A study of entanglement in $e^{+} e^{-} \rightarrow B \bar{B}$ events at Belle

Bruce Yabsley

University of Sydney
Top Quark Physics at the Precision Frontier, Purdue, 2nd October 2023

Outline

(1) Einstein, Podolsky, and Rosen, via Bohm
(2) Belle and the flavor singlet state
(3) $B \bar{B}$, measurement, and conspiracy
(4) QM versus specific local realistic models
(5) Adapting an existing analysis measuring Δm_{d}
(6) Summary and reflections

Einstein, Podolsky, and Rosen, via Bohm

spin-singlet state of photons or particles: $\frac{1}{\sqrt{2}}\left[|\Uparrow\rangle_{1}|\Downarrow\rangle_{2}-|\Downarrow\rangle_{1}|\Uparrow\rangle_{2}\right]$

- measurements on $1(2)$ indeterminate, but \Longrightarrow full knowledge of 2 (1)
- Bell's Theorem (via Clauser, Horne, Shimony, and Holt):
- correlation coeff: $E(\vec{a}, \vec{b})=\frac{R_{++}(\vec{a}, \vec{b})+R_{--}(\vec{a}, \vec{b})-R_{+-}(\vec{a}, \vec{b})-R_{-+}(\vec{a}, \vec{b})}{R_{++}(\vec{a}, \vec{b})+R_{--}(\vec{a}, \vec{b})-R_{+-}(\vec{a}, \vec{b})+R_{-+}(\vec{a}, \vec{b})}$
- $S=E(\vec{a}, \vec{b})-E\left(\vec{a}, \overrightarrow{b^{\prime}}\right)+E\left(\vec{a}^{\prime}, \vec{b}\right)+E\left(\vec{a}^{\prime}, \vec{b}^{\prime}\right)$
- $|S| \leq 2$ for any local realistic model; $S_{Q M}= \pm 2 \sqrt{2}$ for optimal settings
- QM-like results rule out LR, even if we eventually "get behind" QM

Einstein, Podolsky, and Rosen, via Bohm: Aspect

 Aspect et al., Phys. Rev. Lett. 92, 91 (1982)
source: 2-photon cascade decay

 ν_{1}, ν_{2} polarizations are correlated

FIG. 2. Experimental setup. Two polarimeters I and II, in orientations \vec{a} and \vec{b}, perform true dichotomic measurements of linear polarization on photons ν_{1} and ν_{2}. Each polarimeter is rotatable around the axis of the incident beam. The counting electronics monitors the singles and the coincidences.
[two-channel polarimeters used]

correlation coeffs in data vs QM

 optimum relative angles 22.5° and 67.5°

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1.

$$
S=2.697 \pm 0.015 ; c f . S_{Q M}=2.70 \pm 0.05
$$

Einstein, Podolsky, and Rosen, via Bohm: Franson

J.D. Franson, Phys. Rev. Lett. 62, 2205-2208 (1989)

some more recent experiments are based on a different design with alternative paths setting up a position-time correlation:

here the polarizer orientations are fixed, and variable phase delays $\Phi_{1,2}$ (Pockels cells or similar) are introduced

the KEKB/Belle facility

superconducting solenoid (1.5 T) [tracking; calorimetry; $K / \pi, e^{-}, \mu \mathrm{ID}$] 772 million $B \bar{B}$ pairs on tape

CP: violated in the neutral B-meson system?

instead of $K^{0} \equiv \bar{s} d$, try $B^{0} \equiv \bar{b} d$, using $b \bar{b}$ resonance as a source \ldots

$e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow$ [flavor singlet state of] $B^{0} B^{0}$

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4 S)$ is C-odd

$\mathrm{Y}(4 \mathrm{~S})$ resonance

$e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow$ [flavor singlet state of] $B^{0} B^{0}$

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4 S)$ is C-odd
- an entangled B-pair is produced:

$$
|\Psi(t)\rangle=\frac{e^{-t / \tau} B^{0}}{\sqrt{2}}\left[\left|B^{0}(\vec{p}) \bar{B}^{0}(-\vec{p})\right\rangle-\left|\bar{B}^{0}(\vec{p}) B^{0}(-\vec{p})\right\rangle\right]
$$

$e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow$ [flavor singlet state of] $B^{0} B^{0}$

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4 S)$ is C-odd
- an entangled B-pair is produced:
- individual flavors indeterminate

$$
|\Psi(t)\rangle=\frac{e^{-t / \tau_{B^{0}}}}{\sqrt{2}}\left[\left|B^{0}(\vec{p}) \bar{B}^{0}(-\vec{p})\right\rangle-\left|\bar{B}^{0}(\vec{p}) B^{0}(-\vec{p})\right\rangle\right]
$$

