
3Y. Tachibana for the JETSCAPE Collaboration, Quark Matter 2019, Wuhan, November 5th, 2019

Jet-induced excitation of medium

Medium Response Effects on Jets

- Transport energy and momentum received
from jet

Particles from medium response
- Jet correlated, cannot/should not be

subtracted

- Affect structures inside/around jet

{Jet

- Modify particle emission around jet

Angular Structure

Momentum Structure

Hadron Chemistry{

Lecture

JETSCAPE Online School
July 17 2023

Joern Putschke
(Wayne State University)

The and
 Framework

JetScape Logo(s) I

`

JETSCAPE

a) c)

`Sca petJe
b)

d)

1

`

JETSCAPE

`Sca petJe

Joern Putschke, WSU JETSCAPE 2023 Online School 2

If you have issues with installing/running 
JETSCAPE/X-SCAPE in Docker, ask  
questions/get support in slack channel:

#software-install-problems

Joern Putschke, WSU JETSCAPE 2023 Online School 3

Ask questions in slack channel:
#july17-18-xscape-framework

Joern Putschke, WSU JETSCAPE 2023 Online School 4

JETSCAPE/X-SCAPE

Event generator Statistical toolkit

• A framework for
general-purpose MC
event generators in 
e-A, p/d-A and  
A-A collisions

• Extract model parameters
via Bayesian analysis with
Gaussian Process
Emulators

https://github.com/JETSCAPE/X-SCAPE https://github.com/JETSCAPE/STAT

Topic for today

https://github.com/JETSCAPE/X-SCAPE
https://github.com/JETSCAPE/STAT

Joern Putschke, WSU JETSCAPE 2023 Online School 5

A general-purpose MC framework

JETSCAPE/X-SCAPE is not just for jets!
It is a framework for general-purpose event generators

A unified framework has clear benefits when we want to compare
models of one particular part of a multi-stage event evolution

The JETSCAPE/X-SCAPE framework is modular1
The core framework decides how physics modules can interact with
each other — but the modules themselves can be user-contributed

Physics modules are open-source2
Key improvement in particular in heavy-ion physics —
predictions can be checked against many observables
simultaneously

Joern Putschke, WSU JETSCAPE 2023 Online School 6

The current status

Wide variety of physics
available — additions ongoing

The framework(s) are
available and ready for

public use

Ideal time to contribute
additional physics modules

JETSCAPE Public

 41 branches 21 tags

JETSCAPE 3.5.4

The JETSCAPE simulation framework is an overarching computational envelope for developing complete event

generators for heavy-ion collisions. It allows for modular incorporation of a wide variety of existing and future

software that simulates different aspects of a heavy-ion collision. For a full introduction to JETSCAPE, please

see The JETSCAPE framework.

Please cite The JETSCAPE framework if you use this package for scientific work.

Installation

Please see the Installation Instructions.

Running JETSCAPE

The main executable to generate JETSCAPE events is runJetscape , located in the build/ directory. To

generate JETSCAPE events, you should pass an XML file specifying the settings with which you would like to

run:

The XML Configuration

All of the JETSCAPE settings are specified by two XML files:

Main XML file: you don't modify this
Contains default values for every possible module and parameter

User XML file: you provide this
Contains a list of which modules to run, and which default parameter values to override

An example User XML file is provided at config/jetscape_user.xml . You should adapt this as you like:

Set number of events to run

Set output format (Writer type) and filename

Set which modules to include (in order of execution)

Set any default parameter values (from Main XML file) to override

The Main XML file is located at config/jetscape_main.xml , and contains a list of the default parameter

settings which will be used for all activated modules (as specified by the User XML file), if they are not

overridden in the User XML file.

You can pass the path to your user XML file as a command-line argument to the runJetscape executable:

JETSCAPE Output

JETSCAPE output can be generated in Ascii, gzipped Ascii, or HepMC format, and contains a full list of particles

and the parton shower history. You must specify which format you would like to activate in your User XML file.

Analysis of JETSCAPE Output

Analysis of JETSCAPE output is generally beyond the scope of the JETSCAPE framework, and is the

responsibility of the user. The JETSCAPE docker container includes ROOT, python, fastjet, and several other

tools that may be useful.

An example reading an ascii output file is provided:

which reads in the generated showers does some DFS search and shows the output. You can generate an

output graph format which can be easily visualized using graphViz or other tools like Gephi (GUI for free for

Mac) or more adanvanced, graph-tools (Python) and many more. Furthermore, as a "closure" test, the FastJet

core package (compiled in our JetScape library) is used to perform a simple jetfinding (on the "final" partons, in

graph language, incoming partons in a vertex with no outgoing partons/childs), and since the "shower" is

perfectly collinear the jet pT is identical to the hard process parton pT (modulo some random new partons/roots

in the final state, see above).

JETSCAPE Tunes

Currently, there exists a pp tune PP19, which can be run by:

Tuning of Pb-Pb is ongoing. Several example hydro profiles can be downloaded using

examples/get_hydroSample* .

Developing modules

To develop a new JETSCAPE module, you should inherit from the relevant base class (InitialState,

JetEnergyLoss, etc.) and implement the relevant initialization and execution functions, described in detail in The

JETSCAPE framework Section 3.3.

Additionally, you must register your module with the framework with the following steps:

Add the following to your module .h:

Add the following to your module .cc:

where MyClass is the name of your class, and "CustomModuleBlahBlah" is the name that should be added to

the XML configuration. You can see any of the established modules, e.g. Matter , as an example.

Important Note: In the case of custom modules, you must start your module name with "CustomModule..." in

order for it to be recognized by the framework (for custom writers, you must start the name with

"CustomWriter").

New modules should not use multiple inheritance, if avoidable.

Once these steps are done, one can just add the module name to the XML, and it will be automatically available

to run in JETSCAPE.

Troubleshooting

If you encounter a problem, please report the issue here. Please be sure to include enough information so that

we can reproduce your issue: your platform, JETSCAPE version, configuration file, and anything else that may

be relevant.

Contributing to JETSCAPE

If you would like to contribute code to JETSCAPE (new module, feature, bug fix, etc.) please open a Pull

Request with your changes, or an Issue describing what you intend to do. For further details, see Tips for git

management.

About

JETSCAPE, a modular, task-based

framework for simulating all aspects of

heavy-ion collisions.

