

İFAST **FREIA test facility IFAST WP8 meeting 17** Tommaso Bagni

Conclusions

The FREIA laboratory

The FREIA Laboratory

Uppsala

Stockholm

Facility for Research Instrumentation and Accelerator Development

- The FREIA Laboratory was inaugurated in 2013 within the department of Physics and Astronomy at Uppsala University, to develop and test new particle accelerator and detector instrumentation.
- 1000 m² large, 10 m high
- Has a 7.2 ton movable crane and other mechanical equipment
- Small workshops for mechanics and electronics and 50 m² control room
- Office space for ~20 people

26 May 2023

The FREIA Laboratory

Control Room

• The overall control system is based on EPICS

- Self-excited loop, 352 MHz, 1 kW CW
- Standard Measurement Equipment

Cryo system:

- 2000 L dewar (+ 1000 L extra dewar)
- 140 L/h liquefier
- 19.2 m³ high pressure storage at 200 bar
- 132 kW recovery compressors
- 100 m³/h circulating compressor (Kaeser)
- 100 m³ gas bag

Gersemi - Vertical Cryostat

System for testing superconducting devices such as accelerating cavities and magnets

- Dimensions: 1.1 m diameter, 2.8 m height
- Range of operation: 1.8 to 4.5 K, 16 to 1250 mbar
- Pressure stability at 16 mbar: +/- 0.1 mbar
- Cooling power at 1.8 K: 90 W
- Maximum allowed weight up to 5 ton
- 2 x 2 kA power converters
- 1 kW RF power in a self-excited loop

HNOSS - Horizontal Cryostat

System for testing superconducting cavities.
Inner measures 3.2 m length and 1.19 m diameter
Range of operation: 1.8 to 4.5 K, 16 to 1250 mbar
Supercritical Helium external closed circuit
Internal warm magnetic shielding: mu-metal, 1 mm
Pressure stability at 16 mbar: +/- 0.1 mbar

• Cooling power at 1.8 K: 90 W

Hnoss and Gersemi (both mean "treasure" or "precious" in Old Norse^{*}) **are the two daughters of the goddess Freyja.**

Hnoss and Gersemi

In Norse mythology, Freyja (*Old Norse: "(the) Lady") is a goddess associated with love, beauty, fertility, sex, war, gold, and seiðr (magic for seeing and influencing the future).

Freja (1905) by John Bauer (1882–1918)

*Old Norse is a stage of development of North Germanic dialects before their final divergence into separate Nordic language https://en.wikipedia.org/wiki/Hnoss

26 May 2023

26 May 2023

ESS cryomodules

Test & assessment at FREIA laboratory in Uppsala

Assembly in IJCLab

<u>12/14 modules approved \rightarrow Installation in ESS</u>

GERSEMI

Gersemi – 2 operation modes: liquid, pressurized bath

26 May 2023

UPPSALA UNIVERSITET

Cavity (liquid) insert

Magnet insert

Operation:

- Lambda plate to separate 2K
 pressurized helium from 4K helium
- Heat exchanger with sub-atmospheric
 2K helium in contact with the
 pressurized 2K helium

Radiation shield and cavity insert for cavities

Mechanical design of the supporting structure

Magnetic insert – Above the lambda plate

General view

Data acquisition and PLC Energy extraction units

Power converters 2x2 kA

Magnetic insert fully equipped

Satellite Equipment

Cable thermalized Heaters, temperature sensors

> Heaters, temperature _ sensors on the magnet

Many Vtaps for the beginning

Heaters, level probe and temperature sensors on the lambda plate

26 May 2023

Foam and level prob

Level probes with and without protection

2m³ of foam to save a lot of helium and be more efficient/faster

GERSEMI								
No	Property name	Value	Unit	Comment				
1	LHe volume	3300	L	To be reduced				
2	Operating temperature	2.0 - 4.2	К	Pressurized bath				
3	Diameter / size	1.1 / 2.8	m					
4	Number of inserts	1 (+1)		+ Cavity insert				
5	Maximum current	2000 (x2)	А	2 Power converters				
6	Additional instrumentation	Polarity switch		1 for each Pc				
7	Quench protection system	YES	YES / NO	PotAim cards+uQDS				
8	Energy Extraction Unit	YES	YES / NO	IGBT based				
9	EE resistors	77 - 3200	mΩ	+ Metrosil				
10	Typical testing rate (Vts / year)	0.5-1	Per month					

Vertical anti-cryostat and magnetic measurement systems

Magnetic **measurement**: <u>room</u> temperature **rotating coils**

ADVANTAGES:

- Reduced **complication** for the measurement shaft
- No **moving** mechanical parts at cryogenic temperature .
- Easy adjustable measurement head •
 - both measurement and quench revealing ٠
- Easy access for **debugging** .
- No dimensions shrinkage -> consistent calibration .

factors

26 May 2023

Anti-cryostat

To be completed in 2024

1st successful magnet test: SuShi

Tommaso Bagni, Maja Olvegård, Kevin Pepitone, Rocio Santiago Kern, Carl Svanberg (University of Uppsala) D. Barna, K. Brunner (Wigner RCP) Miro Atanasov, Jan Borburgh, Glyn Kirby, Friedrich Lackner (CERN)

WP3 – Transnational access to Research Infrastructures for Accelerators

EURO-LABS Supports Transnational Access (TA) to a broad spectrum of installations, to test concepts for future accelerators, based on improving the present facilities, and for R&D studies for future colliders like CERN/FCC or the Muon Collider.

Type of access	Type of beams / Theory support	Access provider	Infrastru cture	Country	Facility Coordinator Contact	
ТА	Magnet & RF Cavity testing	FREIA	<u>GERSEMI</u> – <u>HNOSS</u>	Sweden	rocio.santiago_kern@physic <u>s.uu.se</u>	

- PROJECT ACRONYM: EURO-LABS EUROpean Laboratories for Accelerator Based Science
 PROGRAMME: Horizon EU
- **DURATION:** September 2022- August 2026 (4 years)
- AIMS OF EURO-LABS: Fostering the sharing of knowledge and technologies across scientific fields; To create synergies and collaborations between the RIs of the Nuclear and High Energy communities;

SUperconducting SHield septum magnet

zero-field channel for circulating beam

The magnet is one of the first Canted-Cos-Theta (CCT) magnet impregnated with wax.

The SuShi septum is a Nb-Ti magnet using a passive superconducting shield to generate a field-free region within the aperture of a CCT magnet, to create the required field configuration for beam extraction from the Future Circular Collider.

The testing of the empty magnet is crucial to understand the behaviour of the magnet winding before shield test

Courtesy of Barna D.

SuShi @ FREIA

26 May 2023

Ramp rates: 1 A/s

Powering cycles (2nd day) - endurance & ramp-rate

lastSample[10(s)]

26 May 2023

Energy extractions, current decay curves

Conclusions

At FREIA laboratory we have proven competence and capability in

Superconducting magnet testing \rightarrow Gersemi

• 1st magnet test

- ✓ Magnet installation ^{Complete}
- ✓ Cooldown
- \checkmark Energy extraction, understanding and control
- ✓ Powering the magnet

Thank you for your attention

26 May 2023