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Routes towards New Physics
Standard Model ⊂ QFT = Quantum Mechanics + Special Relativity

Routes towards New Physics:

1 Beyond Standard Model, but still in QFT

SUSY, composite Higgs, dark sector, inflation, . . .

2 Beyond Special Relativity, but assuming QM

QFT in curved spacetimes – ‘semi-classical’
(Unruh effect, Hawking radiation . . . )

quantum gravity

3 Beyond Quantum Mechanics, but assuming relativity

Super-quantum correlations, . . .

Deviations from linearity in QM and/or QFT

Objective wave function collapse models
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Beyond-quantum physics?

Is there an ‘objective collapse’ in a decay process?

Are correlations in QFT stronger than in QM?

Are QM & QFT only effective descriptions of Nature?

How to look for possible deviations from QM?
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The theory independent black box methodology

Physical systems are treated (merely!) as information-processing devices
(“black boxes”) and probed by free agents.

The conclusions are drawn from the output–input correlations.

P
(
outputs | inputs

)
Bell test: 2 agents (Alice and Bob) — 2 inputs (x, y) — 2 outputs (a, b)

The experimental (frequency)
correlation function:

Ce(x, y) = P (a = b |x, y)− P (a ̸= b |x, y)

[Sandu Popescu, Nature Physics 10, 264 (2014)]

The key assumption of freedom of choice (“measurement independence”):

P (x, y |λ) = P (x) · P (y)

No pre-correlations between the inputs (x, y) and the box (λ).
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Quantum-data boxes

We treat physical systems as Q-data boxes, i.e. quantum-information
processing devices.

A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]

ψin ρout

p

P

x

M

a

p are classical parameters (e.g. scattering kinematics)

The pure input state is prepared, P : x→ ψin.

The output state is reconstructed via quantum tomography from the
outcomes of projective measurements M : ρout → a.

Michał Eckstein Foundational tests with quantum process tomography



Quantum-data boxes

We treat physical systems as Q-data boxes, i.e. quantum-information
processing devices.

A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]

ψin ρout

p

P

x

M

a

p are classical parameters (e.g. scattering kinematics)

The pure input state is prepared, P : x→ ψin.

The output state is reconstructed via quantum tomography from the
outcomes of projective measurements M : ρout → a.

Michał Eckstein Foundational tests with quantum process tomography



Quantum-data boxes

We treat physical systems as Q-data boxes, i.e. quantum-information
processing devices.

A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]

ψin ρout

p

P

x

M

a

p are classical parameters (e.g. scattering kinematics)

The pure input state is prepared, P : x→ ψin.

The output state is reconstructed via quantum tomography from the
outcomes of projective measurements M : ρout → a.

Michał Eckstein Foundational tests with quantum process tomography



Quantum-data boxes

We treat physical systems as Q-data boxes, i.e. quantum-information
processing devices.

A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]

ψin ρout

p

P

x

M

a

p are classical parameters (e.g. scattering kinematics)

The pure input state is prepared, P : x→ ψin.

The output state is reconstructed via quantum tomography from the
outcomes of projective measurements M : ρout → a.

Michał Eckstein Foundational tests with quantum process tomography



Quantum-data boxes

We treat physical systems as Q-data boxes, i.e. quantum-information
processing devices.

A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]

ψin ρout

p

P

x

M

a

p are classical parameters (e.g. scattering kinematics)

The pure input state is prepared, P : x→ ψin.

The output state is reconstructed via quantum tomography from the
outcomes of projective measurements M : ρout → a.

Michał Eckstein Foundational tests with quantum process tomography



Quantum-data boxes

We treat physical systems as Q-data boxes, i.e. quantum-information
processing devices.

A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]

ψin ρout

p

P

x

M

a

p are classical parameters (e.g. scattering kinematics)

The pure input state is prepared, P : x→ ψin.

The output state is reconstructed via quantum tomography from the
outcomes of projective measurements M : ρout → a.

Michał Eckstein Foundational tests with quantum process tomography



Quantum-data boxes

We treat physical systems as Q-data boxes, i.e. quantum-information
processing devices.

A Q-data box is probed locally with quantum information.

[Nat. Phys. 10, 264 (2014)]

ψin ρout

p

P

x

M

a

p are classical parameters (e.g. scattering kinematics)

The pure input state is prepared, P : x→ ψin.