$e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow$ [flavor singlet state of] $B^{0} B^{0}$

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4 S)$ is C-odd
- an entangled B-pair is produced:
- individual flavors indeterminate
- at fixed t, the pair is always $B^{0} \bar{B}^{0}$

$$
|\Psi(t)\rangle=\frac{e^{-t / \tau} B^{0}}{\sqrt{2}}\left[\left|B^{0}(\vec{p}) \bar{B}^{0}(-\vec{p})\right\rangle-\left|\bar{B}^{0}(\vec{p}) B^{0}(-\vec{p})\right\rangle\right]
$$

$e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow$ [flavor singlet state of] $B^{0} B^{0}$

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4 S)$ is C-odd
- an entangled B-pair is produced:
- individual flavors indeterminate
- at fixed t, the pair is always $B^{0} \bar{B}^{0}$
- flagship B-factory measurements:
$\begin{cases}B_{T A G}^{0} & \text { definite flavor state } \\ B_{C P}^{0} & \text { definite CP state }\end{cases}$

$$
\Gamma_{C P}(\Delta t)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[1 \pm\left\{S_{C P} \sin (\Delta m \Delta t)+A_{C P} \cos (\Delta m \Delta t)\right\}\right]
$$

$e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow[f l a v o r ~ s i n g l e t ~ s t a t e ~ o f] ~ B^{0} B^{0}$

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4 S)$ is C-odd
- an entangled B-pair is produced:
- individual flavors indeterminate
- at fixed t, the pair is always $B^{0} \bar{B}^{0}$
- flagship B-factory measurements:

- decay rate modulated in $\Delta t \equiv t_{1}-t_{2}$

$$
\Gamma_{C P}(\Delta t)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[1 \pm\left\{S_{C P} \sin (\Delta m \Delta t)+A_{C P} \cos (\Delta m \Delta t)\right\}\right]
$$

$e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow[f l a v o r ~ s i n g l e t ~ s t a t e ~ o f] ~ B^{0} B^{0}$

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4 S)$ is C-odd
- an entangled B-pair is produced:
- individual flavors indeterminate
- at fixed t, the pair is always $B^{0} \bar{B}^{0}$
- flagship B-factory measurements:
$\begin{cases}B_{T A G}^{0} & \text { definite flavor state } \\ B_{C P}^{0} & \text { definite CP state }\end{cases}$
- decay rate modulated in $\Delta t \equiv t_{1}-t_{2}$
- with one rate for $B_{T A G}^{0} \ldots$

$$
\Gamma_{C P}(\Delta t)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[1+\left\{S_{C P} \sin (\Delta m \Delta t)+A_{C P} \cos (\Delta m \Delta t)\right\}\right]
$$

$e^{+} e^{-} \rightarrow \Upsilon(4 S) \rightarrow[f l a v o r ~ s i n g l e t ~ s t a t e ~ o f] ~ B^{0} B^{0}$

the B-pair has the same property, substituting flavor for spin/polarization:

- the $\Upsilon(4 S)$ is C-odd
- an entangled B-pair is produced:
- individual flavors indeterminate
- at fixed t, the pair is always $B^{0} \bar{B}^{0}$
- flagship B-factory measurements:
$\begin{cases}B_{T A G}^{0} & \text { definite flavor state } \\ B_{C P}^{0} & \text { definite CP state }\end{cases}$
- decay rate modulated in $\Delta t \equiv t_{1}-t_{2}$
- with one rate for $B_{T A G}^{0} \ldots$
- and another rate for $\bar{B}_{\text {TAG }}^{0}$: CPV

$$
\Gamma_{C P}(\Delta t)=\frac{e^{-|\Delta t| / \tau_{B^{0}}}}{4 \tau_{B^{0}}}\left[1-\left\{S_{C P} \sin (\Delta m \Delta t)+A_{C P} \cos (\Delta m \Delta t)\right\}\right]
$$

Measuring a time-dependent CPV asymmetry

$$
\Delta t \sim 10^{-12} \mathrm{~s} \text { unmeasurable, so use } \Delta z \tilde{\propto} \Delta t
$$

Measuring a time-dependent CPV asymmetry

asymmetric c.m. system \longrightarrow an asymmetric detector

What one of those events actually "looks" like ...

vertexing: SVD
silicon vertex detector

tracking: CDC
central drift chamber

CP: violated in the neutral B-meson system!!

