New foundational experiments with quantum process tomography

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Michał Eckstein^{1,2} & Paweł Horodecki^{2,3}

 1 Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland 2 International Center for Theory of Quantum Technologies, University of Gdańsk 3 Gdańsk University of Technology, Poland

West Lafayette, IN, Oct 2, 2023

(D) (A) (A) (A)

Routes towards New Physics

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation,
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, . . .
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models

Routes towards New Physics

Standard Model \subset QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

- Beyond Standard Model, but still in QFT
 - SUSY, composite Higgs, dark sector, inflation, ...
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, . . .
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation, ...

Beyond Special Relativity, but assuming QM

- QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
- quantum gravity

3 Beyond Quantum Mechanics, but assuming relativity

- Super-quantum correlations, . . .
- Deviations from linearity in QM and/or QFT
- Objective wave function collapse models

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation, ...

Beyond Special Relativity, but assuming QM

- QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
- quantum gravity

3 Beyond Quantum Mechanics, but assuming relativity

- Super-quantum correlations, ...
- Deviations from linearity in QM and/or QFT
- Objective wave function collapse models

Routes towards New Physics:

Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation, ...
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, ...
 - Deviations from linearity in QM and/or QET
 - Objective wave function collapse models

・ロット (日) (日) (日)

Routes towards New Physics:

Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation,
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, ...
 - Deviations from linearity in QM and/or QET
 - Objective wave function collapse models

Routes towards New Physics:

Beyond Standard Model, but still in QFT

- SUSY, composite Higgs, dark sector, inflation,
- Beyond Special Relativity, but assuming QM
 - QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
 - quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, ...
 - Deviations from linearity in QM and/or QET
 - Objective wave function collapse models

・ロット (日本) (日本) (日本)

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation,

Beyond Special Relativity, but assuming QM

- QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
- quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, ...
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models

ヘロト ヘヨト ヘヨト

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation,

Beyond Special Relativity, but assuming QM

- QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
- quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, ...
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models

ヘロト ヘヨト ヘヨト

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation, ...

Beyond Special Relativity, but assuming QM

- QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
- quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, ...
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation, ...

Beyond Special Relativity, but assuming QM

- QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
- quantum gravity
- Beyond Quantum Mechanics, but assuming relativity
 - Super-quantum correlations, ...
 - Deviations from linearity in QM and/or QFT
 - Objective wave function collapse models

Routes towards New Physics:

Beyond Standard Model, but still in QFT

• SUSY, composite Higgs, dark sector, inflation,

Beyond Special Relativity, but assuming QM

- QFT in curved spacetimes 'semi-classical' (Unruh effect, Hawking radiation ...)
- quantum gravity

Beyond Quantum Mechanics, but assuming relativity

- Super-quantum correlations, ...
- Deviations from linearity in QM and/or QFT
- Objective wave function collapse models

- Is there an 'objective collapse' in a decay process?
- Are correlations in QFT stronger than in QM?
- Are QM & QFT only effective descriptions of Nature?
- How to look for possible deviations from QM?

- Is there an 'objective collapse' in a decay process?
- Are correlations in QFT stronger than in QM?
- Are QM & QFT only effective descriptions of Nature?
- How to look for possible deviations from QM?

- Is there an 'objective collapse' in a decay process?
- Are correlations in QFT stronger than in QM?
- Are QM & QFT only effective descriptions of Nature?
- How to look for possible deviations from QM?

- Is there an 'objective collapse' in a decay process?
- Are correlations in QFT stronger than in QM?
- Are QM & QFT only effective descriptions of Nature?
- How to look for possible deviations from QM?

- Is there an 'objective collapse' in a decay process?
- Are correlations in QFT stronger than in QM?
- Are QM & QFT only effective descriptions of Nature?
- How to look for possible deviations from QM?

