A study of entanglement in $e^+e^- \rightarrow B\overline{B}$ events at Belle

Bruce Yabsley

University of Sydney

Top Quark Physics at the Precision Frontier, Purdue, 2nd October 2023

Einstein, Podolsky, and Rosen, via Bohm

- **2** Belle and the flavor singlet state
- **3** *BB*, measurement, and conspiracy
- QM versus specific local realistic models
- **5** Adapting an existing analysis measuring Δm_d
- **6** Summary and reflections

2/31

Einstein, Podolsky, and Rosen, via Bohm

spin-singlet state of photons or particles: $\frac{1}{\sqrt{2}} [|\Uparrow\rangle_1 |\Downarrow\rangle_2 - |\downarrow\rangle_1 |\Uparrow\rangle_2]$

ullet measurements on 1 (2) indeterminate, but \Longrightarrow full knowledge of 2 (1)

- Bell's Theorem (via Clauser, Horne, Shimony, and Holt):
 - correlation coeff: $E(\vec{a}, \vec{b}) = \frac{R_{++}(\vec{a}, \vec{b}) + R_{--}(\vec{a}, \vec{b}) R_{+-}(\vec{a}, \vec{b}) R_{+-}(\vec{a}, \vec{b})}{R_{++}(\vec{a}, \vec{b}) + R_{--}(\vec{a}, \vec{b}) R_{+-}(\vec{a}, \vec{b}) + R_{-+}(\vec{a}, \vec{b})}$
 - $S = E(\vec{a}, \vec{b}) E(\vec{a}, \vec{b}') + E(\vec{a}', \vec{b}) + E(\vec{a}', \vec{b}')$
 - $|S| \leq 2$ for any local realistic model; $S_{QM} = \pm 2\sqrt{2}$ for optimal settings

• QM-like results rule out LR, even if we eventually "get behind" QM

| = 𝒴𝔄 𝔅

source: 2-photon cascade decay ν_1 , ν_2 polarizations are correlated

FIG. 2. Experimental setup. Two polarimeters I and II, in orientations \tilde{a} and \tilde{b} , perform true dichotomic measurements of linear polarization on photons v_1 and v_2 . Each polarimeter is rotatable around the axis of the incident beam. The counting electronics monitors the singles and the coincidences.

[two-channel polarimeters used]

correlation coeffs in data vs QM optimum relative angles 22.5° and 67.5°

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1 .

 $S = 2.697 \pm 0.015$; cf. $S_{QM} = 2.70 \pm 0.05$

Einstein, Podolsky, and Rosen, via Bohm: Franson J.D. Franson Phys. Rev. Lett. 62, 2205–2200 (1979)

some more recent experiments are based on a different design with alternative paths setting up a *position-time* correlation:

here the polarizer orientations are fixed, and variable phase delays $\Phi_{1,2}$ (*Pockels cells* or similar) are introduced

Bruce Yabsley (Sydney)

the KEKB/Belle facility

 e^+ and e^- storage rings [asymmetric energies] \mathcal{L} record: $21 \text{ nb}^{-1}/\text{s}$ at peak superconducting solenoid (1.5 T) [tracking; calorimetry; K/π , e^- , μ ID] 772 million $B\overline{B}$ pairs on tape

KLM

TOF

-EFC ____ 17°

ACC

3.5 GeV

ELE SQC

Csl

CP: violated in the neutral *B*-meson system?

instead of $K^0 \equiv \bar{s}d$, try $B^0 \equiv \bar{b}d$, using $b\bar{b}$ resonance as a source ...

$$\Upsilon(nS) \longrightarrow B\overline{B}$$
 for $n \ge 4$

Bruce Yabsley (Sydney)

Entanglement in $e^+e^- \rightarrow B\overline{B}$ at Belle Top Precision 2023–10–02 7/31

-

the B-pair has the same property, substituting flavor for spin/polarization:

• the $\Upsilon(4S)$ is C-odd

- the $\Upsilon(4S)$ is C-odd
- an entangled *B*-pair is produced:

$$|\Psi(t)\rangle = \frac{e^{-t/\tau_{B^0}}}{\sqrt{2}} \left[|B^0(\vec{p})\overline{B}^0(-\vec{p})\rangle - |\overline{B}^0(\vec{p})B^0(-\vec{p})\rangle \right]$$

- the $\Upsilon(4S)$ is C-odd
- an entangled *B*-pair is produced:
 - individual flavors indeterminate

$$|\Psi(t)\rangle = \frac{e^{-t/\tau_{B^0}}}{\sqrt{2}} \left[|B^0(\vec{p})\overline{B}^0(-\vec{p})\rangle - |\overline{B}^0(\vec{p})B^0(-\vec{p})\rangle \right]$$

- the $\Upsilon(4S)$ is C-odd
- an entangled *B*-pair is produced:
 - individual flavors indeterminate
 - at fixed t, the pair is always $B^0\overline{B}^0$

$$|\Psi(t)
angle = rac{e^{-t/ au_{B^0}}}{\sqrt{2}} \left[|B^0(ec{p})\overline{B}^0(-ec{p})
angle - |\overline{B}^0(ec{p})B^0(-ec{p})
angle
ight]$$

the B-pair has the same property, substituting flavor for spin/polarization:

$$\Gamma_{CP}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 \pm \left\{\frac{S_{CP}}{\sin\left(\Delta m\Delta t\right)} + \frac{A_{CP}}{\cos\left(\Delta m\Delta t\right)}\right\}\right]$$

B_{CP}

π

$$\Gamma_{CP}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 \pm \left\{\frac{\mathsf{S}_{CP}}{\sin\left(\Delta m \Delta t\right)} + \frac{\mathsf{A}_{CP}}{4\tau_{CP}}\cos\left(\Delta m \Delta t\right)\right\}\right]$$

the B-pair has the same property, substituting flavor for spin/polarization:

 $\Gamma_{CP}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 + \left\{S_{CP}\sin\left(\Delta m\Delta t\right) + A_{CP}\cos\left(\Delta m\Delta t\right)\right\}\right]$

Measuring a time-dependent CPV asymmetry

 $\Delta t \sim 10^{-12}\,\mathrm{s}$ unmeasurable, so use $\Delta z \stackrel{\sim}{\propto} \Delta t$

Measuring a time-dependent CPV asymmetry

asymmetric c.m. system \longrightarrow an asymmetric detector

Bruce Yabsley (Sydney)

Entanglement in $e^+e^- \rightarrow B\overline{B}$ at Belle Top Precision 2023–10–02 10/31

vertexing: SVD

silicon vertex detector

tracking: CDC

central drift chamber

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ヨ ・ の Q (や

CP: violated in the neutral *B*-meson system!! Delet L Adediter d., Phys. Rev. Lett. 101, 171602 (2013)

- measured by 2000, observed by 2001; 2012 final measurement shown →
- clear offset of $\overline{B}{}^0$ and $\underline{B}{}^0$ tags
- decent fit to the expected sinusoidal modulation in Δt in the rate asymmetry
- opposite shift (with poorer precision) seen for $B^0 \rightarrow J/\psi K_L^0$
 - opposite η_{CP} to other modes
 - Δt measurement is pprox the same
 - (for validation, not extra precision)
- huge project at Belle & BaBar:
 - confirm expected SM results
 - find deviations NP signals [cf. top quark first "seen" in loops]

12/31

$K^0\overline{K}^0$ & $B^0\overline{B}^0$ systems: what can be measured

there is a beautiful optical analogy called *quasi-spin* due to Lee and Wu (1966) and Lipkin (1968):