 Readme

 View license

 Activity

 34 stars

 20 watching

 46 forks

Report repository

Releases 20

JETSCAPE 3.5.4 Latest

on Feb 28

+ 19 releases

Packages

No packages published
Publish your first package

Contributors 27

+ 16 contributors

Environments 1

 github-pages Active

Languages

C++ 90.9% Python 6.2%

CMake 1.2% Shell 0.5%

C 0.4% Makefile 0.4%

Other 0.4%

JETSCAPE / JETSCAPE Type / to search

Code Issues 15 Pull requests Actions Projects Wiki Security Insights

Edit Pins Watch 20 Fork 46 Star 34

 main Go to file Add file Code

latessa Merge pull request #151 from JETSCAPE/ip-glasma-docs … 68a45ce on Jun 7 1,948 commits

.github/workflows updated version number to 3.5.4 5 months ago

cmakemodules Updated Jetscape.cc to load HepMC ROOT writer via XML 7 months ago

config Updated Jetscape.cc to load HepMC ROOT writer via XML 7 months ago

docker updating Dockerfile for v1.8 to include Heppy (needed for plot obse… 8 months ago

examples Preparation to Include hepMC ROOT reader in jetscape.cc 7 months ago

external_packages updated IP-Glasma instructions last month

jail Fix typos in JetScape messages to address issue #120 last year

src Merge pull request #143 from JETSCAPE/LightQuarkRestMassFix 5 months ago

.clang-format standardize code formatting with clang-format 3 years ago

.gitignore ignore the ipglasma code folder 2 years ago

AUTHORS minor cleanup and documentation improvements 3 years ago

CMakeLists.txt Updated Jetscape.cc to load HepMC ROOT writer via XML 7 months ago

COPYING Updated COPYING 5 years ago

INSTALL.txt Renamed 3rdparty 5 years ago

JetScapeDoxy.conf Change from XML Master file to XML Main file last year

README.md updated version number to 3.5.4 5 months ago

README_LINUX.md Update README_LINUX.md 5 years ago

activate_jetscape.csh Remove the remaining instances of old header. Some minor cleanu… 5 years ago

activate_jetscape.sh Merge ReleaseAApaper into master (features from 2.0, QM2019 de… 4 years ago

./runJetscape ../config/jetscape_user.xml

./runJetscape /path/to/my/user_config.xml

./build/readerTest

./runJetscape ../config/jetscape_user_PP19.xml

private:
// Allows the registration of the module so that it is available to be used by the Jetscape framework.
static RegisterJetScapeModule<MyClass> reg;

// Register the module with the base class
RegisterJetScapeModule<MyClass> MyClass::reg("CustomModuleBlahBlah");

© 2023 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

README.md

X-SCAPE Public

 2 branches 2 tags

X-SCAPE 1.0

The X-ion collisions with a Statistically and Computationally Advanced Program Envelope (X-SCAPE) is the

enhanced (and 2nd) project of the JETSCAPE collaboration which extends the framework to include small

systems created in p-A and p-p collisions, lower energy heavy-ion collisions and electron-Ion collisions. The

new framework allows for novel functionality such as the ability of the main simulation clock to go backwards

and forwards, to deal systematically with initial state and final state evolution. It allows for multiple bulk event

generators to run concurrently while exchanging information via a new Bulk Dynamics Manager. The X-SCAPE

framework can be run using the new functionality or in JETSCAPE mode allowing for full backwards

compatibility. New modules can also run in a hybrid fashion, choosing to use or not use the new clock

functionality. More documentation of the new X-SCAPE framework capabilities will be provided in the near

future. For now, test examples showcasing the new X-SCAPE framework functionalities can be found in the

./examples/custom_examples/ directory (for example in PythiaBDMTes.cc and PythiaBrickTest.cc).

The JETSCAPE simulation framework is an overarching computational envelope for developing complete event

generators for heavy-ion collisions. It allows for modular incorporation of a wide variety of existing and future

software that simulates different aspects of a heavy-ion collision. For a full introduction to JETSCAPE, please

see The JETSCAPE framework.

Please cite The JETSCAPE framework if you use this package for scientific work.

Installation

Note that X-SCAPE dependencies require cmake to be called specifying the language standard C++14 or

greater.

For example, to compile X-SCAPE for the ISR run with 3DGlauber support, run the get_3dglauber.sh script from

the external_packages folder:

Then from the build folder, call cmake with the C++14 and 3DGlauber flags:

If installing X-SCAPE with SMASH, the get_smash.sh script will clone an alternate branch of SMASH currently

required for use with X-SCAPE. A future release of SMASH will bring X-SCAPE support to SMASH's main

branch.

Please see the complete Installation Instructions here.

Running X-SCAPE/JETSCAPE

Running the new X-SCAPE module(s) (see below) is currently not supported vi the XML configuration (will be

included in X-SCAPE 1.x). The small system physics (via 3d Glauber and iMatter ISR shower) provides its own

executable:

More test examples showcasing the new X-SCAPE framework functionalities can be found in the

./examples/custom_examples/ directory.

X-SCAPE is fully backwards compatible, so the main executable to generate JETSCAPE events is runJetscape

located in the build/ directory works and contains the same functionalities and features than the latest

JETSCAPE release. To generate JETSCAPE events, you should pass an XML file specifying the settings with

which you would like to run:

The XML Configuration

All of the JETSCAPE settings are specified by two XML files:

Main XML file: you don't modify this
Contains default values for every possible module and parameter

User XML file: you provide this
Contains a list of which modules to run, and which default parameter values to override

An example User XML file is provided at config/jetscape_user.xml . You should adapt this as you like:

Set number of events to run

Set output format (Writer type) and filename

Set which modules to include (in order of execution)

Set any default parameter values (from Main XML file) to override

The Main XML file is located at config/jetscape_main.xml , and contains a list of the default parameter

settings which will be used for all activated modules (as specified by the User XML file), if they are not

overridden in the User XML file.

You can pass the path to your user XML file as a command-line argument to the runJetscape executable:

JETSCAPE Output

JETSCAPE output can be generated in Ascii, gzipped Ascii, or HepMC format, (for HepMC format in ROOT see

examples/custom_examples/PythiaBrickTestRoot.cc and use cmake with -DUSE_ROOT=ON) and contains a full

list of particles and the parton shower history. You must specify which format you would like to activate in your

User XML file.

Analysis of JETSCAPE Output

Analysis of JETSCAPE output is generally beyond the scope of the JETSCAPE framework, and is the

responsibility of the user. The JETSCAPE docker container includes ROOT, python, fastjet, and several other

tools that may be useful.

An example reading an ascii output file is provided:

which reads in the generated showers does some DFS search and shows the output. You can generate an

output graph format which can be easily visualized using graphViz or other tools like Gephi (GUI for free for

Mac) or more advanced, graph-tools (Python) and many more. Furthermore, as a "closure" test, the FastJet

core package (compiled in our JetScape library) is used to perform a simple jetfinding (on the "final" partons, in

graph language, incoming partons in a vertex with no outgoing partons/childs), and since the "shower" is

perfectly collinear the jet pT is identical to the hard process parton pT (modulo some random new partons/roots

in the final state, see above).

JETSCAPE Tunes

Currently, there exists a pp tune PP19, which can be run by:

Tuning of Pb-Pb is ongoing. Several example hydro profiles can be downloaded using

examples/get_hydroSample* .

X-SCAPE modules (New)

3DGlauber support

3DGlauber is a 3D initial state model. 3DGlauber generates the initial state for MUSIC and can be integrated into

the JETSCAPE framework. To download the latest version of 3DGlauber, one can run the shell script under the

external_packages folder,

To compile the 3DGlauber code together with the JETSCAPE framework, please turn on the 3DGlauber support

option,

For more details see 3DGlauber.

Initial State Shower using iMatter

To use the ISR shower of iMatter, please make sure that the environment variable $PYTHIA8 is set and points to

the directory where pythia8 is installed which can be found using pythia8-config --prefix . If you use the

JETSCAPE docker container (v1.8), all environment variables, including the $PYTHIA8 for iMatter are set

properly.

