, eabq3903 (2023).

$|t|$ vs. ϕ, which radius is 'correct'?

Now instead of p_{x} and p_{y} lets look at $|t|$ with a 2D approach

- Drastically different radius depending on ϕ, still way too big
- Notice how much better the Woods-Saxon dip is resolved for $\phi=\pi / 2$-> experimentally able to remove photon momentum, which blurs diffraction pattern
- Can we extract the 'true' nuclear radius from |t| vs. ϕ information?

Imaging the Nucleus with Polarized Photons

STAR: Photonuclear $\rho^{0} \rightarrow \pi^{+} \pi^{-}$

Interference pattern used for diffraction tomography of gluon distribution \rightarrow analog to x-ray diffraction tomography

First high-energy measurements of gluon distribution with sub-femtometer resolution

Technique provides quantitative access to gluon saturation effects
BUT measurements via other vector mesons are needed for to validate QCD theoretical predictions/interpretations
Future measurements with ϕ meson and J/ ψ are important

Nuclear Radius Comparison

Charge Radius
Inclusive |t| slope (STAR 2017) [1]
Inclusive |t| slope (WSFF fit)*
Tomographic technique*
DESY [2]
Cornell [3]

Neutron Skin *
(Tomographic Technique)

$\mathrm{Au}+\mathrm{Au}(\mathrm{fm})$	U+U (fm)
6.38 (long: 6.58, short: 6.05)	6.81 (long: 8.01, short: 6.23)
7.95 ± 0.03	--
7.47 ± 0.03	7.98 ± 0.03
6.53 ± 0.03 (stat.) ± 0.05 (syst.)	7.29 ± 0.06 (stat.) ± 0.05 (syst.)
6.45 ± 0.27	6.90 ± 0.14
6.74 ± 0.06	--
$\begin{gathered} 0.17 \pm 0.03 \text { (stat.) } \pm 0.08 \text { (syst.) } \\ \sim 2 \sigma \end{gathered}$	$\begin{aligned} & 0.44 \pm 0.05 \text { (stat.) } \pm 0.08 \text { (syst.) } \\ & \sim 4.7 \sigma \quad \text { (Note: for } \mathrm{Pb} \approx 0.3 \text {) } \end{aligned}$
	STAR Collaboration, Sci. Adv. 9, eabq3903 (2023)

Precision measurement of nuclear interaction radius at high-energy
Measured radius of Uranium shows evidence of significant neutron skin
[1] STAR Collaboration, L. Adamczyk, et al., Phys. Rev. C 96, 054904 (2017).
[2] H. Alvensleben, et al., Phys. Rev. Lett. 24, 786 (1970).
[3] G. McClellan, et al., Phys. Rev. D4, 2683 (1971).

Nuclear Radius Comparison

	$\mathrm{Au}+\mathrm{Au}(\mathrm{fm})$	$\mathrm{U}+\mathrm{U}(\mathrm{fm})$	
Charge Radius	6.38 (long: 6.58, short: 6.05)	6.81 (long: 8.01, short: 6.23)	
Inclusive \|t	slope (STAR 2017) [1]	7.95 ± 0.03	--
Inclusive \|t	slope (WSFF fit)*	7.47 ± 0.03	7.98 ± 0.03
Tomographic technique*	6.53 ± 0.03 (stat.) ± 0.05 (syst.)	7.29 ± 0.06 (stat.) ± 0.05 (syst.)	
DESY [2]	6.45 ± 0.27	6.90 ± 0.14	
Cornell [3]	6.74 ± 0.06	--	
Neutron Skin * (Tomographic Technique)	$\begin{gathered} 0.17 \pm 0.03 \text { (stat.) } \pm 0.08 \text { (syst.) } \\ \sim 2 \sigma \end{gathered}$	$\begin{aligned} & 0.44 \pm 0.05 \text { (stat.) } \pm 0.08 \text { (syst.) } \\ & \sim 4.7 \sigma \quad \text { (Note: for } \mathrm{Pb} \approx 0.3 \text {) } \end{aligned}$	

Precision measurement of nuclear interaction radius at high-energy

Measured radius of Uranium shows evidence of significant neutron skin
[1] STAR Collaboration, L. Adamczyk, et al., Phys. Rev. C 96, 054904 (2017).
[2] H. Alvensleben, et al., Phys. Rev. Lett. 24, 786 (1970).
[3] G. McClellan, et al., Phys. Rev. D 4, 2683 (1971).

Neutron Skins at High-Energy

$$
\begin{gathered}
\boldsymbol{S}_{\boldsymbol{A u}}=\mathbf{0 . 1 7} \pm \mathbf{0 . 0 3 \text { (stat.) }} \\
\pm \mathbf{0 . 0 8} \text { (syst.) } \mathrm{fm} \\
\boldsymbol{S}_{\boldsymbol{A u}}^{\boldsymbol{M R - E D F}}=\mathbf{0 . 1 7} \mathbf{f m} \\
\text { Bally, B., Giacalone, G. \& Bender, M. } \\
\text { Eur. Phys. J. A 59, 58(2023). }
\end{gathered}
$$

- Gold agrees well with state-of-the-art energy density functional calculations
- Consistent with trend from low energy measurements

Neutron Skins at High-Energy

ఒ— Uranium

$$
\begin{gathered}
S_{U}=0.44 \pm 0.05 \text { (stat.) } \\
\pm 0.08 \text { (syst.) fm }
\end{gathered}
$$

- Uranium neutron skin appears surprisingly large?
- Above trend and lowenergy measurements?