Belle: I. Adachi et al., Phys. Rev. Lett. 108, 171802 (2012)

- measured by 2000, observed by 2001; 2012 final measurement shown \longrightarrow
- clear offset of \bar{B}^{0} and B^{0} tags
- decent fit to the expected sinusoidal modulation in Δt in the rate asymmetry
- opposite shift (with poorer precision) seen for $B^{0} \rightarrow J / \psi K_{L}^{0}$
- opposite $\eta_{C P}$ to other modes
- Δt measurement is \approx the same
- (for validation, not extra precision)
- huge project at Belle \& BaBar:

- confirm expected SM results
- find deviations - NP signals [cf. top quark first "seen" in loops]

$K^{0} K^{0} \& B^{0} \bar{B}^{0}$ systems: what can be measured

there is a beautiful optical analogy called quasi-spin due to Lee and Wu (1966) and Lipkin (1968):

K meson	spin- $\frac{1}{2}$	photon
$\left\|K^{0}\right\rangle$	$\|\Uparrow\rangle_{z}$	$\|V\rangle$
$\left\|\bar{K}^{0}\right\rangle$	$\|\Downarrow\rangle_{z}$	$\|H\rangle$
$\left\|K_{S}^{0}\right\rangle$	$\|\Rightarrow\rangle_{z}$	$\|L\rangle=\frac{1}{\sqrt{2}}(\|V\rangle-i\|H\rangle)$
$\left\|K_{L}^{0}\right\rangle$	$\|\Leftarrow\rangle_{z}$	$\|R\rangle=\frac{1}{\sqrt{2}}(\|V\rangle+i\|H\rangle)$

- we are limited in the "polarization axes" we can choose:
- can't measure along arbitrary $\alpha\left|K^{0}\right\rangle+\beta\left|\bar{K}^{0}\right\rangle=\alpha|\Uparrow\rangle+\beta|\Downarrow\rangle$
- even more restricted for B-mesons: only B^{0}, \bar{B}^{0} are practical
- but $\left|B^{0}\right\rangle \xrightarrow{t} \frac{1}{2}\left[\left\{1+\cos \left(\Delta m_{d} t\right)\right\}\left|B^{0}\right\rangle+\left\{1-\cos \left(\Delta m_{d} t\right)\right\}\left|\bar{B}^{0}\right\rangle\right]$, so time difference $\Delta m_{d} \Delta t$ plays the role of phase difference $\Delta \phi$

$K^{0} K^{0} \& B^{0} \bar{B}^{0}$ systems: what can be measured

there is a beautiful optical analogy called quasi-spin due to Lee and Wu (1966) and Lipkin (1968):

B meson	spin- $\frac{1}{2}$	photon
$\left\|B^{0}\right\rangle$	$\|\Uparrow\rangle_{z}$	$\|V\rangle$
$\left\|\bar{B}^{0}\right\rangle$	$\|\Downarrow\rangle_{z}$	$\|H\rangle$
	$\|\Rightarrow\rangle_{z}$	$\|L\rangle=\frac{1}{\sqrt{2}}(\|V\rangle-i\|H\rangle)$
	$\|\Leftarrow\rangle_{z}$	$\|R\rangle=\frac{1}{\sqrt{2}}(\|V\rangle+i\|H\rangle)$

- we are limited in the "polarization axes" we can choose:
- can't measure along arbitrary $\alpha\left|K^{0}\right\rangle+\beta\left|\bar{K}^{0}\right\rangle=\alpha|\Uparrow\rangle+\beta|\Downarrow\rangle$
- even more restricted for B-mesons: only B^{0}, \bar{B}^{0} are practical
- but $\left|B^{0}\right\rangle \xrightarrow{t} \frac{1}{2}\left[\left\{1+\cos \left(\Delta m_{d} t\right)\right\}\left|B^{0}\right\rangle+\left\{1-\cos \left(\Delta m_{d} t\right)\right\}\left|\bar{B}^{0}\right\rangle\right]$, so time difference $\Delta m_{d} \Delta t$ plays the role of phase difference $\Delta \phi$

the $B^{0} B^{0}$ system: an optical analogy

an EPR experiment on $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ is analagous to:

the $B^{0} B^{0}$ system: an optical analogy

an EPR experiment on $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ is analagous to:

- a photon pair in a singlet state

the $B^{0} B^{0}$ system: an optical analogy

an EPR experiment on $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ is analagous to:

- a photon pair in a singlet state
- in the Aspect experiment, with two-channel polarimeters

the $B^{0} B^{0}$ system: an optical analogy

an EPR experiment on $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ is analagous to:

- a photon pair in a singlet state
- in the Aspect experiment, with two-channel polarimeters
- which are fixed in orientation, rather than rotating,

the $B^{0} B^{0}$ system: an optical analogy

an EPR experiment on $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ is analagous to:

- a photon pair in a singlet state
- in the Aspect experiment, with two-channel polarimeters
- which are fixed in orientation, rather than rotating,
- with a variable phase rotation à la Franson on the arms instead

the $B^{0} \bar{B}^{0}$ system: an optical analogy

an EPR experiment on $\Upsilon(4 S) \rightarrow B^{0} \bar{B}^{0}$ is analagous to:

- a photon pair in a singlet state
- in the Aspect experiment, with two-channel polarimeters
- which are fixed in orientation, rather than rotating,
- with a variable phase rotation à la Franson on the arms instead

- however, there is a catch ...

The Green Baize Table Conspiracy Model (1)

Bramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table

The Green Baize Table Conspiracy Model (1)

Bramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide everything that happens in detail: including $\Upsilon(4 S) \rightarrow B \bar{B}$

The Green Baize Table Conspiracy Model (1)

Bramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide everything that happens in detail: including $\Upsilon(4 S) \rightarrow B \bar{B}$
- at $t=0$, hidden variables are set:

The Green Baize Table Conspiracy Model (1)

Bramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide everything that happens in detail: including $\Upsilon(4 S) \rightarrow B \bar{B}$
- at $t=0$, hidden variables are set:
- mesons $1 \& 2$ are assigned variables $\left(t_{1}, f_{1}\right) \&\left(t_{2}, f_{2}\right)$

The Green Baize Table Conspiracy Model (1)

Bramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide everything that happens in detail: including $\Upsilon(4 S) \rightarrow B \bar{B}$
- at $t=0$, hidden variables are set:
- mesons $1 \& 2$ are assigned variables $\left(t_{1}, f_{1}\right) \&\left(t_{2}, f_{2}\right)$
- these act locally: meson i

The Green Baize Table Conspiracy Model (1)

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide everything that happens in detail: including $\Upsilon(4 S) \rightarrow B \bar{B}$
- at $t=0$, hidden variables are set:
- mesons $1 \& 2$ are assigned variables $\left(t_{1}, f_{1}\right) \&\left(t_{2}, f_{2}\right)$
- these act locally: meson i decays at time $t=t_{i}$

The Green Baize Table Conspiracy Model (1)

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide everything that happens in detail: including $\Upsilon(4 S) \rightarrow B \bar{B}$
- at $t=0$, hidden variables are set:
- mesons $1 \& 2$ are assigned variables $\left(t_{1}, f_{1}\right) \&\left(t_{2}, f_{2}\right)$
- these act locally: meson i decays at time $t=t_{i}$ into final state $f=f_{i}$

The Green Baize Table Conspiracy Model (1)

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide everything that happens in detail: including $\Upsilon(4 S) \rightarrow B \bar{B}$
- at $t=0$, hidden variables are set:
- mesons $1 \& 2$ are assigned variables $\left(t_{1}, f_{1}\right) \&\left(t_{2}, f_{2}\right)$
- these act locally: meson i decays at time $t=t_{i}$ into final state $f=f_{i}$
- if $\left(t_{1}, f_{1}, t_{2}, f_{2}\right)$ are chosen randomly according to QM the phenomena look like QM!

The Green Baize Table Conspiracy Model (1)

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide everything that happens in detail: including $\Upsilon(4 S) \rightarrow B \bar{B}$
- at $t=0$, hidden variables are set:
- mesons $1 \& 2$ are assigned variables $\left(t_{1}, f_{1}\right) \&\left(t_{2}, f_{2}\right)$
- these act locally: meson i decays at time $t=t_{i}$ into final state $f=f_{i}$
- if $\left(t_{1}, f_{1}, t_{2}, f_{2}\right)$ are chosen randomly according to QM ... the phenomena look like QM!
- because $\Delta m_{d} \Delta t$ plays the role of phase difference $\Delta \phi$, and
 the decays set Δt, we cannot choose $\Delta \phi$ to defeat the conspiracy
Bruce Yabsley (Sydney) \quad Entanglement in $e^{+} e^{-} \rightarrow B \bar{B}$ at Belle \quad Top Precision 2023-10-02 $\quad 15 / 31$

The Green Baize Table Conspiracy Model (2)

 G. Weihs et al., Phys. Rev. Lett. 81, 5039-5043 (1998): "Aspect++"changing $\Delta \phi$ in flight...

... based on random numbers

Here $\Delta \phi$ is actively chosen: not subject to the same sorts of conspiracy.