After using 3DGlauber support to compile JETSCAPE, one can use ./PythiaIsrTest (in the build directory) to

run iMatter and 3DGlauber which uses the xml user file config/jetscape_user_iMATTERMCGlauber.xml . For

running 3DGlauber with Hydro (Music) please see 3DGlauber.

JETSCAPE modules

Since X-SCAPE is fully backwards compatible, all JETSCAPE modules can be used in X-SCAPE utilizing the

JETSCAPE like per-event execution. Additional functions have to be implemented to extend towards per-time-

step execution (normally achieved by refactoring the per-event code) using the new clock feature, allowing full

concurrent running of all physics modules. More details will be provided in CONTRIBUTING.

MUSIC support

MUSIC is a (3+1)D viscous hydrodynamical code developed at McGill university. (Official website:

http://www.physics.mcgill.ca/MUSIC) MUSIC can be integrated into the JETSCAPE framework. To download the

latest version of MUSIC, one can run the shell script under the external_packages folder,

This shell script will clone the latest version of MUSIC to external_packages folder. It also setup the enviroment

variables for MUSIC to run. Specifically, MUSIC needs the folder path for the EOS tables. Please make sure the

enviroment variable HYDROPROGRAMPATH to be set to the path for MUSIC code package.

When compiling MUSIC with JETSCAPE, please turn on the MUSIC support option when generating the cmake

configuration file,

To run JETSCAPE with MUSIC, one needs to use MPI commands,

iSS support

iSS is a Monte Carlo sampler code after the hydrodynamics and can be integrated into the JETSCAPE

framework. To download the lastest version of iSS, one can run the shell script under the external_packages

folder,

To compile the iSS code together with the JETSCAPE framework, please turn on the iSS support option,

Running JETSCAPE with CLVisc

In order to run clvisc in JETSCAPE, one has to download it in external_packages/, using

Then compile and run the framework with a XML configuration file which turns clvisc on.

If the cmake fails because OpenCL is not installed, please check it. OpenCL is delivered in MacOS by default. If

you use linux machine with Nvidia GPUs, you will need to install CUDA, which will provide OpenCL support. If

you use linux machine with AMD GPUs, Intel GPUs or any CPUs, you will need to install AMD APP SDK.

SMASH hadronic afterburner

SMASH [https://smash-transport.github.io] is a hadronic transport approach developed at Frankfurt University

and GSI by the group of Prof. H. Elfner (nee Petersen). In JetScape SMASH can serve as an afterburner, useful

to compute soft observables.

Installing SMASH

SMASH is published on github at https://github.com/smash-transport/smash. See SMASH Readme for libraries

required by SMASH and how to install them.

Compiling JetScape with SMASH

The usage of SMASH in JETSCAPE as an afterburner requires hydro, sampler and SMASH itself. Therefore, to

use it in JETSCAPE,

To run JetScape test with SMASH:

Currently the iSS sampler doesn't performs resonance decays after sampling. For reasonable physics with

SMASH these decays should be switched off.

More information

More material on the physics behind JETSCAPE and how to use it can be found in the material of the JETSCAPE

Summer Schools. The schools are a yearly event explaining the details of the approach. You can either sign-up

for the next one or go through the material of the last school yourself. The material is found in the

SummerSchool repositories under the JETSCAPE organization.

Troubleshooting

If you encounter a problem, please report the issue here. Please be sure to include enough information so that

we can reproduce your issue: your platform, JETSCAPE version, configuration file, and anything else that may

be relevant.

Contributing

Please see the CONTRIBUTING for instructions how to do contribute to the framework and development hints.

About

The public repository for the X-SCAPE

project of the JETSCAPE collaboration

 Readme

 GPL-3.0, Unknown licenses found

 Activity

 0 stars

 6 watching

 0 forks

Report repository

Releases 2

X-SCAPE 1.0 Latest

on Mar 13

+ 1 release

Packages

No packages published
Publish your first package

Contributors 29

+ 18 contributors

Languages

C++ 91.2% Python 6.0%

CMake 1.2% Shell 0.4%

Makefile 0.4% C 0.4%

Other 0.4%

JETSCAPE / X-SCAPE Type / to search

Code Issues Pull requests Actions Projects Wiki Security Insights Settings

Edit Pins Unwatch 6 Fork 0 Star 0

 main Go to file Add file Code

latessa Merge pull request #3 from JETSCAPE/ip-glasma-docs … 36b2259 on Jun 7 2,413 commits

.github/workflows merging public main with 1.0 branch 4 months ago

cmakemodules Remove not needed CMake module files 7 months ago

config Merge branch 'XSCAPE-RC2' into 3DGlauber-MUSIC-FOR_RC2 5 months ago

docker updated docker files to include PYTHIA8 env variable 7 months ago

examples refactor of PythiaIsrMusic and fix of typo 4 months ago

external_packages updated IP-Glasma instructions last month

src Merge pull request #101 from JETSCAPE/3DGlauber-MUSIC-FOR_… 4 months ago

.clang-format standardize code formatting with clang-format 3 years ago

.gitignore changes with incremental commits 5 months ago

AUTHORS minor cleanup and documentation improvements 3 years ago

CMakeLists.txt Compile PythiaIsrMUSIC only when turn on 3DGlauber, MUSIC and … 4 months ago

CONTRIBUTING.md Mention that ideally one should use doxygen code comments in he… 9 months ago

COPYING Updated COPYING 5 years ago

JetScapeDoxy.conf Update JetScapeDoxy.conf 8 months ago

LICENSE Create LICENSE 7 months ago

README.md changed README to point to X-SCAPE wiki instead of JETSCAPE 4 months ago

./get_3dglauber.sh

mkdir build
cd build
cmake .. -DCMAKE_CXX_STANDARD=14 -DUSE_3DGlauber=ON
make -j4 # Builds using 4 cores; adapt as appropriate

./PythiaIsrTest

./runJetscape ../config/jetscape_user.xml

./runJetscape /path/to/my/user_config.xml

./build/readerTest

./runJetscape ../config/jetscape_user_PP19.xml

 ./get_3dglauber.sh

 mkdir build
 cd build
 cmake -DCMAKE_CXX_STANDARD=14 -DUSE_3DGlauber=ON ..
 make -j4

 ./get_music.sh

 mkdir build
 cd build
 cmake -DUSE_MUSIC=ON ..
 make

 mpirun -np 1 ./MUSICTest

 ./get_iSS.sh

 mkdir build
 cd build
 cmake -DUSE_ISS=ON ..
 make

sh get_clvisc.sh

cd build/
cmake .. -DUSE_CLVISC=on
make
./runJetscape ../config/jetscape_clvisc.xml

 export EIGEN3_ROOT=<eigen install directory>/include/eigen3/
 export GSL_ROOT_DIR=$(gsl-config --prefix)
 export BOOST_ROOT=<boost install directory>
 export PYTHIA8DIR=${PYTHIAINSTALLDIR}/pythia8235
 export PYTHIA8_ROOT_DIR=${PYTHIAINSTALLDIR}/pythia8235

 export JETSCAPE_DIR=${HOME}/JETSCAPE-COMP
 export SMASH_DIR=${JETSCAPE_DIR}/external_packages/smash/smash_code

 cd ${JETSCAPE_DIR}/external_packages
 ./get_smash.sh

 mkdir ${JETSCAPE_DIR}/build
 cd ${JETSCAPE_DIR}/build
 cmake -DUSE_MUSIC=ON -DUSE_ISS=ON -DUSE_FREESTREAM=ON -DUSE_SMASH=ON ..