K meson	spin- $\frac{1}{2}$	photon
$ \kappa^{0} angle$	$ \uparrow \rangle_z$	V angle
$ \overline{K}{}^{0} angle$	$ \Downarrow\rangle_z$	H angle
$ \kappa^0_S angle$	$ \Rightarrow \rangle_z$	$ L angle = rac{1}{\sqrt{2}}(V angle - i H angle)$
$ \kappa^0_L angle$	$ \Leftarrow \rangle_z$	$ R angle = rac{1}{\sqrt{2}}(V angle + i H angle)$

• we are limited in the "polarization axes" we can choose:

- can't measure along arbitrary $\alpha | \mathbf{K}^0 \rangle + \beta | \overline{\mathbf{K}}^0 \rangle = \alpha | \Uparrow \rangle + \beta | \Downarrow \rangle$
- even more restricted for *B*-mesons: only B^0 , \overline{B}^0 are practical

• but $|B^0\rangle \xrightarrow{t} \frac{1}{2} \left[\{1 + \cos(\Delta m_d t)\} | B^0\rangle + \{1 - \cos(\Delta m_d t)\} | \overline{B}^0\rangle \right]$, so <u>time difference $\Delta m_d \Delta t$ </u> plays the role of phase difference $\Delta \phi$

$K^0\overline{K}^0$ & $B^0\overline{B}^0$ systems: what can be measured

there is a beautiful optical analogy called *quasi-spin* due to Lee and Wu (1966) and Lipkin (1968):

B meson	spin- $\frac{1}{2}$	photon
$ B^0 angle$	$ \uparrow \rangle_z$	V angle
$ \overline{B}{}^{0} angle$	$ \Downarrow\rangle_z$	H angle
	$ \Rightarrow \rangle_z$	$ L angle = rac{1}{\sqrt{2}}(V angle - i H angle)$
	$ \Leftarrow \rangle_z$	$ R\rangle = \frac{1}{\sqrt{2}}(V\rangle + i H\rangle)$

• we are limited in the "polarization axes" we can choose:

- can't measure along arbitrary $\alpha | \mathbf{K}^0 \rangle + \beta | \overline{\mathbf{K}}^0 \rangle = \alpha | \Uparrow \rangle + \beta | \Downarrow \rangle$
- even more restricted for *B*-mesons: only B^0 , \overline{B}^0 are practical

• but $|B^0\rangle \xrightarrow{t} \frac{1}{2} \left[\{1 + \cos(\Delta m_d t)\} | B^0\rangle + \{1 - \cos(\Delta m_d t)\} | \overline{B}^0\rangle \right]$, so <u>time difference $\Delta m_d \Delta t$ </u> plays the role of phase difference $\Delta \phi$

an EPR experiment on $\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$ is analogous to:

• a photon pair in a singlet state

- a photon pair in a singlet state
- in the Aspect experiment, with two-channel polarimeters

- a photon pair in a singlet state
- in the Aspect experiment, with two-channel polarimeters
- which are *fixed* in orientation, rather than rotating,

- a photon pair in a singlet state
- in the Aspect experiment, with two-channel polarimeters
- which are *fixed* in orientation, rather than rotating,
- with a variable phase rotation à la Franson on the arms instead

an EPR experiment on $\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$ is analogous to:

- a photon pair in a singlet state
- in the Aspect experiment, with two-channel polarimeters
- which are *fixed* in orientation, rather than rotating,
- with a variable phase rotation à la Franson on the arms instead

however, there is a catch ...

Bramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

somewhere, there is a wood-panelled room with a green baize table

Entanglement in $e^+e^- \rightarrow B\overline{B}$ at Belle Top Precision 2023–10–02 15/31

- ramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter
 - somewhere, there is a wood-panelled room with a green baize table
 - men meet there together, smoke, and make conspiracy ... and decide *everything* that happens *in detail*: including $\Upsilon(4S) \rightarrow B\overline{B}$

Entanglement in $e^+e^- \rightarrow B\overline{B}$ at Belle Top Precision 2023–10–02 15/31

- ramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter
 - somewhere, there is a wood-panelled room with a green baize table
 - men meet there together, smoke, and make conspiracy ... and decide *everything* that happens *in detail*: including $\Upsilon(4S) \rightarrow B\overline{B}$
 - at t = 0, hidden variables are set:

- ramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter
 - somewhere, there is a wood-panelled room with a green baize table
 - men meet there together, smoke, and make conspiracy ... and decide *everything* that happens *in detail*: including $\Upsilon(4S) \rightarrow B\overline{B}$
 - at t = 0, hidden variables are set:
 - mesons 1 & 2 are assigned variables (t₁, f₁) & (t₂, f₂)

ramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide *everything* that happens *in detail*: including $\Upsilon(4S) \rightarrow B\overline{B}$
- at t = 0, hidden variables are set:
 - mesons 1 & 2 are assigned variables (t₁, f₁) & (t₂, f₂)
 - these act locally: meson i

ramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide *everything* that happens *in detail*: including $\Upsilon(4S) \rightarrow B\overline{B}$
- at t = 0, hidden variables are set:
 - mesons 1 & 2 are assigned variables (t₁, f₁) & (t₂, f₂)
 - these act locally: meson i decays at time t = t_i

ramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide *everything* that happens *in detail*: including $\Upsilon(4S) \rightarrow B\overline{B}$
- at t = 0, hidden variables are set:
 - mesons 1 & 2 are assigned variables (t₁, f₁) & (t₂, f₂)
 - these act locally: meson i decays at time t = t_i into final state f = f_i

ramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide *everything* that happens *in detail*: including $\Upsilon(4S) \rightarrow B\overline{B}$
- at t = 0, hidden variables are set:
 - mesons 1 & 2 are assigned variables (t₁, f₁) & (t₂, f₂)
 - these act locally: meson i decays at time t = t_i into final state f = f_i
- if (t_1, f_1, t_2, f_2) are chosen randomly according to QM ... the phenomena look like QM!

ramon/Escribano/Garbarino, J. Mod. Opt. 52, 1681 (2005) via Chris Carter

- somewhere, there is a wood-panelled room with a green baize table
- men meet there together, smoke, and make conspiracy ... and decide *everything* that happens *in detail*: including $\Upsilon(4S) \rightarrow B\overline{B}$
- at t = 0, hidden variables are set:
 - mesons 1 & 2 are assigned variables (t₁, f₁) & (t₂, f₂)
 - these act locally: meson i decays at time t = t_i into final state f = f_i
- if (t_1, f_1, t_2, f_2) are chosen randomly according to QM ... the phenomena look like QM!
- because $\Delta m_d \Delta t$ plays the role of phase difference $\Delta \phi$, and the decays set Δt , we cannot

the decays set Δt , we cannot choose $\Delta \phi$ to defeat the conspiracy

Bruce Yabsley (Sydney)

Entanglement in $e^+e^- \rightarrow B\overline{B}$ at Belle

t Belle Top Pre

Top Precision 2023–10–02

15/31

changing $\Delta \phi$ in flight . . .

Here $\Delta \phi$ is *actively* chosen: not subject to the same sorts of conspiracy.

Bruce Yabsley (Sydney)

... based on random numbers

Electro-Optic Modulator

Amplifier

글 🖌 🔺 글 🕨

Random Number Generator

. From Source

ELE DQC

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355–360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

ヨト イヨト ヨヨ のくや

17/31

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355–360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

• B-meson sample decreases with Δt

E SQC

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355–360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_d = \Delta m_d / \Gamma_d$: rate of oscillation relative to decay

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355–360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_d = \Delta m_d / \Gamma_d$: rate of oscillation relative to decay
- Bell test impossible if x < 2.0:

system	X
B^0/\overline{B}^0	0.77
$K^0/\overline{K}{}^0$	0.95
$D^0/\overline{D}{}^0$	< 0.03
B_s^0/\overline{B}_s^0	~ 26

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355–360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_d = \Delta m_d / \Gamma_d$: rate of oscillation relative to decay
- Bell test impossible if x < 2.0:

system	X
$B^0/\overline{B}{}^0$	0.77
$K^0/\overline{K}{}^0$	0.95
$D^0/\overline{D}{}^0$	< 0.03
B_s^0/\overline{B}_s^0	~ 26

cf. Aspect: free to choose $\Delta \phi$

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1 .