Beyond The Green Baize Table Conspiracy

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355-360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

Beyond The Green Baize Table Conspiracy

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355-360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt

Beyond The Green Baize Table Conspiracy

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355-360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_{d}=\Delta m_{d} / \Gamma_{d}$: rate of oscillation relative to decay

Beyond The Green Baize Table Conspiracy

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355-360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_{d}=\Delta m_{d} / \Gamma_{d}$: rate of oscillation relative to decay
- Bell test impossible if $x<2.0$:

system	x
B^{0} / \bar{B}^{0}	0.77
K^{0} / \bar{K}^{0}	0.95
D^{0} / \bar{D}^{0}	<0.03
$B_{s}^{0} / \bar{B}_{s}^{0}$	~ 26

Beyond The Green Baize Table Conspiracy

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_{d}=\Delta m_{d} / \Gamma_{d}$: rate of oscillation relative to decay
- Bell test impossible if $x<2.0$:

system	x
B^{0} / \bar{B}^{0}	0.77
K^{0} / \bar{K}^{0}	0.95
D^{0} / \bar{D}^{0}	<0.03
$B_{s}^{0} / \bar{B}_{s}^{0}$	~ 26

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1.

Beyond The Green Baize Table Conspiracy

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_{d}=\Delta m_{d} / \Gamma_{d}$: rate of oscillation relative to decay
- Bell test impossible if $x<2.0$:

system	x
B^{0} / \bar{B}^{0}	0.77
K^{0} / \bar{K}^{0}	0.95
D^{0} / \bar{D}^{0}	<0.03
$B_{s}^{0} / \bar{B}_{s}^{0}$	~ 26

$c f$. Aspect: free to choose $\Delta \phi$

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1.

- so we are limited to comparing QM and specific $L R$ models:

Beyond The Green Baize Table Conspiracy

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_{d}=\Delta m_{d} / \Gamma_{d}$: rate of oscillation relative to decay
- Bell test impossible if $x<2.0$:

system	x
B^{0} / \bar{B}^{0}	0.77
K^{0} / \bar{K}^{0}	0.95
D^{0} / \bar{D}^{0}	<0.03
$B_{s}^{0} / \bar{B}_{s}^{0}$	~ 26

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1.

- so we are limited to comparing QM and specific $L R$ models:
- let mesons decay at various $\left(t_{1}, t_{2}\right)$

Beyond The Green Baize Table Conspiracy

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355-360 (2004)
With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_{d}=\Delta m_{d} / \Gamma_{d}$: rate of oscillation relative to decay
- Bell test impossible if $x<2.0$:

system	x
B^{0} / \bar{B}^{0}	0.77
K^{0} / \bar{K}^{0}	0.95
D^{0} / \bar{D}^{0}	<0.03
$B_{s}^{0} / \bar{B}_{s}^{0}$	~ 26

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1.

- so we are limited to comparing QM and specific $L R$ models:
- let mesons decay at various $\left(t_{1}, t_{2}\right)$
- use final states $\left(f_{1}, f_{2}\right)$ to determine flavours at $\left(t_{1}, t_{2}\right)$

Beyond The Green Baize Table Conspiracy

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_{d}=\Delta m_{d} / \Gamma_{d}$: rate of oscillation relative to decay
- Bell test impossible if $x<2.0$:

system	x
B^{0} / \bar{B}^{0}	0.77
K^{0} / \bar{K}^{0}	0.95
D^{0} / \bar{D}^{0}	<0.03
$B_{s}^{0} / \bar{B}_{s}^{0}$	~ 26

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1.

- so we are limited to comparing QM and specific $L R$ models:
- let mesons decay at various $\left(t_{1}, t_{2}\right)$
- use final states $\left(f_{1}, f_{2}\right)$ to determine flavours at $\left(t_{1}, t_{2}\right)$
- check if this is consistent with a given model

QM versus specific local realistic models

The QM "model" has distinctive predictions for how B-meson flavours change:

- after $\Upsilon(4 S)$ decay, the two B-mesons operate as a unit
- when B_{1} decays ($50 / 50 \% B^{0} / \bar{B}^{0}$), B_{2} is in the opposite flavour state; as (proper) time passes, it oscillates opposite (OF) \longleftrightarrow same flavour (SF)
- find asymmetry in pair decays:

$$
\begin{aligned}
A\left(t_{1}, t_{2}\right) & =\frac{R_{O F}-R_{S F}}{R_{0 F}+R_{S F}} \\
& =\cos \left(\Delta m_{d}\left(t_{2}-t_{1}\right)\right)
\end{aligned}
$$