 cd build
 ./SMASHTest

© 2023 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

README.md

https://github.com/JETSCAPE/X-SCAPE

https://github.com/JETSCAPE/JETSCAPE

https://github.com/JETSCAPE/JETSCAPE
https://github.com/JETSCAPE/X-SCAPE
https://github.com/JETSCAPE/JETSCAPE

Joern Putschke, WSU JETSCAPE 2023 Online School 7

JETSCAPE vs X-SCAPE

X-SCAPE is fully backwards compatible to JETSCAPE! 
→ X-SCAPE 1.0 includes and can be run in JETSCAPE 

mode exactly like JETSCAPE 3.5.x !

JETSCAPE release map: 
- 3.6.x last feature/physics release 
 (fragmentation hadrons in SMASH)

- 4.x code optimization

X-SCAPE release map: 
- 1.1 to include JETSCAPE 3.6.x 
- 2.x Low beam energy AA

- 3.x EIC physics

In this lecture, if I refer to JETSCAPE (logo in upper right corner), 
I refer to running X-SCAPE 1.0 in JETSCAPE mode!

If I refer to X-SCAPE (logo in upper right corner), I refer to  
X-SCAPE 1.0 specific functionalities not part of JETSCAPE

Joern Putschke, WSU JETSCAPE 2023 Online School

Doc.Installation

Joe Latessa edited this page on Apr 11 · 5 revisions

 Pages 19

Find a page…

Home

3DGlauber, MUSIC, iSS and Initial …

Doc.FAQ

Doc.Installation

Choosing Between Docker
and Singularity Containers

Instructions to Install and
Run X-SCAPE Using Docker

Instructions to Install and
Run X-SCAPE Using
Singularity

Instructions to Install and
Run X-SCAPE Using
Singularity on HPC Grid
Accounts

An Example Use-Case for
Running HPC Batch Jobs
with X-SCAPE and
Singularity

Instructions to Run X-
SCAPE Using a Docker
Image with X-SCAPE
preinstalled

Manual Installation (not
recommended)

External packages

Doc.Installation.Docker

Doc.Installation.Docker.Linux

Doc.Installation.Docker.Linux.Full

Doc.Installation.Docker.MacOS

Doc.Installation.Docker.Windows

Doc.Installation.Manual

Doc.Installation.Manual.Linux.Pre…

Doc.Installation.Manual.MacOS.Pr…

Doc.Installation.Singularity.HPC

Doc.Installation.Singularity.Local

Doc.Policy.Issues

Show 4 more pages…

 Add a custom sidebar

Clone this wiki locally

To run X-SCAPE, you will need to install several software pre-requisites, and then build X-SCAPE. Acquiring the pre-

requisites using a container environment will be simpler than installing the pre-requisites manually.

Choosing Between Docker and Singularity Containers

Singularity and Docker both provide a container environment in which X-SCAPE can be installed and executed. Unlike

Docker, Singularity does not require root privileges, so if the container is built on a machine where you have root access,

the container can be transferred to a HPC and executed without root privileges. The advantage of using Singularity is

that many HPC grids support Singularity but do not support Docker as Docker would require giving grid account users

root access. If you only intend to use X-SCAPE on your local computer and your computer is a MAC, Docker would be a

better choice since Singularity only runs on Linux (or Windows 10 systems via WSL2, the Windows Subsystem for Linux).

If you only intend to use X-SCAPE on your local Windows 10 or Linux system, Singularity and Docker are comparable

choices.

Instructions to Install and Run X-SCAPE Using Docker

We recommend to install X-SCAPE and its pre-requisites using Docker.

Instructions to Install and Run X-SCAPE Using Singularity

Another option is to install X-SCAPE and its pre-requisites using Singularity.

Instructions to Install and Run X-SCAPE Using Singularity on HPC Grid Accounts

These installation instructions were created using Wayne State University's Grid. The instructions may need to be

adapted to the specific HPC system being used.

An Example Use-Case for Running HPC Batch Jobs with X-SCAPE and Singularity

Different HPC systems have their own unique features and usability requirements. This example use-case demonstrates

a strategy for running X-SCAPE batch jobs with Singularity on the ISAAC Open Enclave at University of Tennessee

Knoxville. These instructions will likely require adaptation for other HPC systems or specific project requirements.

Instructions to Run X-SCAPE Using a Docker Image with X-SCAPE preinstalled

The standard method to install and run X-SCAPE involves using a Docker or Singularity image with only the software

dependencies installed and not X-SCAPE itself. X-SCAPE is then cloned and installed in a mounted host system directory

from within the container. This is ideal for X-SCAPE development. However, if you only plan to run X-SCAPE, instructions

to use a Docker image with X-SCAPE preinstalled are provided here.

Manual Installation (not recommended)

Please see the instructions here.

External packages

To run certain external software (MUSIC, CLVisc, SMASH), you will need to explicitly download them, and you may need

to re-run cmake with specific command-line options. Scripts to download and install the external packages are provided

in external_packages/ . Please see external packages for full details.

The available cmake options are:

 Add a custom footer

JETSCAPE / X-SCAPE Type / to search

Code Issues Pull requests Actions Projects Wiki Security Insights Settings

Edit New page

https://github.com/JETSCAPE/X-SCAPE.wiki.git

cmake .. -DUSE_MUSIC=ON -DUSE_ISS=ON -DUSE_FREESTREAM=ON -DUSE_SMASH=ON -DUSE_CLVISC=ON

© 2023 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

Doc.Installation

Joe Latessa edited this page on Apr 11 · 5 revisions

 Pages 19

Find a page…

Home

3DGlauber, MUSIC, iSS and Initial …

Doc.FAQ

Doc.Installation

Choosing Between Docker
and Singularity Containers

Instructions to Install and
Run X-SCAPE Using Docker

Instructions to Install and
Run X-SCAPE Using
Singularity

Instructions to Install and
Run X-SCAPE Using
Singularity on HPC Grid
Accounts

An Example Use-Case for
Running HPC Batch Jobs
with X-SCAPE and
Singularity

Instructions to Run X-
SCAPE Using a Docker
Image with X-SCAPE
preinstalled

Manual Installation (not
recommended)

External packages

Doc.Installation.Docker

Doc.Installation.Docker.Linux

Doc.Installation.Docker.Linux.Full

Doc.Installation.Docker.MacOS

Doc.Installation.Docker.Windows

Doc.Installation.Manual

Doc.Installation.Manual.Linux.Pre…

Doc.Installation.Manual.MacOS.Pr…

Doc.Installation.Singularity.HPC

Doc.Installation.Singularity.Local

Doc.Policy.Issues

Show 4 more pages…

 Add a custom sidebar

Clone this wiki locally

To run X-SCAPE, you will need to install several software pre-requisites, and then build X-SCAPE. Acquiring the pre-

requisites using a container environment will be simpler than installing the pre-requisites manually.