- Physical systems are treated (merely!) as information-processing devices ("**black boxes**") and probed by free agents.
- The conclusions are drawn from the **output-input correlations**.

$P(\mathsf{outputs} \,|\, \mathsf{inputs})$

<u>Bell test</u>: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

The *experimental* (frequency) correlation function:

 $C_e(x, y) = P(a = b | x, y) - P(a \neq b | x, y)$

The key assumption of *freedom of choice* ("measurement independence"):

$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

- Physical systems are treated (merely!) as information-processing devices ("**black boxes**") and probed by free agents.
- The conclusions are drawn from the **output-input correlations**.

$P(\mathsf{outputs} \,|\, \mathsf{inputs})$

<u>Bell test</u>: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

The *experimental* (frequency) correlation function:

 $C_e(x, y) = P(a = b | x, y) - P(a \neq b | x, y)$

The key assumption of *freedom of choice* ("measurement independence"):

$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

- Physical systems are treated (merely!) as information-processing devices ("**black boxes**") and probed by free agents.
- The conclusions are drawn from the **output-input correlations**.

$P(\mathsf{outputs} | \mathsf{inputs})$

<u>Bell test</u>: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

The *experimental* (frequency) correlation function:

 $C_e(x, y) = P(a = b | x, y) - P(a \neq b | x, y)$

The key assumption of *freedom of choice* ("measurement independence"):

$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

- Physical systems are treated (merely!) as information-processing devices ("**black boxes**") and probed by free agents.
- The conclusions are drawn from the output-input correlations.

P(outputs | inputs)

<u>Bell test</u>: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

The *experimental* (frequency) correlation function:

 $C_e(x, y) = P(a = b | x, y) - P(a \neq b | x, y)$

.

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The key assumption of *freedom of choice* ("measurement independence"):

 $P(x, y \mid \lambda) = P(x) \cdot P(y)$

- Physical systems are treated (merely!) as information-processing devices ("**black boxes**") and probed by free agents.
- The conclusions are drawn from the output-input correlations.

P(outputs | inputs)

<u>Bell test</u>: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

$$C_e(x, y) = P(a = b \,|\, x, y) - P(a \neq b \,|\, x, y)$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The key assumption of *freedom of choice* ("measurement independence"):

$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

- Physical systems are treated (merely!) as information-processing devices ("**black boxes**") and probed by free agents.
- The conclusions are drawn from the output-input correlations.

P(outputs | inputs)

<u>Bell test</u>: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

$$C_e(x, y) = P(a = b \,|\, x, y) - P(a \neq b \,|\, x, y)$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The key assumption of *freedom of choice* ("measurement independence"):

$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

- Physical systems are treated (merely!) as information-processing devices ("**black boxes**") and probed by free agents.
- The conclusions are drawn from the output-input correlations.

P(outputs | inputs)

<u>Bell test</u>: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

$$C_e(x, y) = P(a = b \,|\, x, y) - P(a \neq b \,|\, x, y)$$

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The key assumption of *freedom of choice* ("measurement independence"):

$$P(x, y \mid \lambda) = P(x) \cdot P(y)$$

- We treat physical systems as **Q-data boxes**, i.e. *quantum-information* processing devices.
- A Q-data box is probed *locally* with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

- We treat physical systems as **Q-data boxes**, i.e. *quantum-information* processing devices.
- A Q-data box is probed *locally* with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

- We treat physical systems as **Q-data boxes**, i.e. *quantum-information* processing devices.
- A Q-data box is probed *locally* with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

- We treat physical systems as **Q-data boxes**, i.e. *quantum-information* processing devices.
- A Q-data box is probed *locally* with quantum information.

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements M : ρ_{out} → a.

- We treat physical systems as **Q-data boxes**, i.e. *quantum-information* processing devices.
- A Q-data box is probed *locally* with quantum information.

[Nat. Phys. 10, 264 (2014)]

- p are classical parameters (e.g. scattering kinematics)
- The *pure input* state is **prepared**, $P: x \rightarrow \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M : \rho_{out} \rightarrow a$.

