Precision frontiers from the Electron-Ion Collider to the LHC

from entanglement to parton densities

Purdue Univ

Top Quark Physics at the Precision Frontier

3 October 2023

fundamental physics in a quantum-information language

→ broad reimagining of HEP in QIS terms is underway; <u>applies to QCD</u>

 'simplest' scenario – factorization in DIS exploits a sequential, semi-classical picture of scattering interaction

external lepton interacts with <u>one</u> constituent quark (leading twist) at short distance (B); fragments fly away asymptotically (C); only lepton observed

fully inclusive processes: DIS

$$d\sigma \sim W^{\mu\nu}(p,q) = \frac{1}{8\pi} \int d^4z \, e^{-iq \cdot z} \langle p | J^{\dagger\mu}(z) J^{\nu}(0) | p \rangle$$

 previous picture implies scale separation; resolution into subprocesses with classical, probabilistic interpretation

$$W^{\mu\nu}(p,q) = \sum_{f} \int \frac{dx}{x} \,\mathcal{H}_{f}^{\mu\nu}(\widetilde{k},q) \,\varphi_{f/N}(x,Q^{2},m_{N}^{2}) + O(\Lambda^{2}/Q^{2})$$

$$d\sigma = \mathcal{H} \otimes f(x)$$

systematic breakdown of coherence; power-suppressed corrections: residual entanglement; <u>complicated in less inclusive processes</u>

Vovrosh, Knolle: Nature (2021) 11:11577

• e.g., confinement in 2-fermion systems; Transverse-Field Ising Model:

$$H = -J\left\{\sum_{i=0}^{L-2} \sigma_i^z \sigma_{i+1}^z + h_x \sum_{i=0}^{L-1} \sigma_i^x + \frac{h_z \sum_{i=0}^{L-1} \sigma_i^z}{h_z \sum_{i=0}^{L-1} \sigma_i^z}\right\} \qquad h_x = 0.5$$

□ quark-antiquark → mesons; examine "binding" effects as external potential varied

build initial understanding: Matrix Product States (MPS) with Tensor Networks

$$H = -J\left\{\sum_{i=0}^{L-2} \sigma_i^z \sigma_{i+1}^z + h_x \sum_{i=0}^{L-1} \sigma_i^x + h_z \sum_{i=0}^{L-1} \sigma_i^z\right\}$$

Khor, Klich, Kurkcuoglu, TJH, Perdue et al., in prep.

→ explore model space; rapidly compute <u>many</u> metrics (Réyni entropy, arbitrary order, ...)

relations among symm breaking, entanglement entropy, confining dynamics in QCD-like systems

 many contemporary HEP studies explore utility of MaxEnt to connect properties of specific systems to structure, dynamics

$$L \sim \alpha_{RL} |RR\rangle + \beta_{RL} |RL\rangle + \gamma_{RL} |LR\rangle + \delta_{RL} |LL\rangle$$
$$\Lambda = 2 |\alpha \delta - \beta \gamma| \text{ (concurrence)}$$

- → represent entanglement in 2 → 2 scattering via *concurrence*; examine conditions maximum entanglement place on couplings
- → is there a connection between MaxEnt and fundamental symmetries?
- □ photon-electron interactions *without* gauge symmetry: MaxEnt \rightarrow QED

this method can be extended to the electroweak sector

 \rightarrow consider weak scattering mediated by Z exchange: $e^-e^+ \rightarrow \mu^-\mu^+$

• MaxEnt realized for $g_L = g_R \rightarrow g_A = 0$ (QED) OR $g_V = 0$, $\sin^2 \theta_W = 1/4$

2023-10-03

T. Hobbs, Top Precision 2023

entanglement in fundamental 2 \rightarrow 2 scattering (ii)

this method can be extended to the electroweak sector

→ consider weak scattering mediated by Z exchange

analogous concurrences, Bell's inequality tests possible in top sector

 \rightarrow high **QCD accuracy** is essential to robustness of QM tests

Entanglement and Bell Inequality Before Integration

• It is possible to control the $gg/q\bar{q}$ fraction by further selections ($\beta_{t\bar{t}}$), see Aguilar-Saavedra, Casas, EPJC (2022).