Choosing Between Docker and Singularity Containers

Singularity and Docker both provide a container environment in which X-SCAPE can be installed and executed. Unlike

Docker, Singularity does not require root privileges, so if the container is built on a machine where you have root access,

the container can be transferred to a HPC and executed without root privileges. The advantage of using Singularity is

that many HPC grids support Singularity but do not support Docker as Docker would require giving grid account users

root access. If you only intend to use X-SCAPE on your local computer and your computer is a MAC, Docker would be a

better choice since Singularity only runs on Linux (or Windows 10 systems via WSL2, the Windows Subsystem for Linux).

If you only intend to use X-SCAPE on your local Windows 10 or Linux system, Singularity and Docker are comparable

choices.

Instructions to Install and Run X-SCAPE Using Docker

We recommend to install X-SCAPE and its pre-requisites using Docker.

Instructions to Install and Run X-SCAPE Using Singularity

Another option is to install X-SCAPE and its pre-requisites using Singularity.

Instructions to Install and Run X-SCAPE Using Singularity on HPC Grid Accounts

These installation instructions were created using Wayne State University's Grid. The instructions may need to be

adapted to the specific HPC system being used.

An Example Use-Case for Running HPC Batch Jobs with X-SCAPE and Singularity

Different HPC systems have their own unique features and usability requirements. This example use-case demonstrates

a strategy for running X-SCAPE batch jobs with Singularity on the ISAAC Open Enclave at University of Tennessee

Knoxville. These instructions will likely require adaptation for other HPC systems or specific project requirements.

Instructions to Run X-SCAPE Using a Docker Image with X-SCAPE preinstalled

The standard method to install and run X-SCAPE involves using a Docker or Singularity image with only the software

dependencies installed and not X-SCAPE itself. X-SCAPE is then cloned and installed in a mounted host system directory

from within the container. This is ideal for X-SCAPE development. However, if you only plan to run X-SCAPE, instructions

to use a Docker image with X-SCAPE preinstalled are provided here.

Manual Installation (not recommended)

Please see the instructions here.

External packages

To run certain external software (MUSIC, CLVisc, SMASH), you will need to explicitly download them, and you may need

to re-run cmake with specific command-line options. Scripts to download and install the external packages are provided

in external_packages/ . Please see external packages for full details.

The available cmake options are:

 Add a custom footer

JETSCAPE / X-SCAPE Type / to search

Code Issues Pull requests Actions Projects Wiki Security Insights Settings

Edit New page

https://github.com/JETSCAPE/X-SCAPE.wiki.git

cmake .. -DUSE_MUSIC=ON -DUSE_ISS=ON -DUSE_FREESTREAM=ON -DUSE_SMASH=ON -DUSE_CLVISC=ON

© 2023 GitHub, Inc. Terms Privacy Security Status Docs Contact GitHub Pricing API Training Blog About

8

Installing X-SCAPE
https://github.com/JETSCAPE/X-SCAPE/wiki/Doc.Installation

Preferred for local use and development

Usually needed to use container  
feature in large computing farms  
(some comments later)

Joern Putschke, WSU JETSCAPE 2023 Online School 9

Installing X-SCAPE

Docker support
One line of code to create environment with all software pre-reqs
For example: https://github.com/JETSCAPE/X-SCAPE/wiki/Doc.Installation.Docker.MacOS

DockerCon 2023: Our annual developer event is back — online & in person. Learn more.

Why Products

Product Offerings

Features

Developers Company

© 2023 Docker, Inc. All rights reserved. | Terms of Service | Subscription Service Agreement | Privacy | Legal

Cookies Settings

✕

By jetscape • Updated 2 months ago

Base image containing the JETSCAPE pre-requisites.

Image

Pulls 10K+

Base image containing the JETSCAPE pre-requisites.

The version numbers here are unrelated to JETSCAPE release versions.

The version tagged as stable is the currently recommended version for JETSCAPE >= 3.0.

The version tagged as test was built for ARM64 archictures, but does not include Root or Heppy.

v1.8 (currently tagged as stable)

ROOT v6-26-06

HepMC 3.2.5

v1.7

ROOT v6-18-04 with python3.6 support

Pythia 8.307

HepMC 3.1.1

HEP tools (fastjet+contribs and more) via heppy

Variety of python packages, including those needed for JETSCAPE-STAT software

See Dockerfile for other packages

v1.6 is a development version for the JETSCAPE STAT group.

v1.5 is a development version for PYTHIA version 8.303.

v1.4

ROOT v6-18-04 with python3.6 support

Pythia 8.235

HepMC 3.1.1

HEP tools (fastjet+contribs and more) via heppy

Variety of python packages, including those needed for JETSCAPE-STAT software

See Dockerfile for other packages

v1.3

ROOT v6-14-06 with python3.6 support

Pythia 8.235

HepMC 3.1.1

FastJet 3.3.2 + contribs 1.041

See Dockerfile for other packages

v1.2 is the currently recommended version for JETSCAPE < = 2.0

ROOT v6-14-06 with python3.6 support

Pythia 8.240

HepMC 3.0

FastJet 3.3.2 + contribs 1.041

See Dockerfile for other packages

Release notes

v1.8: Update Root to version 6.26.06, and update HepMC to version 3.2.5

v1.7: Update Pythia to version 8.307, which is needed by SMASH-2.2

v1.4: Include HEP tools via heppy, and include python packages for JETSCAPE-STAT software

v1.3: Update HepMC to version 3.1.1, and include SMASH pre-reqs.

v1.2: Includes fastjet and fastjet contribs.

v1.1: Includes some additional python packages.

v1: Initial release.

docker pull jetscape/base

Explore jetscape/base

jetscape/base

OverviewOverview Tags

Docker Pull Command

Explore Pricingjetscape Sign In Register

For this school, we require you to run  
X-SCAPE (JETSCAPE) via docker

This allows everyone in the school to  
have a uniform software environment

Joern Putschke, WSU JETSCAPE 2023 Online School

If you just want to use X-SCAPE/JETSCAPE  
as an out of the box event generator 
we provide fully compiled, ready to 

run Docker containers! 

10

More Docker Containers …

DockerCon 2023: Our annual developer event is back — online & in person. Learn more.

Why Products

Product Offerings

Features

Developers Company

© 2023 Docker, Inc. All rights reserved. | Terms of Service | Subscription Service Agreement | Privacy | Legal

Cookies Settings

✕

By jetscape • Updated 3 months ago

Image containing a full implementation of X-SCAPE.

Image

Pulls 10

xscape_full contains a full implementation of X-SCAPE.

The version numbers here are unrelated to X-SCAPE release versions.

beta_v0.2

Implements X-SCAPE 1.0

docker pull jetscape/xscape_full

Explore jetscape/xscape_full

jetscape/xscape_full

OverviewOverview Tags

Docker Pull Command

Explore Pricingjetscape Sign In Register

DockerCon 2023: Our annual developer event is back — online & in person. Learn more.