- We treat physical systems as **Q-data boxes**, i.e. *quantum-information* processing devices.
- A Q-data box is probed *locally* with quantum information.

[[]Nat. Phys. 10, 264 (2014)]

- p are classical parameters (e.g. scattering kinematics)
- The pure input state is prepared, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M : \rho_{out} \rightarrow a$.

- We treat physical systems as **Q-data boxes**, i.e. *quantum-information* processing devices.
- A Q-data box is probed *locally* with quantum information.

[[]Nat. Phys. 10, 264 (2014)]

- p are classical parameters (e.g. scattering kinematics)
- The pure input state is **prepared**, $P: x \to \psi_{in}$.
- The *output state* is reconstructed via **quantum tomography** from the outcomes of projective measurements $M : \rho_{out} \rightarrow a$.

(D) (A) (A) (A)

A **Q-data test** consists in probing a Q-data box with *prepared* input states.

- $\bullet\,$ For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
 - Take a complete set of projectors $\{M_i\}_{i=1}^{n^*-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
 - Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$
 - The state ρ_{out} is estimated from Tr $(M_i \rho_{out}) = \sum_i a_j P(a_j | M_i)$.
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the box.

A Q-data test consists in probing a Q-data box with prepared input states.

• For every input state ψ_{in} one performs the full tomography of ρ_{out} .

- Take a complete set of projectors $\{M_i\}_{i=1}^{n^n-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
- Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
- The state ρ_{out} is estimated from Tr $(M_i \rho_{out}) = \sum_i a_i P(a_i | M_i)$.
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the box.

A Q-data test consists in probing a Q-data box with prepared input states.

- For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
 - Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
 - Make multiple measurements and register $\{P(a_j \mid M_i)\}_{i,j}$
 - The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the box.

A Q-data test consists in probing a Q-data box with prepared input states.

- For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
 - Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
 - Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$
 - The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the box.

- For every input state ψ_{in} one performs the full tomography of ρ_{out} .
 - Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
 - Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$.
 - The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the box.

- For every input state ψ_{in} one performs the full tomography of ρ_{out} .
 - Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
 - Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$.
 - The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the box.

- For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
 - Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
 - Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$.
 - The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the box.

- For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
 - Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
 - Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$.
 - The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the box.

- $\bullet\,$ For every input state $\psi_{\rm in}$ one performs the full tomography of $\rho_{\rm out}.$
 - Take a complete set of projectors $\{M_i\}_{i=1}^{n^2-1}$ (e.g. $\{\sigma_x, \sigma_y, \sigma_z\}$).
 - Make multiple measurements and register $\{P(a_j | M_i)\}_{i,j}$.
 - The state ρ_{out} is estimated from $\operatorname{Tr}(M_i \rho_{\text{out}}) = \sum_j a_j P(a_j | M_i)$.
- A Q-data test yields a dataset $\{\psi_{in}^{(k)}, p^{(\ell)}; \rho_{out}^{(k,\ell)}\}_{k,\ell}$.
- ψ_{in} is pure, initially **uncorrelated** with the box freedom of choice.
- ρ_{out} is in general *mixed*, i.e. entangled with the box.

- Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a = k | \psi_{\text{in}}^{(k)}).$
- $\bullet\,$ In quantum theory $P_{\rm succ}$ cannot exceed the Helstrom bound

$$P_{\text{succ}} \leq P_{\text{succ}}^{\text{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\text{in}}^{(1)} | \psi_{\text{in}}^{(2)} \rangle \right|^2} \right) \,.$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

A (1) × (2) × (3) ×

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a = k | \psi_{\text{in}}^{(k)}).$
- $\bullet\,$ In quantum theory $P_{\rm succ}$ cannot exceed the Helstrom bound

$$P_{\text{succ}} \leq P_{\text{succ}}^{\text{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\text{in}}^{(1)} | \psi_{\text{in}}^{(2)} \rangle \right|^2} \right) \,.$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