- depends only on $\Delta t \longrightarrow$ (this is an entanglement thing)
- cf. a (t_{1}, t_{2}) plot would look complicated

- easy (in principle) to distinguish QM and other models: apart from Δt, any dependence on individual t_{i} is non-QM

QM versus specific local realistic models

LR model \#1: spontaneous disentanglement

- after $\Upsilon(4 S)$ decay, B^{\prime} s immediately separate into B^{0} and \bar{B}^{0}
- $A_{S D}=\cos \left(\Delta m_{d} t_{1}\right) \cos \left(\Delta m_{d} t_{2}\right)$
$=\frac{1}{2}\left[\cos \left(\Delta m_{d} \Sigma t\right)+\cos \left(\Delta m_{d} \Delta t\right)\right]$
- start with well-defined flavour
- oscillate independently
- $A_{S D}$ depends on both t_{1}, t_{2}
- the variables shown are prejudicial: $\left(t_{1}, t_{2}\right)$ would have looked simpler
- $\left(\Delta t, \Sigma t=\left[t_{1}+t_{2}\right]\right)$ likewise
- $\left(\Delta t, t_{\text {min }}\right)$ chosen to compare with QM and \ldots

QM versus specific local realistic models

LR model \#2: phenomenological model-family of Pompili \& Selleri

- QM-like states, including Δm
- individual meson masses are stable
- flavours of the pair are correlated: subject to instantaneous jumps
- require that QM predictions for single B-mesons are preserved
- asymmetry for any such model must fall within a range:
- $A_{P S}^{\min }=1-\min (2+\Psi, 2-\Psi)$,

$$
\begin{aligned}
\Psi=\{1 & \left.+\cos \left(\Delta m_{d} \Delta t\right)\right\} \cos \left(\Delta m_{d} t_{\text {min }}\right) \\
& -\sin \left(\Delta m_{d} \Delta t\right) \sin \left(\Delta m_{d} t_{\text {min }}\right)
\end{aligned}
$$

- $A_{P S}^{\text {max }}=1-\mid\left\{1-\cos \left(\Delta m_{d} \Delta t\right)\right\} \cos \left(\Delta m_{d} t_{\text {min }}\right)$

$$
+\sin \left(\Delta m_{d} \Delta t\right) \sin \left(\Delta m_{d} t_{\text {min }}\right)
$$

QM versus specific local realistic models

LR model \#2: phenomenological model-family of Pompili \& Selleri

- QM-like states, including Δm
- individual meson masses are stable
- flavours of the pair are correlated: subject to instantaneous jumps
- require that QM predictions for single B-mesons are preserved
- asymmetry for any such model must fall within a range:
- $A_{P S}^{\min }=1-\min (2+\Psi, 2-\Psi)$,

$$
\begin{aligned}
\Psi=\{1 & \left.+\cos \left(\Delta m_{d} \Delta t\right)\right\} \cos \left(\Delta m_{d} t_{\text {min }}\right) \\
& -\sin \left(\Delta m_{d} \Delta t\right) \sin \left(\Delta m_{d} t_{\text {min }}\right)
\end{aligned}
$$

- $A_{P S}^{\text {max }}=1-\mid\left\{1-\cos \left(\Delta m_{d} \Delta t\right)\right\} \cos \left(\Delta m_{d} t_{\text {min }}\right)$

$$
+\sin \left(\Delta m_{d} \Delta t\right) \sin \left(\Delta m_{d} t_{\min }\right)
$$

QM versus specific local realistic models

LR model \#2: phenomenological model-family of Pompili \& Selleri

- QM-like states, including Δm
- individual meson masses are stable
- flavours of the pair are correlated: subject to instantaneous jumps
- require that QM predictions for single B-mesons are preserved
- asymmetry for any such model must fall within a range:
- $A_{P S}^{\min }=1-\min (2+\Psi, 2-\Psi)$,

$$
\begin{aligned}
\Psi=\{1 & \left.+\cos \left(\Delta m_{d} \Delta t\right)\right\} \cos \left(\Delta m_{d} t_{\text {min }}\right) \\
& -\sin \left(\Delta m_{d} \Delta t\right) \sin \left(\Delta m_{d} t_{\text {min }}\right)
\end{aligned}
$$

- $A_{P S}^{\text {max }}=1-\mid\left\{1-\cos \left(\Delta m_{d} \Delta t\right)\right\} \cos \left(\Delta m_{d} t_{\text {min }}\right)$ $+\sin \left(\Delta m_{d} \Delta t\right) \sin \left(\Delta m_{d} t_{\text {min }}\right) \mid$