Why Products

Product Offerings

Features

Developers Company

© 2023 Docker, Inc. All rights reserved. | Terms of Service | Subscription Service Agreement | Privacy | Legal

Cookies Settings

✕

By jetscape • Updated 3 months ago

Image containing a full implementation of JETSCAPE.

Image

Pulls 5

jetscape_full contains a full implementation of JETSCAPE.

The version numbers here are unrelated to JETSCAPE release versions.

beta_v0.2

Implements JETSCAPE 3.5.4

docker pull jetscape/jetscape_full

Explore jetscape/jetscape_full

jetscape/jetscape_full

OverviewOverview Tags

Docker Pull Command

Explore Pricingjetscape Sign In Register

Joern Putschke, WSU JETSCAPE 2023 Online School 11

Initial
State

Geometry

Hard
scattering

Initial soft
density

Medium-modified
Parton shower

Viscous
Hydrodynamics

Jet
hadronization

Cooper-Frye
hadronization

Hadronic
cascade

Module 1

…
Module 2

Q > Q0

Q < Q0

JETSCAPE Manual: 1903.07706
https://github.com/JETSCAPE/X-SCAPE

JETSCAPE Event Generator

https://github.com/JETSCAPE/X-SCAPE

Joern Putschke, WSU JETSCAPE 2023 Online School 12

Trento
(2+1, 3+1),
IPGlasma*

PYTHIA8
Parton gun

Free
streaming*

MUSIC (2+1, 3+1)*
CLVisc*

External file reader
Brick

Gubser

Colored
Colorless

(based on Pythia8)

Hybrid

Cooper-Frye
sampler*

SMASH*

JETSCAPE Manual: 1903.07706
https://github.com/JETSCAPE/X-SCAPE

JETSCAPE Event Generator

* Optional download

MATTER
PYTHIA8

LBT
Martini

AdS/CFT

https://github.com/JETSCAPE/X-SCAPE

Joern Putschke, WSU JETSCAPE 2023 Online School 13

Steps to run JETSCAPE

1. Install and build X-SCAPE (JETSCAPE)
2. Create a configuration file: config/jetscape_user.xml
 List of which modules to run, and which model parameters to use
 See examples in: config/

3. Execute runJetscape

That’s it!

https://github.com/JETSCAPE/JETSCAPE

Joern Putschke, WSU JETSCAPE 2023 Online School 14

• Main XML file — you don’t modify this
• Contains default values for every possible module

and parameter

• User XML file — you provide this

• List of which modules to run, and which default
parameter values to override

Configuring JETSCAPE

JETSCAPE is configured via two XML files

https://github.com/JETSCAPE/JETSCAPE

Joern Putschke, WSU JETSCAPE 2023 Online School 15

…

All possible initial state
module parameters

All possible
basic settings

Configuring JETSCAPE

Main XML file
 you don’t modify this

A “database” of all
possible modules
and parameters

config/jetscape_master.xml

…

https://github.com/JETSCAPE/JETSCAPE

Joern Putschke, WSU JETSCAPE 2023 Online School 16

Override values

Activate
modules
(in order)

Set Writer

Set nEvents

Configuring JETSCAPE

User XML file
you provide this

See examples in: config/

Specify which
modules to run

Specify parameter
values (otherwise
taken from master)

https://github.com/JETSCAPE/JETSCAPE

Joern Putschke, WSU JETSCAPE 2023 Online School 17

There is one central executable*: runJetscape.cc

• Modules are automatically added according to User XML

• You don’t ever need to re-compile this executable

Pass your user configuration file as a command line argument:

./runJetscape /path/to/my/user_config.xml

Running JETSCAPE

* For integration in other frameworks/different usage you can of course  
also write your own executable see in GitHub ./examples/costum_examples

https://github.com/JETSCAPE/JETSCAPE

Joern Putschke, WSU JETSCAPE 2023 Online School 18

JETSCAPE/X-SCAPE Output

Standard event format Ascii or ROOT format supported

Compatible with Rivet

You can produce JETSCAPE output in two formats*:

Ascii

HepMC3

Custom JETSCAPE format

Option to write (i) parton shower history, or (ii) only final-state particles

Can also directly write gzipped ascii

JETSCAPE output contains:
Final state hadrons

Final state partons

Full parton-shower history

* You can easily write your own output class to tailor to  
your specific needs by inheriting from the JetScapeWriter

https://github.com/JETSCAPE/JETSCAPE

Joern Putschke, WSU JETSCAPE 2023 Online School

1/16/19, 5:21 PMJETSCAPE: Jetscape::JetScapeTask Class Reference

Page 1 of 5file:///Users/putschke/JetScape/JETSCAPE-COMP/html/class_ jetscape_1_1_ jet_scape_task.html

◆ JetScapeTask()

Jetscape::JetScapeTask Class Reference

#include <JetScapeTask.h>

Inheritance diagram for Jetscape::JetScapeTask:

Public Member Functions
 JetScapeTask ()

virtual ~JetScapeTask ()

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

void EraseTaskLast ()

void EraseTaskAt (int i)

void ResizeTaskList (int i)

void ClearTaskList ()

int GetNumberOfTasks ()

const bool GetActive () const

void SetActive (bool m_active_exec)

void SetId (string m_id)

const string GetId () const

void SetActiveThread (bool m_active_thread)

const bool GetActiveThread () const

Detailed Description

Definition at line 42 of file JetScapeTask.h.

Constructor & Destructor Documentation

Jetscape::JetScapeTask::JetScapeTask ()

Default constructor to create a JetScapeTask. It sets the flag "active_exec" to true and "id" to default string value.

Definition at line 28 of file JetScapeTask.cc.

Figure 2: JetScapeTask inheritance diagram.

needed to ensure proper execution of the attached physics modules (for more details
see Sec. A.1). Note however that modules created via Clone() may circumvent this
automatic initialization; this is the case for the copies of jet energy loss modules used
for each showering parton. The Exec() handles the real execution of a task. It is
called exactly once per generated event. This method may not always contain the
core functionality of a module. For example, energy loss calculations happen mul-
tiple times per event (they are a per-parton or potentially per time-step process),
and corresponding modules should have their core functionality in DoShower() or
DoEnergyLoss(). The Clear() methods are overridden for the purpose of releasing
memory/clearing pointers or performing necessary operations needed for the proper
execution of modules after each event. Whereas the Finish() methods are overrid-
den for the purpose of releasing memory/clearing pointers or performing other oper-
ations at the end of a module’s life cycle. All of the above methods are called by the

28

19

Framework design: Inner workings

1/16/19, 5:21 PMJETSCAPE: Jetscape::JetScapeTask Class Reference

Page 1 of 5file:///Users/putschke/JetScape/JETSCAPE-COMP/html/class_ jetscape_1_1_ jet_scape_task.html

◆ JetScapeTask()

Jetscape::JetScapeTask Class Reference

#include <JetScapeTask.h>

Inheritance diagram for Jetscape::JetScapeTask:

Public Member Functions
 JetScapeTask ()

virtual ~JetScapeTask ()

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

void EraseTaskLast ()

void EraseTaskAt (int i)

void ResizeTaskList (int i)

void ClearTaskList ()

int GetNumberOfTasks ()

const bool GetActive () const

void SetActive (bool m_active_exec)

void SetId (string m_id)

const string GetId () const

void SetActiveThread (bool m_active_thread)

const bool GetActiveThread () const

Detailed Description

Definition at line 42 of file JetScapeTask.h.