(4月) キョン キョン

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a = k | \psi_{\text{in}}^{(k)}).$
- In quantum theory $P_{\rm succ}$ cannot exceed the Helstrom bound

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \rangle \right|^2} \right) \, .$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory P_{succ} cannot exceed the Helstrom bound

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \rangle \right|^2} \right) \, .$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory $P_{\rm succ}$ cannot exceed the Helstrom bound

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \rangle \right|^2} \right)$$

- Make a Q-data test with $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory $P_{\rm succ}$ cannot exceed the Helstrom bound

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \rangle \right|^2} \right)$$

- Make a Q-data test with $\big\{\psi_{\rm in}^{(k)};\rho_{\rm out}^{(k)}\big\}_{k=1,2}.$
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- Suppose that we have two available inputs $\psi_{in}^{(1)}, \psi_{in}^{(2)}$.
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory $P_{\rm succ}$ cannot exceed the Helstrom bound

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \rangle \right|^2} \right)$$

- Make a Q-data test with $\left\{\psi_{\text{in}}^{(k)};\rho_{\text{out}}^{(k)}\right\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

A (1) > (1) > (1) > (1)

- Suppose that we have two available inputs $\psi_{\rm in}^{(1)}, \psi_{\rm in}^{(2)}.$
- We choose randomly the input (with probability 1/2).
- The task is to guess, which of the two states was input.
- Define the success rate: $P_{\text{succ}}(\psi_{\text{in}}^{(1)},\psi_{\text{in}}^{(2)}) := \frac{1}{2} \sum_{k=1}^{2} P(a=k \mid \psi_{\text{in}}^{(k)}).$
- In quantum theory $P_{\rm succ}$ cannot exceed the Helstrom bound

$$P_{\mathrm{succ}} \leq P_{\mathrm{succ}}^{\mathrm{QM}} \coloneqq \frac{1}{2} \left(1 + \sqrt{1 - \left| \langle \psi_{\mathrm{in}}^{(1)} | \psi_{\mathrm{in}}^{(2)} \rangle \right|^2} \right)$$

- Make a Q-data test with $\left\{\psi_{\text{in}}^{(k)};\rho_{\text{out}}^{(k)}\right\}_{k=1,2}$.
- If $P_{\text{succ}}(\rho_{\text{out}}^{(1)}, \rho_{\text{out}}^{(2)}) > P_{\text{succ}}(\psi_{\text{in}}^{(1)}, \psi_{\text{in}}^{(2)})$ then the Q-data box is **not** quantum.
- Violation of the Helstrom bound occurs in nonlinear modifications of QM.

- In QM any dynamics $\mathcal{E}: S(\mathcal{H}_{\text{in}}) \to S(\mathcal{H}_{\text{out}}) \text{ must be a } \mathbf{CPTP map}.$
- \mathcal{E} is CPTP if and only if $\widetilde{\mathcal{E}} := \frac{1}{m} \sum_{i,j=1}^{m} |i\rangle \langle j| \otimes \mathcal{E}(|i\rangle \langle j|)$ is a quantum state.
- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters, $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}.$
- \mathcal{E} can be reconstructed from a **Q-data test** $\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\}_{k=1}^{m^2}$.
- Overcomplete Q-data tests, $\begin{cases} \psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)} \end{cases}_{k=1}^N \text{ with } N > m^2 \\ \text{ are sensitive to deviations from } \\ \text{CPTP and linearity.} \end{cases}$