- Top quark pair cross section is largely correlated with gluon PDF at large $x(\sim M_{t\bar{t}}/\sqrt{s})$ at LHC
- Inputs from future colliders for the large-x gluon can both shift central value and shrink uncertainty.
- More extensive studies are needed
 - theoretical predictions for top are limited by high-x gluon PDF
 - at same time, top data PDF pulls, depend on expt precisions, fit methodology

Top2023, Gilad Perez

Top-pair production & basic QM

• If we control *t*-pair production (per event) => isolate entanglement: Near threshold $(t\bar{t})_{gg \to t\bar{t}} \Rightarrow J=L=0$ state, hence spin of the 1st determines the 2nd (spin entanglement). It is testable for instance via spin-spin correlation See for instance: Affik & Nova (21)

• We can in principle work harder and even perform Bell-inequality test

Tue.: Cheng; Thu.: Gonçalves; Severi; Baker; Negro; Afik

This line of research raise however several questions:
 (i) Been tested in multiple system - at low energies with photons/electrons to intermediate energies B⁰ - B
⁰; is it significant?

(ii) Seems non-robust as "normal" BSM can modify For instance: Aoude, Madge, Maltoni & Mantani (22)

(iii) Is there any sensible theory in which there's energy dependence ?

11

see slides, Alan Barr

SMEFT uncertainties in joint PDF fit $t\bar{t}$ data

quantify SMEFT uncert. through Lagrange Multiplier (LM) scans:

 \rightarrow constraints to top-associated Wilson coefficient, C_{ta}^8/Λ^2

- modest increase in uncertainty when co-fitted with PDFs
- predominantly *quartic* shapes for $\Delta \chi^2$ reflect pure SMEFT contributions

... i.e., importance of quadratic EFT terms in limit-setting

back in

Michigan...

entanglement in top production: status

• for now, improving QM tests in $t\bar{t}$ served by controlling PDF, QCD uncertainties; independent EFT analyses acceptable...

...*i.e.*, possible BSM-PDF 'cross-contamination': sub-leading effect

→ quantify, tame PDF dependence

- → improve fixed-order, resummed calculations
- \rightarrow event generation
- → experimental systematics

... SM phenomenological bread & butter are essential.

Higgs prod·decay/SM (PDG)

$ \begin{array}{c} \textbf{ATLA} \\ \sqrt{s} = 13 \\ m_H = 129 \\ p_{SM} = 71 \end{array} $	I S TeV, 24.5 - 5.09 GeV, %	79.8 fb ⁻¹ y _H < 2.5	Here Tot	al 🥅 S	Stat.	— Sy	st. 🔳	SM
ggF	γγ ZZ* WW*				0.96 1.04 1.08	Total ± 0.14 +0.16 -0.15 + 0.19	Stat.	Syst. , +0.09 , -0.08 , ±0.06)
	ττ H				0.96	+ 0.59 - 0.52 ± 0.09 + 0.40	+0.37 -0.36 ±0.07 +0.31	$+0.46 \\ -0.38$) $+0.07 \\ -0.06$) +0.26
VBF	77 ZZ* WW* Η== ττ Η		-	Э	2.68 0.59 1.16	- 0.35 + 0.98 - 0.83 + 0.36 - 0.35 + 0.58 - 0.53	-0.30 +0.94 -0.81 +0.29 -0.27 +0.42 -0.40	, -0.19) +0.27 , -0.20) $, \pm 0.21$) $, \pm 0.40$, -0.35)
	bb comb. γγ ι				3.01 1.21 1.09	+ 1.67 - 1.61 + 0.24 - 0.22 + 0.58	+ 1.63 - 1.57 + 0.18 - 0.17 + 0.53	(+0.39) (+0.39) (+0.16) (-0.13) (+0.25)
VH	ZZ*				0.68 1.19 1.15	-0.34 +1.20 -0.78 +0.27 -0.25 +0.24	(+0.49) (+1.18) (+0.18) (-0.17) (± 0.16)	(+0.22) (+0.18) (-0.11) (+0.20) (-0.18) (+0.17) (-0.16)
tīH+tH	γγ VV* ττ ⊢ b̄D ⊨		+ ⊒1		1.10 1.50 1.38 0.79	+ 0.41 - 0.35 + 0.59 - 0.57 + 1.13 - 0.96 + 0.60 - 0.59	(+0.36 -0.33 +0.43 -0.42 (+0.84 -0.76 (±0.29	$\begin{array}{c} +0.19 \\ +0.14 \\ , -0.14 \end{array}$ $\begin{array}{c} +0.41 \\ +0.75 \\ , -0.59 \end{array}$
	comb.	P			1.21	+ 0.26 - 0.24	(±0.17	, -0.18)
-2	0	2	2	4		6		8
$\sigma \times BR$ normalized to SM								