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355–360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_d = \Delta m_d / \Gamma_d$: rate of oscillation relative to decay
- Bell test impossible if x < 2.0:

system	Х
$B^0/\overline{B}{}^0$	0.77
$K^0/\overline{K}{}^0$	0.95
$D^0/\overline{D}{}^0$	< 0.03
B_s^0/\overline{B}_s^0	~ 26

cf. Aspect: free to choose $\Delta \phi$

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1 .

• so we are limited to comparing QM and specific LR models:

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355–360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_d = \Delta m_d / \Gamma_d$: rate of oscillation relative to decay
- Bell test impossible if x < 2.0:

system	Х
$B^0/\overline{B}{}^0$	0.77
$K^0/\overline{K}{}^0$	0.95
$D^0/\overline{D}{}^0$	< 0.03
B_s^0/\overline{B}_s^0	~ 26

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1 .

- so we are limited to comparing QM and specific LR models:
 - let mesons decay at various (t_1, t_2)

Bertlmann, Bramon, Garbarino, Hiesmayr, Phys. Lett. A 332, 355–360 (2004)

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_d = \Delta m_d / \Gamma_d$: rate of oscillation relative to decay
- Bell test impossible if x < 2.0:

system	Х
$B^0/\overline{B}{}^0$	0.77
$K^0/\overline{K}{}^0$	0.95
$D^0/\overline{D}{}^0$	< 0.03
B_s^0/\overline{B}_s^0	~ 26

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ± 2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ± 1 .

- so we are limited to comparing QM and specific LR models:
 - let mesons decay at various (t_1, t_2)
 - use final states (f_1, f_2) to determine flavours at (t_1, t_2)

With hypothetical active flavor measurement, could a Bell test be performed?

- B-meson sample decreases with Δt
- crucial parameter $x_d = \Delta m_d / \Gamma_d$: rate of oscillation relative to decay
- Bell test impossible if x < 2.0:

system	Х
$B^0/\overline{B}{}^0$	0.77
$K^0/\overline{K}{}^0$	0.95
$D^0/\overline{D}{}^0$	< 0.03
B_s^0/\overline{B}_s^0	~ 26

FIG. 3. Correlation of polarizations as a function of the relative angle of the polarimeters. The indicated errors are ±2 standard deviations. The dotted curve is not a fit to the data, but quantum mechanical predictions for the actual experiment. For ideal polarizers, the curve would reach the values ±1.

- so we are limited to comparing QM and *specific LR models*:
 - let mesons decay at various (t_1, t_2)
 - use final states (f_1, f_2) to determine flavours at (t_1, t_2)
 - check if this is consistent with a given model.

Entanglement in $e^+e^- \rightarrow B\overline{B}$ at Belle Bruce Yabsley (Sydney)

Top Precision 2023-10-02

17/31

The QM "model" has distinctive predictions for how B-meson flavours change:

- after $\Upsilon(4S)$ decay, the two *B*-mesons operate as a unit
- when B₁ decays (50/50% B⁰/B⁰), B₂ is in the opposite flavour state; as (proper) time passes, it oscillates opposite (OF) ↔ same flavour (SF)
- find asymmetry in pair decays: $A(t_1, t_2) = \frac{R_{OF} - R_{SF}}{R_{OF} + R_{SF}}$ $= \cos(\Delta m_d(t_2 - t_1))$
- depends only on $\Delta t \longrightarrow$ (this is an entanglement thing)
- cf. a (t_1, t_2) plot would look complicated
- easy (in principle) to distinguish QM and other models: apart from Δt, any dependence on individual t_i is non-QM