A (1) < A (1) < A (1) </p>

- In QM any dynamics $\mathcal{E}: S(\mathcal{H}_{\text{in}}) \to S(\mathcal{H}_{\text{out}}) \text{ must be a } \mathbf{CPTP map}.$
- \mathcal{E} is CPTP if and only if $\widetilde{\mathcal{E}} := \frac{1}{m} \sum_{i,j=1}^{m} |i\rangle \langle j| \otimes \mathcal{E}(|i\rangle \langle j|)$ is a quantum state.
- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters, $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}.$
- \mathcal{E} can be reconstructed from a **Q-data test** $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1}^{m^2}$.
- Overcomplete Q-data tests, $\begin{cases} \psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)} \end{cases}_{k=1}^N \text{ with } N > m^2 \\ \text{ are sensitive to deviations from } \\ \text{CPTP and linearity.} \end{cases}$

・ 同 ト ・ ヨ ト ・ ヨ ト

- In QM any dynamics $\mathcal{E}: S(\mathcal{H}_{\text{in}}) \to S(\mathcal{H}_{\text{out}}) \text{ must be a } \mathbf{CPTP map}.$
- \mathcal{E} is CPTP if and only if $\widetilde{\mathcal{E}} := \frac{1}{m} \sum_{i,j=1}^{m} |i\rangle \langle j| \otimes \mathcal{E}(|i\rangle \langle j|)$ is a quantum state.
- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters, $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}.$
- \mathcal{E} can be reconstructed from a **Q-data test** $\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\}_{k=1}^{m^2}$.
- Overcomplete Q-data tests, $\begin{cases} \psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)} \end{cases}_{k=1}^N \text{ with } N > m^2 \\ \text{ are sensitive to deviations from } \\ \text{CPTP and linearity.} \end{cases}$

- In QM any dynamics $\mathcal{E}: S(\mathcal{H}_{\text{in}}) \to S(\mathcal{H}_{\text{out}}) \text{ must be a } \mathbf{CPTP \ map}.$
- \mathcal{E} is CPTP if and only if $\widetilde{\mathcal{E}} := \frac{1}{m} \sum_{i,j=1}^{m} |i\rangle \langle j| \otimes \mathcal{E}(|i\rangle \langle j|)$ is a quantum state.
- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters, $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}.$
- \mathcal{E} can be reconstructed from a **Q-data test** $\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\}_{k=1}^{m^2}$.
- Overcomplete Q-data tests, $\left\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\right\}_{k=1}^{N}$ with $N > m^2$ are sensitive to deviations from CPTP and linearity.

[R. Bialczak et al., Nat. Phys. 6, 409 (2010)]

- 4 周 医 4 医 5 4 医 5

- In QM any dynamics $\mathcal{E}: S(\mathcal{H}_{\text{in}}) \to S(\mathcal{H}_{\text{out}}) \text{ must be a } \mathbf{CPTP \ map}.$
- \mathcal{E} is CPTP if and only if $\widetilde{\mathcal{E}} := \frac{1}{m} \sum_{i,j=1}^{m} |i\rangle \langle j| \otimes \mathcal{E}(|i\rangle \langle j|)$ is a quantum state.
- \mathcal{E} is completely characterised by $m^2(n^2-1)$ real parameters, $m = \dim \mathcal{H}_{in}, n = \dim \mathcal{H}_{out}.$
- \mathcal{E} can be reconstructed from a Q-data test $\{\psi_{\text{in}}^{(k)}; \rho_{\text{out}}^{(k)}\}_{k=1}^{m^2}$.
- Overcomplete Q-data tests, $\left\{\psi_{in}^{(k)}; \rho_{out}^{(k)}\right\}_{k=1}^{N}$ with $N > m^2$ are sensitive to deviations from CPTP and linearity.

