First pilot of a DM Masterclass using Xenon1T S2 Data

Peggy Norris (with help from Charlie Payne and his students) – May 2023

Synopsis

- The Xenon1T collaboration has made data available on the internet and published a sample Google Colaboratory Jupyter Notebook showing how to derive limits on custom dark matter signal models with XENON1T's S2-only data.
- We used this as a basis for a pilot masterclass for advanced high school students who were already familiar with coding using Jupyter notebooks.
- Students were able to:
 - Load detector response functions and binning
 - Generate the nuclear recoil energy spectrum for a particular WIMP mass
 - Convert that to an expected S2 signal in the detector
 - Find a region of interest for the WIMP model and calculate the cross section limit
- We then looked at the full published analysis: Aprile, E. et al. (XENON collaboration), Phys. Rev. Lett. 123, 251801 (2019).

From LZ talk

- Arrives First Scintillation Light (S1)
 - gammas, betas (background)
- Arrives next Electrons (S2)
 - drift through electric field of detector
 - Neutron background or WIMP signal

XENON1T Analysis (Aprile et al.)

Figure 4. Distribution of events that pass all cuts (black dots); error bars show statistical uncertainties (1 σ Poisson). The thick black line shows the predetermined summed background model, below which its three components are indicated, with colors as in Fig. <u>3</u>. The lightly shaded orange (purple) histogram, stacked on the total background, shows the signal model for 4 GeV/c2 (20 GeV/c2) SI DM models excluded at exactly 90% confidence level.

Our MC Pilot

	9:30 - 9:45	Assess prior knowledge -	https://jamboard.google.com/d/1gjI5PVT9i26r
		What have you heard or read about Dark Matter?	owWJFT3lpa4oiJCK5e1hT1- LxGE0jmY/edit?usp=sharing
	9:45-10:15	Evidence for Dark Matter, Part I	Peggy Powerpoint
	10:15-10:35	Activity using DM Galaxy Simulator	https://foothillastrosims.github.io/dark-matter/ Student sheet
	10:35-10:45	Break	
	10:45-11:10	Evidence for DM, Part 2	Peggy Powerpoint
	11:10 - 11:30	DM Detection and detectors	Peggy Powerpoint
	11:30 - 12:00	Summary article	https/physics.aps.org/articles/v12/s145
	12-1:30	Lunch Break	
	1:30 - 3:00	DM analysis by students	https://colab.research.google.com/drive/1ilKV73kuK7 2o8kK_FNdcNwc6BBq_twl6
	3:00 - 3:20	Discussion	https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.1 23.251801
	3:20 - 3:30	Post assessment - What have you learned today?	https://jamboard.google.com/d/1pUKU0k2ITnXrtnQ20 zZjujaiNhxV8crYIoPAVyOIfb0/edit?usp=sharing

Student Activities

- 1. Galaxy Simulator with dark matter (<u>https://foothillastrosims.github.io/d</u> <u>ark-matter/</u>)
- 2. Synopsis of analysis paper –student jigsaw (<u>https://physics.aps.org/articles/v1</u> <u>2/s145</u>)
- 3. Analysis activity (https://colab.research.google.com/dri ve/1ilKV73kuK7208kK_FNdcNwc6BB q_twl6)

Pre/Post Assessments

- <u>PRE-Assessment Jamboard</u> (working with a partner)
 - What have you heard or read about dark matter?
- POST-Assessment Jamboard (working individually)
 - What is something you learned today about evidence for dark matter?
 - What is something you learned today about candidates for dark matter?
 - What is something you learned today about how scientists are trying to detect dark matter?
 - What is something that surprised you today?

Next steps

- Clean up the code and finish annotations.
- Generate a spreadsheet of region of interests for different WIMP masses for the use of teachers (to check student work).
- Contact XENON1T collaboration about providing speakers for videoconferences.
- Better slides illustrating Nuclear versus Electronic recoils and their importance in understanding whether or not there is a viable dark matter candidate.