▲ ■ ▶ ▲ ■ ▶ ■ ■ ■ ● ○ ○ ○

LR model #1: spontaneous disentanglement

- after $\Upsilon(4S)$ decay, B's immediately separate into B^0 and $\overline{B}{}^0$
- $A_{SD} = \cos(\Delta m_d t_1) \cos(\Delta m_d t_2)$ = $\frac{1}{2} [\cos(\Delta m_d \Sigma t) + \cos(\Delta m_d \Delta t)]$
- start with well-defined flavour
- oscillate independently
- A_{SD} depends on both t_1 , t_2
- the variables shown are prejudicial: (t₁, t₂) would have looked simpler
- $(\Delta t, \Sigma t = [t_1 + t_2])$ likewise
- $(\Delta t, t_{min})$ chosen to compare with QM and ...

LR model #2: phenomenological model-family of Pompili & Selleri

- QM-like states, including Δm
- individual meson masses are stable
- flavours of the pair are correlated: subject to instantaneous jumps
- require that QM predictions for single B-mesons are preserved
- asymmetry for any such model must fall within a *range*:

•
$$A_{PS}^{min} = 1 - \min(2 + \Psi, 2 - \Psi),$$

 $\Psi = \{1 + \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{min})$
 $- \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{min})$

• $A_{PS}^{max} = 1 - |\{1 - \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{\min}) + \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{\min})|$

LR model #2: phenomenological model-family of Pompili & Selleri

- QM-like states, including Δm
- individual meson masses are stable
- flavours of the pair are correlated: subject to instantaneous jumps
- require that QM predictions for single B-mesons are preserved
- asymmetry for any such model must fall within a *range*:

• $A_{PS}^{max} = 1 - |\{1 - \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{\min}) + \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{\min})|$

LR model #2: phenomenological model-family of Pompili & Selleri

- QM-like states, including Δm
- individual meson masses are stable
- flavours of the pair are correlated: subject to instantaneous jumps
- require that QM predictions for single B-mesons are preserved
- asymmetry for any such model must fall within a *range*:

•
$$A_{PS}^{min} = 1 - \min(2 + \Psi, 2 - \Psi),$$

 $\Psi = \{1 + \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{min})$
 $- \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{min})$

• $A_{PS}^{max} = 1 - |\{1 - \cos(\Delta m_d \Delta t)\} \cos(\Delta m_d t_{\min}) + \sin(\Delta m_d \Delta t) \sin(\Delta m_d t_{\min})|$

$A(\Delta t)$ for QM, SD, and Pompili-Selleri

- at Belle we cannot measure individual decay times
 [knowledge of the interaction point is poor compared to needed resolution]
- measuring Δt is fine for $A_{QM}(\Delta t) \equiv \frac{R_{OF} R_{SF}}{R_{OF} + R_{SF}} = \cos(\Delta m_d \Delta t)$
- we must integrate over remaining variable for SD, PS:

SD:
$$\int_{\Delta t}^{\infty} \mathrm{d}(\Sigma t) R_{OF,SF}(\Sigma t, \Delta t) \longrightarrow$$

PS:
$$\int_0^\infty \mathrm{d}t_{\min}R_{OF,SF}(t_{\min},\Delta t) \longrightarrow$$

- these resemble the Δt evolution for QM, but differ in the detail: resolve the difference!!
- avoid assuming quantum mechanics along the way (which can be difficult)
- *N.B.* event rate at $\Delta t = 10 \, \mathrm{ps}$ is $\sim \frac{1}{700} \times (\Delta t = 0)$

Adapt an existing analysis measuring Δm_d (1) Delet K. Abe et al., Phys. Rev. D 71, 072001 & 072001 (2005)

Belle's most current sin $2\phi_1$, $|\lambda|$, τ_B , Δm_d measurement at the time:

- $152 \times 10^6 \ B\overline{B}$ pairs
 - $5 \times$ the discovery dataset • $\frac{1}{5} \times$ the eventual dataset
- 5417 CP- and 177368 flavoureigenstate *B*-decay candidates
- sample purities vary 63–98% depending on the decay mode
- multivariate flavour-tagging of the other *B* decay; ε_{eff} = 28.7%
- $\Delta m_d = (0.511 \pm 0.005 \pm 0.006) \,\mathrm{ps^{-1}}$ cf. $(0.5065 \pm 0.0019) \,\mathrm{ps^{-1}}$ PDG23

We then adapted this in various ways ...