The output state is reconstructed via quantum tomography from the
outcomes of projective measurements M : ρout → a.

Michał Eckstein Foundational tests with quantum process tomography



Quantum-data tests

ψin ρout

p

P

x

M

a

A Q-data test consists in probing a Q-data box with prepared input states.

For every input state ψin one performs the full tomography of ρout.

Take a complete set of projectors {Mi}n
2−1

i=1 (e.g. {σx, σy, σz}).
Make multiple measurements and register {P (aj |Mi)}i,j .
The state ρout is estimated from Tr

(
Mi ρout

)
=

∑
j ajP (aj |Mi).

A Q-data test yields a dataset {ψ(k)
in , p(ℓ); ρ

(k,ℓ)
out }k,ℓ.

ψin is pure, initially uncorrelated with the box — freedom of choice.

ρout is in general mixed, i.e. entangled with the box.
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An example — the Helstrom test

Suppose that we have two available inputs ψ(1)
in , ψ

(2)
in .

We choose randomly the input (with probability 1/2).

The task is to guess, which of the two states was input.

Define the success rate: Psucc
(
ψ
(1)
in , ψ

(2)
in

)
:= 1

2

∑2
k=1 P

(
a = k |ψ(k)

in

)
.

In quantum theory Psucc cannot exceed the Helstrom bound

Psucc ≤ PQM
succ :=

1

2

(
1 +

√
1−

∣∣⟨ψ(1)
in |ψ(2)

in ⟩
∣∣2) .

Make a Q-data test with
{
ψ
(k)
in ; ρ

(k)
out

}
k=1,2

.

If Psucc
(
ρ
(1)
out, ρ

(2)
out

)
> Psucc

(
ψ
(1)
in , ψ

(2)
in

)
then the Q-data box is not quantum.

Violation of the Helstrom bound occurs in nonlinear modifications of QM.
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Define the success rate: Psucc
(
ψ
(1)
in , ψ

(2)
in

)
:= 1

2

∑2
k=1 P

(
a = k |ψ(k)

in

)
.

In quantum theory Psucc cannot exceed the Helstrom bound

Psucc ≤ PQM
succ :=

1

2

(
1 +

√
1−

∣∣⟨ψ(1)
in |ψ(2)

in ⟩
∣∣2) .

Make a Q-data test with
{
ψ
(k)
in ; ρ

(k)
out

}
k=1,2

.

If Psucc
(
ρ
(1)
out, ρ

(2)
out

)
> Psucc

(
ψ
(1)
in , ψ

(2)
in

)
then the Q-data box is not quantum.

Violation of the Helstrom bound occurs in nonlinear modifications of QM.
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Quantum process tomography

In QM any dynamics
E : S(Hin) → S(Hout) must be a
CPTP map.

E is CPTP if and only if
Ẽ := 1

m

∑m
i,j=1 |i⟩⟨j| ⊗ E(|i⟩⟨j|)

is a quantum state.

E is completely characterised by
m2(n2 − 1) real parameters,
m = dimHin, n = dimHout.

E can be reconstructed from a
Q-data test

{
ψ
(k)
in ; ρ

(k)
out

}m2

k=1
.

Overcomplete Q-data tests,{
ψ
(k)
in ; ρ

(k)
out

}N

k=1
with N > m2

are sensitive to deviations from
CPTP and linearity.

[R. Bialczak et al., Nat. Phys. 6, 409 (2010)]
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Prospects for quantum process tomography in colliders

1 Prepare ‘quantum-programmed’ particles carrying ψin,
e.g. electron’s spin or photon’s polarization. ⇝ polarized beams

2 Collide them!

3 Measure projectively the outgoing projectiles.

4 Reconstruct the output states ρout. ⇝ weak decays (see Alan’s talk)

[Clelia Altomonte, Alan Barr (2022),
Quantum State-Channel Duality applied to Particle Physics]

Spin dynamics in the e+e− → tt̄ process
Hin = C2

e+ ⊗ C2
e− , Hout = C2

t+ ⊗ C2
t−

Calculations of the (diagonal part of) the 16×16 matrix Ẽ
associated with the quantum channel E : Hin → Hout.