generically, for EW boson production:

$$egin{aligned} \sigma(PP o W/Z + X) &= \sum_n lpha_s^n \sum_{a,b} \int dx_a dx_b \ & imes f_{a/P}(x_a) \, \hat{\sigma}^{(n)}_{ab o W/Z + X}(\hat{s}) \, f_{b/P}(x_b) \end{aligned}$$

pQCD matrix elements

\rightarrow "precision" searches

or, testing the Standard Model through extremely fine measurements...

(deviations could reveal presence of new particles/interactions!)

BUT standard-candle measurements are limited by PDF uncertainties

 \rightarrow includes many observables: $\sigma_H, \sin^2 \theta_W, m_W, \ldots$

 \rightarrow this dependence <u>NOT</u> simply another 'theory uncertainty'

ATLAS 170	<u>example</u> :									
Channel	$\begin{vmatrix} m_{W^+} - m_{W^-} \\ \text{[MeV]} \end{vmatrix}$	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.
$W \to e\nu$ $W \to \mu\nu$	-29.7 -28.6	17.5 16.3	0.0 11.7	4.9 0.0	0.9 1.1	5.4 5.0	0.5 0.4	0.0 0.0	24.1 26.0	30.7 33.2
Combined	-29.2	12.8	3.3	4.1	1.0	4.5	0.4	0.0	23.9	28.0

 \rightarrow recent CDF M_w measurement: <u>significant</u> PDF dependence

2205.03942 [hep-ph]

 \rightarrow frontier efforts at the HL-LHC, LBNF, ..., seek percent-level precision

 \rightarrow confronting these effects will be a primary need of HEP

→ importance only grows as SM tests become more systematics-dominated

PDFs (& analogous distributions) are nonperturbative hadronic matrix elements,

philosophy: lacking a first-principles calculation, fit a flexible parametrization at a suitable boundary condition for QCD evolution:

$$f_{q/p}(x, Q^2 = Q_0^2) = a_{q_0} x^{a_{q_1}} (1 - x)^{a_{q_2}} P[x, \{a_{q_n-3}\}]$$

ightarrow perturbative evolution then specifies dependence on $Q^2>Q_0^2$

fit the world's data from a diverse range of scales and processes

modern PDF analysis: constraints from MANY data

upcoming programs need high-precision \rightarrow reductions to PDF uncertainties

necessary to match (N)NNLO theory accuracy; MC improvements \rightarrow

knowledge of the gluon content of the nucleon directly translates into constraints on SM Higgs production from this NNLO analysis, state-of-the-art predictions for fundamental LHC observables $\rightarrow e.g.$, total cross sections at 14 TeV

significant PDF-driven uncertainties; also, systematic effects: W cross ²⁰ sections sensitive to inclusion of 2016 7 TeV ATLAS inclusive W/Z data

theory ingredients... first thought \rightarrow higher pQCD accuracy

future analyses will witness an interplay between pQCD & other dynamics

NNLO+ necessary to stabilize scale uncertainties; especially over wide scales

EW corrections for LHC processes

at $\mathcal{O}(\alpha_s^2)$ accuracy, EW corrections and explicit $\gamma(x, \mu^2)$ needed

important for high-energy LHC processes: e.g., 13 TeV W+H production

TeV-scale NLO EW corrections dominated (60%) by single-photon (PDF) contributions