Adapt an existing analysis measuring Δm_d (2) Cele: A. So, A. Bay et al., Phys. Rev. Lett. 99, 151002 (2007)

• restrict 177368 \rightarrow 84823 flavour eigenstates, choosing only $B^0 \rightarrow D^{*-} \ell^+ \nu$ where the lepton explicitly determines the *B*-flavour

• restrict $84823 \rightarrow 8565$ by choosing only the best flavour tags of the other *B*: highest of 7 purity categories; leptons only

Bruce Yabsley (Sydney)

Entanglement in $e^+e^- \rightarrow B\overline{B}$ at Belle Top Precision 2023–10–02 21/31

Then: background subtraction (1) fake D^*

- ullet signal relies on $D^{*-}\to \overline{D}{}^0\pi^-$ tag: energy release $Q\ll m_\pi\ll m_D$
- estimate background under peak using sideband region:

22 / 31

Then: background subtraction (2) bad $D^*-\ell$

- true D* mesons; mostly, true leptons, D*, ℓ produced by different B-decays
- estimated from data using a reversed momentum trick; Monte-Carlo validated
- (a,b) here, unlike the last case, more SF bkgd
 - (c) $A(\Delta t)$ before & after correction
 - (d) residuals: note Δt structure

Bruce Yabsley (Sydney)

Entanglement in $e^+e^- \rightarrow B\overline{B}$ at Belle Top Pred

Top Precision 2023-10-02

23/31

Then: background subtraction (3) $B^+ \rightarrow \overline{D}^{**0} \ell \nu$ Bele: A. Co. A. Ber et al. Fire. Rev. Lett. 99, 131002 (2007)

- the remaining background is from related decays of charged B
- we rely on the different distributions for D^{**} decays and D^* decays
- fit data to get fractions
- rely on MC for details:
 - 254 OF vs. 1.5 SF events
 - structured in Δt
 - generous systematics
- (1.5 ± 0.1)% mistag rate of other *B* corrected using OF and SF distributions; 0.5% systematic assigned

• effect of background subtraction and mistag correction:

Then: background subtraction (3) $B^+ \rightarrow \overline{D}^{**0} \ell \nu$

Further adaptation: deconvolution and bias removal

- remaining effects are vertex resolution, efficiency losses . . . these *blur out* the distribution in Δt
- use a deconvolution procedure (DSVD) to remove them:
 - due to falling rate with Δt , events assigned to 11 variable-width bins
 - build 11 imes 11 response matrices in Δt using MC
 - optimise using toy MC study
 - regularisation (rank $11 \longrightarrow 5, 6$)
- MC events themselves produce a bias:
 - *e.g.* SM has no SF events at $\Delta t = 0$
 - $\bullet~$ replace SF sample with ${\rm SF}+0.2\times {\rm OF}$
 - replace OF sample with $\mathrm{OF}+0.2\times\mathrm{SF}$
- measure remaining bias for 3 models: average it & subtract
- ullet any bias still remaining \longrightarrow systematic error
- check resulting OF & SF distributions by adding them ...

Further adaptation: deconvolution and bias removal Delet A. Go. A. Bay et al., Phys. Rev. Lett. **29**, 131003 (2007)

... and fitting for the B^0 lifetime:

Bruce Yabsley (Sydney)

Entanglement in $e^+e^- \rightarrow B\overline{B}$ at Belle Top Precision 2023–10–02 26 / 31

fitting to the QM, PS, and SD models (1) Tele A. Go A. Bay et al. Phys. Rev. Lett. 90, 131002 (2007)

world average Δm_d is dominated by measurements that assume QM!!