[R. Bialczak et al., Nat. Phys. 6, 409 (2010)]

- Prepare 'quantum-programmed' particles carrying ψ_{in}, e.g. electron's spin or photon's polarization. → polarized beams
- 2 Collide them!
- 3 Measure projectively the outgoing projectiles.
- ④ Reconstruct the output states ho_{out} . \sim weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), Quantum State-Channel Duality applied to Particle Physics]
 - Spin dynamics in the $e^+e^- \rightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix E
 associated with the quantum channel E : H_{in} → H_{out}.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in},
 e.g. electron's spin or photon's polarization. → polarized beams
- 2 Collide them!
- 3 Measure projectively the outgoing projectiles.
- 0 Reconstruct the output states ho_{out} . \leadsto weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), Quantum State-Channel Duality applied to Particle Physics]
 - Spin dynamics in the $e^+e^- \rightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix E
 associated with the quantum channel E : H_{in} → H_{out}.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in},
 e.g. electron's spin or photon's polarization. → polarized beams
- ② Collide them!
- Measure projectively the outgoing projectiles.
- ④ Reconstruct the output states $ho_{\mathsf{out}}.$ \sim weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), Quantum State-Channel Duality applied to Particle Physics]
 - Spin dynamics in the $e^+e^-
 ightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix E
 associated with the quantum channel E : H_{in} → H_{out}.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in},
 e.g. electron's spin or photon's polarization. → polarized beams
- 2 Collide them!
- Measure projectively the outgoing projectiles.
- ④ Reconstruct the output states ho_{out} . \rightsquigarrow weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), *Quantum State-Channel Duality applied to Particle Physics*]
 - Spin dynamics in the $e^+e^-
 ightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix E
 associated with the quantum channel E : H_{in} → H_{out}.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in}, e.g. electron's spin or photon's polarization. → polarized beams
- 2 Collide them!
- Measure projectively the outgoing projectiles.
- ④ Reconstruct the output states ho_{out} . \rightsquigarrow weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), *Quantum State-Channel Duality applied to Particle Physics*]
 - Spin dynamics in the $e^+e^- \rightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix E
 associated with the quantum channel E : H_{in} → H_{out}.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in}, e.g. electron's spin or photon's polarization. → polarized beams
- 2 Collide them!
- 3 Measure projectively the outgoing projectiles.
- ④ Reconstruct the output states ho_{out} . \rightsquigarrow weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), *Quantum State-Channel Duality applied to Particle Physics*]
 - Spin dynamics in the $e^+e^- \rightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix E
 associated with the quantum channel E : H_{in} → H_{out}.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in}, e.g. electron's spin or photon's polarization. → polarized beams
- 2 Collide them!
- Measure projectively the outgoing projectiles.
- ④ Reconstruct the output states ho_{out} . \rightsquigarrow weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), *Quantum State-Channel Duality applied to Particle Physics*]
 - Spin dynamics in the $e^+e^- \rightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix E
 associated with the quantum channel E : H_{in} → H_{out}.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in},
 e.g. electron's spin or photon's polarization. → polarized beams
- 2 Collide them!
- Measure projectively the outgoing projectiles.
- Reconstruct the output states ρ_{out} . \rightsquigarrow weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), *Quantum State-Channel Duality applied to Particle Physics*]
 - Spin dynamics in the $e^+e^- \rightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix E
 associated with the quantum channel E : H_{in} → H_{out}.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in},
 e.g. electron's spin or photon's polarization. → polarized beams
- ② Collide them!
- Measure projectively the outgoing projectiles.
- Reconstruct the output states ρ_{out} . \rightsquigarrow weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), Quantum State-Channel Duality applied to Particle Physics]
 - Spin dynamics in the $e^+e^-
 ightarrow tar{t}$ process
 - $\mathcal{H}_{in} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{out} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix E
 associated with the quantum channel E : H_{in} → H_{out}.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in},
 e.g. electron's spin or photon's polarization. → polarized beams
- ② Collide them!
- Measure projectively the outgoing projectiles.
- Reconstruct the output states ρ_{out} . \rightsquigarrow weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), Quantum State-Channel Duality applied to Particle Physics]
 - Spin dynamics in the $e^+e^- \rightarrow t\bar{t}$ process
 - $\mathcal{H}_{in} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{out} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix \overline{E} associated with the quantum channel $\mathcal{E} : \mathcal{H}_{in} \to \mathcal{H}_{out}$.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in},
 e.g. electron's spin or photon's polarization. → polarized beams
- ② Collide them!
- Measure projectively the outgoing projectiles.
- Reconstruct the output states ρ_{out} . \rightsquigarrow weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), Quantum State-Channel Duality applied to Particle Physics]
 - Spin dynamics in the $e^+e^- \rightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix E associated with the quantum channel E : H_{in} → H_{out}.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