Constructor & Destructor Documentation

Jetscape::JetScapeTask::JetScapeTask ()

Default constructor to create a JetScapeTask. It sets the flag "active_exec" to true and "id" to default string value.

Definition at line 28 of file JetScapeTask.cc.

Figure 2: JetScapeTask inheritance diagram.

needed to ensure proper execution of the attached physics modules (for more details
see Sec. A.1). Note however that modules created via Clone() may circumvent this
automatic initialization; this is the case for the copies of jet energy loss modules used
for each showering parton. The Exec() handles the real execution of a task. It is
called exactly once per generated event. This method may not always contain the
core functionality of a module. For example, energy loss calculations happen mul-
tiple times per event (they are a per-parton or potentially per time-step process),
and corresponding modules should have their core functionality in DoShower() or
DoEnergyLoss(). The Clear() methods are overridden for the purpose of releasing
memory/clearing pointers or performing necessary operations needed for the proper
execution of modules after each event. Whereas the Finish() methods are overrid-
den for the purpose of releasing memory/clearing pointers or performing other oper-
ations at the end of a module’s life cycle. All of the above methods are called by the

28

Physics modules are daughter
classes of JetScapeTask

The framework automatically calls
standard functions of these modules:

A task-based c++ framework

arXiv 1903.07706

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Joern Putschke, WSU JETSCAPE 2023 Online School 20

Framework design: Inner workings
arXiv 1903.07706

There is one significant API change between
JETSCAPE and X-SCAPE (source codes on
GitHub). It does not affect running, (X-SCAPE is
fully backward compatible) but it is important if
you develop your own new module:

1/16/19, 5:21 PMJETSCAPE: Jetscape::JetScapeTask Class Reference

Page 1 of 5file:///Users/putschke/JetScape/JETSCAPE-COMP/html/class_ jetscape_1_1_ jet_scape_task.html

◆ JetScapeTask()

Jetscape::JetScapeTask Class Reference

#include <JetScapeTask.h>

Inheritance diagram for Jetscape::JetScapeTask:

Public Member Functions
 JetScapeTask ()

virtual ~JetScapeTask ()

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

void EraseTaskLast ()

void EraseTaskAt (int i)

void ResizeTaskList (int i)

void ClearTaskList ()

int GetNumberOfTasks ()

const bool GetActive () const

void SetActive (bool m_active_exec)

void SetId (string m_id)

const string GetId () const

void SetActiveThread (bool m_active_thread)

const bool GetActiveThread () const

Detailed Description

Definition at line 42 of file JetScapeTask.h.

Constructor & Destructor Documentation

Jetscape::JetScapeTask::JetScapeTask ()

Default constructor to create a JetScapeTask. It sets the flag "active_exec" to true and "id" to default string value.

Definition at line 28 of file JetScapeTask.cc.

Figure 2: JetScapeTask inheritance diagram.

needed to ensure proper execution of the attached physics modules (for more details
see Sec. A.1). Note however that modules created via Clone() may circumvent this
automatic initialization; this is the case for the copies of jet energy loss modules used
for each showering parton. The Exec() handles the real execution of a task. It is
called exactly once per generated event. This method may not always contain the
core functionality of a module. For example, energy loss calculations happen mul-
tiple times per event (they are a per-parton or potentially per time-step process),
and corresponding modules should have their core functionality in DoShower() or
DoEnergyLoss(). The Clear() methods are overridden for the purpose of releasing
memory/clearing pointers or performing necessary operations needed for the proper
execution of modules after each event. Whereas the Finish() methods are overrid-
den for the purpose of releasing memory/clearing pointers or performing other oper-
ations at the end of a module’s life cycle. All of the above methods are called by the

28

JetScape Logo(s) I

`

JETSCAPE

a) c)

`Sca petJe
b)

d)

1

`

JETSCAPE

`Sca petJe

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Joern Putschke, WSU JETSCAPE 2023 Online School 21

Framework design: Inner workings

The framework defines how different types of
modules can interact with each other

This is implemented in a “signal-slot” paradigm*:

For example: Jet energy loss module needs access to hydro info

arXiv 1903.07706

* Introduced by the QT framework

Joern Putschke, WSU JETSCAPE 2023 Online School 22

arXiv 1903.07706

Framework design: Inner workings

Joern Putschke, WSU JETSCAPE 2023 Online School 23

Data structures
• Class JetScapeParticleBase

• The base class for all the JETSCAPE particles

• Privately inherits from FastJet PseudoJet and has

• PID and rest mass

• A location (4-vector)

• Label and status

• Derived classes so far:

• Parton and Hadron

Data Structures

Disabled some properties
and added some

801/09/19

Parton Class
• Properties are:

• Can be created:

01/09/19 9

We define getter and setter
Methods for the properties

…

arXiv 1903.07706

In addition: Photon class (inherits from Parton)

Joern Putschke, WSU JETSCAPE 2023 Online School 24

Data structures

• Class PartonShower

• Models parton showering as a Graph

• Partons are the edges

• Partons split at vertices

Data Structures
GTL Graph Template Library
[https://github.com/rdmpage/graph-template-library]

Provides functionalities to query shower
1001/09/19

Joern Putschke, WSU JETSCAPE 2023 Online School 26

Contributing modules

JETSCAPE/X-SCAPE is designed for users
to contribute new physics modules

Framework connects those modules together

To contribute modules, just need to interface to JETSCAPE:

See existing modules for examples

arXiv 1903.07706

Implement appropriate standard functions:

Use appropriate signal/slot info to interact with
other modules

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeTask Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void Init ()

virtual void Exec ()

virtual void Finish ()

virtual void Clear ()

virtual void ExecuteTasks ()

virtual void ExecuteTask ()

virtual void InitTask ()

virtual void InitTasks ()

virtual void ClearTasks ()

virtual void ClearTask ()

virtual void FinishTask ()

virtual void FinishTasks ()

virtual void WriteTasks (weak_ptr< JetScapeWriter > w)

virtual void WriteTask (weak_ptr< JetScapeWriter > w)

virtual void CollectHeader (weak_ptr< JetScapeWriter > w)

virtual void CollectHeaders (weak_ptr< JetScapeWriter > w)

virtual void Add (shared_ptr< JetScapeTask > m_tasks)

virtual const int GetMyTaskNumber () const

const vector< shared_ptr< JetScapeTask > > GetTaskList () const

shared_ptr< JetScapeTask > GetTaskAt (int i)

▶ LogStreamerThread

▶ JetScapeLogger

▶ JetScapeModuleBase

▶ JetScapeModuleFactory

▶ RegisterJetScapeModule

▶ JetScapeModuleMutex

▶ JetScapeParticleBase

▶ Parton

▶ Hadron

▶ Photon

▶ JetScapeSignalManager

▶ JetScapeTask

▶ JetScapeTaskSupport

▶ JetScapeWriter

▶ JetScapeWriterFinalStateStream

▶ JetScapeWriterFinalStatePartonsStream

▶ JetScapeWriterFinalStateHadronsStream

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

Main Page Related Pages Namespaces Classes Files Search

Joern Putschke, WSU JETSCAPE 2023 Online School 27

Example: Jet energy loss
An Example To Add an
Energy Loss Module

• User’s code must be a subclass of JetEnergyLossModule

• User’s code must override init() method for initializations

• User’s code must override DoEnergyLoss() method

• The actual energy loss calculations happen in this method

01/09/19 19

arXiv 1903.07706

Note: Jet energy loss modules are “special” in that DoEnergyLoss() is called
by the framework per-parton. Most modules are called per-event with Exec()

Joern Putschke, WSU JETSCAPE 2023 Online School 28

XML Reader

•JetScapeXML provides functionality to first examine the User file for a given
parameter, and if it is not found, it takes the value from the Master file.