Ongoing work with C. Altomonte, A. Barr, P. Horodecki & K. Sakurai.
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Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

To make a proper Bell-type test you need the freedom of choice!

Entanglement detection is not a Bell test!

Could we make direct projective measurements of spin??

A proper Bell test could detect beyond-quantum correlations.

Quantum process tomography offers new opportunities:

Seek deviations from QM (unitarity, CPTP, linearity, . . . )

Understand quantum dynamics in HEP.

Need polarised beems and targets.

Thank you for your attention!

Michał Eckstein Foundational tests with quantum process tomography



Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

To make a proper Bell-type test you need the freedom of choice!

Entanglement detection is not a Bell test!

Could we make direct projective measurements of spin??

A proper Bell test could detect beyond-quantum correlations.

Quantum process tomography offers new opportunities:

Seek deviations from QM (unitarity, CPTP, linearity, . . . )

Understand quantum dynamics in HEP.

Need polarised beems and targets.

Thank you for your attention!

Michał Eckstein Foundational tests with quantum process tomography



Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

To make a proper Bell-type test you need the freedom of choice!

Entanglement detection is not a Bell test!

Could we make direct projective measurements of spin??

A proper Bell test could detect beyond-quantum correlations.

Quantum process tomography offers new opportunities:

Seek deviations from QM (unitarity, CPTP, linearity, . . . )

Understand quantum dynamics in HEP.

Need polarised beems and targets.

Thank you for your attention!

Michał Eckstein Foundational tests with quantum process tomography



Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

To make a proper Bell-type test you need the freedom of choice!

Entanglement detection is not a Bell test!

Could we make direct projective measurements of spin??

A proper Bell test could detect beyond-quantum correlations.

Quantum process tomography offers new opportunities:

Seek deviations from QM (unitarity, CPTP, linearity, . . . )

Understand quantum dynamics in HEP.

Need polarised beems and targets.

Thank you for your attention!

Michał Eckstein Foundational tests with quantum process tomography



Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

To make a proper Bell-type test you need the freedom of choice!

Entanglement detection is not a Bell test!

Could we make direct projective measurements of spin??

A proper Bell test could detect beyond-quantum correlations.

Quantum process tomography offers new opportunities:

Seek deviations from QM (unitarity, CPTP, linearity, . . . )

Understand quantum dynamics in HEP.

Need polarised beems and targets.

Thank you for your attention!

Michał Eckstein Foundational tests with quantum process tomography



Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

To make a proper Bell-type test you need the freedom of choice!

Entanglement detection is not a Bell test!

Could we make direct projective measurements of spin??

A proper Bell test could detect beyond-quantum correlations.

Quantum process tomography offers new opportunities:

Seek deviations from QM (unitarity, CPTP, linearity, . . . )

Understand quantum dynamics in HEP.

Need polarised beems and targets.

Thank you for your attention!

Michał Eckstein Foundational tests with quantum process tomography



Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

To make a proper Bell-type test you need the freedom of choice!

Entanglement detection is not a Bell test!

Could we make direct projective measurements of spin??

A proper Bell test could detect beyond-quantum correlations.

Quantum process tomography offers new opportunities:

Seek deviations from QM (unitarity, CPTP, linearity, . . . )

Understand quantum dynamics in HEP.

Need polarised beems and targets.

Thank you for your attention!

Michał Eckstein Foundational tests with quantum process tomography



Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

To make a proper Bell-type test you need the freedom of choice!

Entanglement detection is not a Bell test!

Could we make direct projective measurements of spin??

A proper Bell test could detect beyond-quantum correlations.

Quantum process tomography offers new opportunities:

Seek deviations from QM (unitarity, CPTP, linearity, . . . )

Understand quantum dynamics in HEP.

Need polarised beems and targets.

Thank you for your attention!

Michał Eckstein Foundational tests with quantum process tomography



Summary

Proc. R. Soc. A. 478:20210806 (2022), arXiv:2103.12000

Take-home messages:

To make a proper Bell-type test you need the freedom of choice!

Entanglement detection is not a Bell test!

Could we make direct projective measurements of spin??

A proper Bell test could detect beyond-quantum correlations.

Quantum process tomography offers new opportunities:

Seek deviations from QM (unitarity, CPTP, linearity, . . . )

Understand quantum dynamics in HEP.

Need polarised beems and targets.
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