$A(\Delta t)$ for QM, SD, and Pompili-Selleri

- at Belle we cannot measure individual decay times [knowledge of the interaction point is poor compared to needed resolution]
- measuring Δt is fine for $A_{Q M}(\Delta t) \equiv \frac{R_{O F}-R_{S F}}{R_{O F}+R_{S F}}=\cos \left(\Delta m_{d} \Delta t\right)$
- we must integrate over remaining variable for SD, PS:

SD: $\int_{\Delta t}^{\infty} \mathrm{d}(\Sigma t) R_{O F, S F}(\Sigma t, \Delta t) \longrightarrow$
PS: $\int_{0}^{\infty} \mathrm{d} t_{\text {min }} R_{O F, S F}\left(t_{\min }, \Delta t\right) \longrightarrow$

- these resemble the Δt evolution for QM, but differ in the detail: resolve the difference!!
- avoid assuming quantum
 mechanics along the way (which can be difficult)
- $N . B$. event rate at $\Delta t=10 \mathrm{ps}$ is $\sim \frac{1}{700} \times(\Delta t=0)$

Adapt an existing analysis measuring Δm_{d} (1)

Belle: K. Abe et al., Phys. Rev. D 71, 072003 \& 079903 (2005)

Belle's most current $\sin 2 \phi_{1},|\lambda|, \tau_{B}, \Delta m_{d}$ measurement at the time:

- $152 \times 10^{6} B \bar{B}$ pairs
- $5 \times$ the discovery dataset
- $\frac{1}{5} \times$ the eventual dataset
- 5417 CP- and 177368 flavoureigenstate B-decay candidates
- sample purities vary 63-98\% depending on the decay mode
- multivariate flavour-tagging of the other B decay; $\epsilon_{\text {eff }}=28.7 \%$
- $\Delta m_{d}=(0.511 \pm 0.005 \pm 0.006) \mathrm{ps}^{-1}$

$$
\text { cf. }(0.5065 \pm 0.0019) \mathrm{ps}^{-1} \text { PDG23 }
$$

We then adapted this in various ways ...

Adapt an existing analysis measuring Δm_{d} (2)

Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131802 (2007)

- restrict $177368 \rightarrow 84823$ flavour eigenstates, choosing only $B^{0} \rightarrow D^{*-} \ell^{+} \nu$ where the lepton explicitly determines the B-flavour

- restrict $84823 \rightarrow 8565$ by choosing only the best flavour tags of the other B : highest of 7 purity categories; leptons only

Then: background subtraction (1) fake D^{*}

Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131802 (2007)

- signal relies on $D^{*-} \rightarrow \bar{D}^{0} \pi^{-}$tag: energy release $Q \ll m_{\pi} \ll m_{D}$
- estimate background under peak using sideband region:

- affects samples differently: we subtract $\left\{\begin{aligned} 126 \pm 6 & \text { OF events } \\ 54 \pm 4 & \text { SF events }\end{aligned}\right.$

Then: background subtraction (2) bad $D^{*}-\ell$

Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131802 (2007)

- true D^{*} mesons; mostly, true leptons, D^{*}, ℓ produced by different B-decays
- estimated from data using a reversed momentum trick;
Monte-Carlo validated
(a,b) here, unlike the last case, more SF bkgd
(c) $A(\Delta t)$ before \& after correction
(d) residuals: note Δt structure

Then: background subtraction (3) $B^{+} \rightarrow \bar{D}^{* * 0} \ell \nu$

 Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131802 (2007)- the remaining background is from related decays of charged B
- we rely on the different distributions for $D^{* *}$ decays and D^{*} decays
- fit data to get fractions
- rely on MC for details:
- 254 OF vs. 1.5 SF events
- structured in Δt
- generous systematics
- (1.5 ± 0.1) \% mistag rate of other B corrected using OF and SF distributions; 0.5\% systematic assigned
- effect of background subtraction and mistag correction: $\longrightarrow^{\cos \left(\theta_{\mathrm{am}, \mathrm{O}}\right)}$

Then: background subtraction (3) $B^{+} \rightarrow \bar{D}^{* * 0} \ell \nu$

Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131802 (2007)

Further adaptation: deconvolution and bias removal

 Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131802 (2007)- remaining effects are vertex resolution, efficiency losses ... these blur out the distribution in Δt
- use a deconvolution procedure (DSVD) to remove them:
- due to falling rate with Δt, events assigned to 11 variable-width bins
- build 11×11 response matrices in Δt using MC
- optimise using toy MC study
- regularisation (rank $11 \longrightarrow 5,6$)
- MC events themselves produce a bias:
e.g. SM has no SF events at $\Delta t=0$
- replace SF sample with $\mathrm{SF}+0.2 \times \mathrm{OF}$
- replace OF sample with $\mathrm{OF}+0.2 \times \mathrm{SF}$
- measure remaining bias for 3 models: average it \& subtract
- any bias still remaining \longrightarrow systematic error
- check resulting OF \& SF distributions by adding them ...