- Prepare 'quantum-programmed' particles carrying ψ_{in},
 e.g. electron's spin or photon's polarization. → polarized beams
- 2 Collide them!
- Measure projectively the outgoing projectiles.
- Reconstruct the output states ρ_{out} . \rightsquigarrow weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), Quantum State-Channel Duality applied to Particle Physics]
 - Spin dynamics in the $e^+e^- \rightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix \tilde{E} associated with the quantum channel $\mathcal{E} : \mathcal{H}_{in} \to \mathcal{H}_{out}$.

Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

(D) (A) (A)

- Prepare 'quantum-programmed' particles carrying ψ_{in},
 e.g. electron's spin or photon's polarization. → polarized beams
- ② Collide them!
- Measure projectively the outgoing projectiles.
- Reconstruct the output states ρ_{out} . \rightsquigarrow weak decays (see Alan's talk)
- [Clelia Altomonte, Alan Barr (2022), Quantum State-Channel Duality applied to Particle Physics]
 - Spin dynamics in the $e^+e^- \rightarrow t\bar{t}$ process
 - $\mathcal{H}_{\mathsf{in}} = \mathbb{C}^2_{e^+} \otimes \mathbb{C}^2_{e^-}$, $\mathcal{H}_{\mathsf{out}} = \mathbb{C}^2_{t^+} \otimes \mathbb{C}^2_{t^-}$
 - Calculations of the (diagonal part of) the 16×16 matrix \widetilde{E} associated with the quantum channel $\mathcal{E} : \mathcal{H}_{in} \to \mathcal{H}_{out}$.
- Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.

Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make direct projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CPTP, linearity, ...)
 - Understand quantum *dynamics* in HEP.
 - Need polarised beems and targets.

Thank you for your attention!

Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make direct projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CPTP, linearity,)
 - Understand quantum dynamics in HEP.
 - Need polarised beems and targets.

Thank you for your attention!

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make direct projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CPTP, linearity, ...)
 - Understand quantum dynamics in HEP.
 - Need polarised beems and targets.

Thank you for your attention!

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CPTP, linearity, ...)
 - Understand quantum dynamics in HEP.
 - Need polarised beems and targets.

Thank you for your attention!

(D) (A) (A) (A) (A)

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CPTP, linearity,)
 - Understand quantum dynamics in HEP.
 - Need polarised beems and targets.

Thank you for your attention!

(D) (A) (A) (A) (A)
Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CPTP, linearity, ...)
 - Understand quantum *dynamics* in HEP.
 - Need polarised beems and targets.

Thank you for your attention!

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CPTP, linearity, ...)
 - Understand quantum *dynamics* in HEP.
 - Need polarised beems and targets.

Thank you for your attention!

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CPTP, linearity, ...)
 - Understand quantum *dynamics* in HEP.
 - Need polarised beems and targets.

Thank you for your attention!

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CPTP, linearity, ...)
 - Understand quantum *dynamics* in HEP.
 - Need polarised beems and targets.

Thank you for your attention!

Take-home messages:

- To make a proper Bell-type test you need the freedom of choice!
 - Entanglement detection is <u>not</u> a Bell test!
 - Could we make **direct** projective measurements of spin??
 - A proper Bell test could detect beyond-quantum correlations.
- Quantum process tomography offers new opportunities:
 - Seek deviations from QM (unitarity, CPTP, linearity, ...)
 - Understand quantum *dynamics* in HEP.
 - Need polarised beems and targets.

Thank you for your attention!