→ requires **delicate** treatment along with QCD perturbative effects

Performance precision EW physics (i)

precision EW pheno: must consider photon as partonic degree-of-freedom

photon PDF calculable combination of factorization, hadronic tensor rep.:

Xie, TJH, Hou, Schmidt, Yan, Yuan: 2106.10299

calculation depends on nonperturbative proton-structure inputs!

integrated proton SFs include contributions from low Q, high X

$$x\gamma(x,\mu^{2}) = \frac{1}{2\pi\alpha(\mu^{2})} \int_{x}^{1} \frac{z}{z} \left\{ \int_{\frac{x^{3}m_{p}^{2}}{1-x}}^{\frac{\mu^{2}}{2}} \frac{Q^{2}}{Q^{2}} \alpha_{ph}^{2}(-Q^{2}) \left[\left(zp_{\gamma q}(z) + \frac{2x^{2}m_{p}^{2}}{Q^{2}} \right) F_{2}(x/z,Q^{2}) - z^{2}F_{L}(x/z,Q^{2}) \right] -\alpha^{2}(\mu^{2})z^{2}F_{2}(x/z,\mu^{2}) \right\} + \mathcal{O}(\alpha^{2},\alpha\alpha_{s})$$
dependence on Sachs EM form factors; twist-4 (HT), resonance prescriptions; target-mass corrections (TMC); ...
$$IAND \ quark-gluon PDFs, scale uncertainties] \qquad target-mass corrections (TMC); ...
$$QCD \ effects \ induce uncertainties at LHC \rightarrow e.g., BSM-sensitive tails of rapidity distributions$$

$$IAU \ quark-gluon PDFs, resonance prescriptions; target-mass corrections (TMC); ... QCD \ effects induce uncertainties at LHC \rightarrow e.g., BSM-sensitive tails of rapidity distributions$$$$

х

EIC: precision QCD, complementary to LHC

the EIC: a high-luminosity DIS collider: ~2-3 orders-of-magnitude cf. HERA

EIC will probe complementary kinematical space to LHC/LBNF in $[x,Q^2]$

wide battery of 'clean' precision QCD measurements

 $20 \le \sqrt{s} \le 140 \,\mathrm{GeV}$

extensive probe(s) of the quark-to-hadron transition region (for PDFs)

→ just inclusive DIS; many other channels with PDF sensitivity; precision QCD tests

related high-x "precision" PDF effects: 'intrinsic charm'

□ might the proton contain a nonperturbative charm component?

arXiv:2211.01387

- → prediction of wave function models; distinct from typical, perturbatively-generated charm
- <u>uncertainties remain large</u>! need more information to resolve nonzero FC

require more data to resolve nonperturbative charm

> EIC + lattice QCD will constrain FC scenarios

enhanced FC momentum implied by EMC data \rightarrow small high-*x* effects in structure function; need high precision

 essential complementary input from LHC; CERN FPF

EIC will measure precisely in the few-GeV, high-*x* region where FC signals are to be expected

collider DIS and precision QCD: EIC and SM inputs: α_s

T. Hobbs, Top Precision 2023

EW and BSM opportunities

more direct SM tests also possible: searches for charged-lepton flavor violation (CLFV) $e^- + N \to \tau^- + X$

also, (SM)EFT impact

2023-10-03

T. Hobbs, Top Precision 2023

EW and BSM opportunities

31

SO: many current/future experiments: more global analyses vital

tools: examine change in χ^2 as PDF continuously varies away from fitted central value

 \rightarrow analysis elements must be treated and assessed comprehensively

negotiating this landscape: big data tools will be vital

top, LHC data: unprecedented opportunity to test QM and the SM

- \rightarrow requires precision in QCD: <u>PDFs</u>, QCD theory
- \rightarrow the EIC is targeted at high-x physics and will be consequential in this area

EIC's privileged position: precision in non/perturbative transition region

exploiting EIC will require more comprehensive QCD/EW analyses

- → augmented theoretical QCD (non)perturbative accuracy; EW ingredients
- → crucial synergy with advanced computation for highly multi-dimensional analyses

HL-LHC, EIC are still being planned → critical theory preparation needed **now** to maximize physics impact