Robust Theoretical Description

- First theoretical prediction for deformed Uranium
- Sensitivity to nuclear geometry!

$\boldsymbol{\beta}_{2}$

- 2D Tomography possible through Interference effect
- Also require very large U radius
- Assumes amplitude interference for coherent process
H.Mantysaari, F. Salazar, B.Schenke, C. Shen and W. Zhao, in preparation

Aside: Intensity Interferometry

- Two photon measurement from incoherent source
- "image" encoded in transverse correlations
- Requires photons be indistinguishable

Entanglement Enabled Intensity Interferometry of different wavelengths of light
 Jordan Cotler a, Frank Wilczek ${ }^{\text {b c def }}$, $\underline{\text { Victoria Borish }}{ }^{\text {g }}$

Cotler-Wilczek Process: use entanglement 'filter' to convert different wavelengths of light to a common state \rightarrow interference

Annals of Physics Volume 424, 168346 (2021)

Entanglement enabled Intensity Interferometry from exclusive $\pi^{+} \pi^{-}$measurements in UPC's as an inverse Cotler-Wilczek process

Haowu Duan, Raju Venugopalan, Zhoudunming Tu, Zhangbu Xu, James Daniel Brandenburg, In preparation
Inverse Cotler-Wilczek Process: 'Filter' ρ^{0} state comes first. Entanglement of daughter pions enables interference

$$
\begin{align*}
<N_{A} N_{B} \mid \pi^{+} \pi^{-}> & =<N_{A} N_{B}\left|\rho_{A}><\rho_{A}\right| \pi^{+} \pi^{-}, A> \\
& \times<\pi^{+} \pi^{-}, A \mid\left(\left|\pi^{+}, 1>\left|\pi^{-}, 2>+\left|\pi^{+}, 2>\right| \pi^{-}, 1>\right)\right.\right. \\
& +<N_{A} N_{B}\left|\rho_{B}><\rho_{B}\right| \pi^{+} \pi^{-}, B> \\
& \times<\pi^{+} \pi^{-}, B \mid\left(\left|\pi^{+}, 1>\left|\pi^{-}, 2>+\left|\pi^{+}, 2>\right| \pi^{-}, 1>\right)\right.\right. \tag{16}
\end{align*}
$$

Interference only occurs if final state particles are entangled!

Entanglement Enabled Intensity Interference

Access to Hadronic Light-by-Light

Interference with the hadronic light-by-light diagram
Leads to a unique signature -> odd spin configurations

Novel Experimental input for muon g-2

Contribution from Hadronic Vacuum Polarization and Hadronic Light-by-Light are the largest theoretical uncertainties for Standard Model muon g-2

Elliptic Gluon Tomography (Tensor Pomeron)

Phys. Rev. D 104, 094021 (2021)

Confirmation from ALICE (New at QM Sept 2023)

Neutron emission categories test the impact

ϕ parameter dependence

Polarization effects: coherent diffractive J / ψ

- New STAR measurement of J / ψ at QM in Sept 2023
- Consistent within error with Diffraction + Interference (Diff+lnt) effect at low p_{T}
- Effect of Soft Photon radiation (Rad) visible at higher p_{T}

Summary - Entanglement Enabled Spin Interference

- Ultra-peripheral collisions provide a unique laboratory for exploring the frontiers of QED, QCD and BSM physics
- Polarized Breit-Wheeler process: access to photon polarization
- Photonuclear processes: novel incarnation of the 'double-slit' experiment
- Analogy to HBT intensity interferometry, but requires entanglement
- Immediate applications:
- Tomography of gluon distributions within large nuclei at high energy -> neutron skin
- Interference access to hadronic light-by-light in unconstrained region -> inform BSM searches through anomalous magnetic moments
- Interference access to Pomeron with higher spin states -> gluon spin correlations within large nuclei, signatures of gluon saturation \& nonlinear dynamics

Bmin distribution in UPCs

H.Mantysaari, B.Schenke, C. Shen and W. Zhao, Phys. Lett. B 833 (2022), 137348.

Imaging the Nuclear Charge Distribution

$\gamma \gamma \rightarrow l^{+} l^{-}$can be used to constrain nucleus charge distribution at RHIC energy STAR data compared to EPA-QED

Low energy scattering: $R=6.38 \mathrm{fm}, \mathrm{d}=0.535 \mathrm{fm}$ R. C. Barrett and D. F. Jackson, Nuclear Sizes and Structure (Oxford University Press, 1977)

- Explore the effective charge distribution vs. energy and impact parameter
Xiaofeng Wang, James Daniel Brandenburg, Lijuan Ruan, Fenglan Shao, Zhangbu Xu, Chi Yang, and Wangmei Zha Phys. Rev. C 107, 044906 (2023)

PAST Discoveries \rightarrow Novel Tests of BSM Physics

\triangleright Discoveries become tools to study new physics

Axion search in Light-by-Light
 Scattering

Dark Photon search with Polarized Breit-Wheeler Process

Existing constraints from JHEP 12 (2017) 044

sabel Xu, Nicole Lewis, Xiaofeng Wang, James Daniel Brandenburg, Lijuan Ruan
arxiv:2211.02432