Further adaptation: deconvolution and bias removal

Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131802 (2007)

\ldots and fitting for the B^{0} lifetime:

finds lifetime $\tau_{B}^{0}=(1.532 \pm 0.017) \mathrm{ps}$, with $\chi^{2} / n_{\text {dof }}=3 / 11$ $c f$. world average (1.530 ± 0.009) ps from PDG2006

fitting to the QM, PS, and SD models (1)

world average Δm_{d} is dominated by measurements that assume QM!!

- $\left\langle\Delta m_{d}\right\rangle=(0.507 \pm 0.005) \mathrm{ps}^{-1}$
- so we remove Belle
- ... and remove BaBar
- the resulting $\left\langle\Delta m_{d}\right\rangle_{\mathrm{NO}-\mathrm{QM}}$

$$
=(0.496 \pm 0.014) \mathrm{ps}^{-1}
$$

- we add this to the fit as a new datapoint-with-uncertainty
- "Gaussian constraint", in current jargon
- the Δm_{d} parameter is then floated in the fits:
 each model chooses its value

fitting to the QM, PS, and SD models (2)

Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131802 (2007)
fit: float Δm_{d} subject to WA-sans-(Belle+BaBar): $(0.496 \pm 0.014) \mathrm{ps}^{-1}$

QM fits well $\chi^{2} / n_{\text {dof }}=5 / 11$

SD disfavoured: 13σ
$\chi^{2} / n_{\text {dof }}=174 / 11$

PS disfavoured: 5.1σ $\chi^{2} / n_{\text {dof }}=31 / 11$

- "SD fraction": $\left(1-\zeta_{B^{0} \bar{B}^{0}}\right) A_{Q M}+\zeta_{B^{0} \bar{B}^{0}} A_{S D}, \zeta_{B^{0} \bar{B}^{0}}=0.029 \pm 0.057$
- Pompili-Selleri class: QM-like states, stable mass, flavor correlations; QM predictions for single B-mesons preserved

Summary and reflections

- entanglement at $\Upsilon(4 S)$, used many times/second, was tested at Belle
- test of specific models, not a Bell Inequality test ...
- "decoherent fraction" $\zeta_{B^{0} \bar{B}^{0}}=0.029 \pm 0.057$ [modified interf. term]
- Pompili-Selleri class of LR models is ruled out at 5.1σ
- existing time-dependent $B \bar{B}$ analysis methods were adapted
- this made the measurement feasible
- the adaptation itself was a lot of work
- care was needed to avoid surreptitiously assuming QM at various points
- we benefited enormously from an existing QM foundations study
- excluding decoherence would have been familiar, but uninteresting
- the Pompili-Selleri family was specific to $\Upsilon(4 S) \rightarrow B \bar{B}$, and was something worth ruling out
- importance depends on point of view ...
- future developments?

BACKUP SLIDES

The final data for posterity

Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131802 (2007)

Systematic errors

window $[\mathrm{ps}]$	A and total error	stat. err.	total	event sel.	bkgd sub.	mistags	deconv.
$0.0-0.5$	1.013 ± 0.028	0.020	0.019	0.005	0.006	0.010	0.014
$0.5-1.0$	0.916 ± 0.022	0.015	0.016	0.006	0.007	0.010	0.009
$1.0-2.0$	0.699 ± 0.038	0.029	0.024	0.013	0.005	0.009	0.017
$2.0-3.0$	0.339 ± 0.056	0.047	0.031	0.008	0.005	0.007	0.029
$3.0-4.0$	-0.136 ± 0.075	0.060	0.045	0.009	0.009	0.007	0.042
$4.0-5.0$	-0.634 ± 0.084	0.062	0.057	0.021	0.014	0.013	0.049
$5.0-6.0$	-0.961 ± 0.077	0.060	0.048	0.020	0.017	0.012	0.038
$6.0-7.0$	-0.974 ± 0.080	0.060	0.053	0.034	0.025	0.020	0.025
$7.0-9.0$	-0.675 ± 0.109	0.092	0.058	0.041	0.027	0.022	0.022
$9.0-13.0$	0.089 ± 0.193	0.161	0.107	0.067	0.063	0.038	0.039
$13.0-20.0$	0.243 ± 0.435	0.240	0.363	0.145	0.226	0.080	0.231