- $\langle \Delta m_d \rangle = (0.507 \pm 0.005) \mathrm{ps}^{-1}$
- so we remove Belle
- ... and remove BaBar
- the resulting $\langle \Delta m_d \rangle_{\text{NO-QM}}$ = (0.496 ± 0.014)ps⁻¹
- we add this to the fit as a new datapoint-with-uncertainty
- "Gaussian constraint", in current jargon
- the Δm_d parameter is then floated in the fits: each model chooses its value

E SQC

fitting to the QM, PS, and SD models (2) Delet A. So, A. Bry et al. Phys. Rev. Lett. **39**, 111002 (2007)

fit: float Δm_d subject to WA-sans-(Belle+BaBar): (0.496 \pm 0.014) ps⁻¹

QM fits well $\chi^2/n_{dof} = 5/11$

SD disfavoured: 13σ $\chi^2/n_{dof} = 174/11$ PS disfavoured: 5.1σ $\chi^2/n_{dof} = 31/11$

• "SD fraction": $(1 - \zeta_{B^0\overline{B}^0})A_{QM} + \zeta_{B^0\overline{B}^0}A_{SD}$, $\zeta_{B^0\overline{B}^0} = 0.029 \pm 0.057$

• Pompili-Selleri class: QM-like states, stable mass, flavor correlations; QM predictions for *single B-mesons* preserved

- entanglement at $\Upsilon(4S)$, used many times/second, was tested at Belle
 - test of specific models, not a Bell Inequality test ...
 - "decoherent fraction" $\zeta_{B^0\overline{B}^0} = 0.029 \pm 0.057$ [modified interf. term]
 - Pompili-Selleri class of LR models is ruled out at 5.1σ
- existing time-dependent $B\overline{B}$ analysis methods were adapted
 - this made the measurement feasible
 - the adaptation itself was a lot of work
 - care was needed to avoid surreptitiously assuming QM at various points
- we benefited enormously from an existing QM foundations study
 - excluding decoherence would have been familiar, but uninteresting
 - the Pompili-Selleri family was specific to $\Upsilon(4S) \rightarrow B\overline{B}$, and was something worth ruling out
 - importance depends on point of view ...
- future developments?

⇒ ↓ = ↓ = |= √QQ

BACKUP SLIDES

Bruce Yabsley (Sydney) Entanglement in $e^+e^- \rightarrow B\overline{B}$ at Belle Top Precision 2023–10–02 30/31

三日 のへの

A B M A B M

Belle: A. Go, A. Bay et al., Phys. Rev. Lett. 99, 131802 (2007)

			Systematic errors				
window [ps]	A and total error	stat. err.	total	event sel.	bkgd sub.	mistags	deconv.
0.0 - 0.5	1.013 ± 0.028	0.020	0.019	0.005	0.006	0.010	0.014
0.5 - 1.0	0.916 ± 0.022	0.015	0.016	0.006	0.007	0.010	0.009
1.0 - 2.0	0.699 ± 0.038	0.029	0.024	0.013	0.005	0.009	0.017
2.0 - 3.0	0.339 ± 0.056	0.047	0.031	0.008	0.005	0.007	0.029
3.0 - 4.0	-0.136 ± 0.075	0.060	0.045	0.009	0.009	0.007	0.042
4.0 - 5.0	-0.634 ± 0.084	0.062	0.057	0.021	0.014	0.013	0.049
5.0 - 6.0	-0.961 ± 0.077	0.060	0.048	0.020	0.017	0.012	0.038
6.0 - 7.0	-0.974 ± 0.080	0.060	0.053	0.034	0.025	0.020	0.025
7.0 - 9.0	-0.675 ± 0.109	0.092	0.058	0.041	0.027	0.022	0.022
9.0 - 13.0	0.089 ± 0.193	0.161	0.107	0.067	0.063	0.038	0.039
13.0 - 20.0	0.243 ± 0.435	0.240	0.363	0.145	0.226	0.080	0.231