•To init a parameter, call GetElementDouble({“Eloss”, “Martini”, “x”})
•No need to keep track of XML elements in modules! Just call the function!

•Similar functions GetElementText, GetElementInt, GetElement

•An optional second argument in these functions allows the parameter to be
optional in the XML file (by default, a parameter is required to be present or else
the program will crash when it is not found).

arXiv 1903.07706

An XML singleton class is provided to allow easy
initialization of your module parameters from the XML files

https://github.com/JETSCAPE/JETSCAPE

Remark: X-SCAPE 1.0 is not  
fully steered via XML, you  
have use a separate executable 
(see documentation for details).  
Will be changed in upcoming  
releases.

Joern Putschke, WSU JETSCAPE 2023 Online School 30

X-SCAPE: Extended Physics Scope

(iii) To improve our statistical framework by expanding Bayesian emulator-based tools for comparing
results of the event generator and experimental data.

In what follows, we outline a plan to construct such a framework. While our design borrows consid-
erably and is based on the prior JETSCAPE project, it represents a significant enhancement both in the
capability and content of the new modules, as well as in the overall framework that will allow for multiple
modules to be connected in any user-defined data exchange scheme and still provide transparent synchro-
nization between concurrent threads.

Exchange

Exchange

Exchange

In
iti

al
St

at
e

Hard
Scatter

Soft
Stopping

Energy
Deposition

Hadronization

Particalization

Hadronic Transport (concurrent)

+DUG�T��J��4�4��Ȗ��

Pre Equib. Stoch-Visc Fluid

Spectator Excitation

Ha
dr

on
ic

Tr
an

sp
or

t
(fi

na
l s

ta
te

)

decay

Ha
dr

on
ic

Fu
ll E

ve
nt

s

Ex
pe

rim
en

ta
l D

at
a

X-state (e/p/A)

ConstrainX-state (e/p/A)

Optimize

Partially-
corrected
observable

Experimental
SimulationsȖ, e� e–

STATISTICSMODEL CALCULATION

computing module (square) data output (dotted)Legend:

Fully-
corrected
observable

significant considerable moderate

Exchange

Figure 6: The proposed X-SCAPE framework, containing the X-SCAPE event generator, and statistical
toolkit for comparisons with fully/partially corrected observables. Every object in the flowchart is a
modular piece of code that may be modified or replaced. We will continue to enhance the task-based
framework invented for JETSCAPE. Boxes in green are currently completed in JETSCAPE, orange boxes
will have to be considerably enhanced for X-SCAPE, and red boxes are entirely new functionality. Unlike
the case of the JETSCAPE generator 2, there are no arrows representing information flow as the X-SCAPE

framework will allow arbitrary connections between any modules, and exchange of any type of data.

2.3.1 Initial State Fluctuations and Correlations:
Fluctuations occur on many levels and in many stages of X-X collisions. A key development for X-SCAPE

is to correlate the many sources of fluctuations across its many stages. In the JETSCAPE framework in
Fig. 2, once the locations of the nucleons (within the incoming nuclei) were determined, this information
was passed to a module that determined the energy deposition profile (TRENTO). At this point the hard
and soft sector separated (indicated by the two yellow modules at the left of the event generator diagram in
Fig. 2), with minimal crosstalk between the modules. The probability to form a hard jet at a given location
depends on the number of nucleon-nucleon collisions at that point, and this is somewhat correlated with the
density of deposited energy at that point. Thus, while there is a spatial correlation there is no correlation in
energy. In the new X-SCAPE framework an overarching base class that correlates both energy and location
of hard jets and soft energy deposition will be instituted, indicated by the large red box in the left of Fig. 6.

While simple to indicate in a diagram, this correlator module will allow for the correlation between
jets and density fluctuations within the deposited energy. As the system size is reduced, this module will
correlate fluctuations leading to jet production and the production of small droplets of QGP. In the absence
of jets, this module will correlate the initial conditions at lower energy collisions, leading to segments of
the plasma equilibrating with portions of hadronic gas. Once the correlator has completed operation, the
framework will launch several interacting modules which describe the modification of hard jets, photons,
and heavy-bosons with the equilibrating fluid, the equilibrated QGP, and the hadronic medium if present.

2.3.2 Pre-Equilibrium and Equilibrium Stages:
A realistic description of the system’s pre-equilibrium dynamics is essential to extend the new X-SCAPE

framework in the 3 new directions stated above. We will incorporate the newly developed pre-equilibrium
model (KøMPøST) [176] as well as anisotropic hydrodynamics [177]. Because the local energy density fluc-
tuates wildly over the nucleus scale, the hydrodynamization rate is different from point to point in space.

8

XSCAPE framework goal: To provide a decentralized and synchronized
framework, which will allow any user to attach his/her own modules and
reorganize the flow of data between the modules with the goal to simulate:
1) To simulate p-A and p-p collisions at arbitrary multiplicity (X-SCAPE 1.0) 
2) Any aspect of A-A collisions from FAIR to top LHC energy (X-SCAPE 2.0) 
3) To study e+e−and certain aspects of e-A collisions (X-SCAPE 3.0)

Joern Putschke, WSU JETSCAPE 2023 Online School 30

X-SCAPE: Extended Physics Scope

XSCAPE framework goal: To provide a decentralized and synchronized
framework, which will allow any user to attach his/her own modules and
reorganize the flow of data between the modules with the goal to simulate:
1) To simulate p-A and p-p collisions at arbitrary multiplicity (X-SCAPE 1.0) 
2) Any aspect of A-A collisions from FAIR to top LHC energy (X-SCAPE 2.0) 
3) To study e+e−and certain aspects of e-A collisions (X-SCAPE 3.0)

BDM calls SMASH, with
locations x,y,z,t

BDM calls Hydro with
locations x,y,z,t

Bulk Dynamics
Manager

(BDM)

ISR
Manager

i-MATTER

PythiaGun
JLoss

Manager

MATTER LBT

Liquifier2

4

5

6

77

User calls
Framework
with min_t
and max_t

and decides
module list

8

Ot
he

r m
od

ul
es

X-SCAPE
Workflow

Initial
state

1

3

Joern Putschke, WSU JETSCAPE 2023 Online School 31

X-SCAPE 1.0: Small Systems

BDM calls SMASH, with
locations x,y,z,t

BDM calls Hydro with
locations x,y,z,t

Bulk Dynamics
Manager

(BDM)

ISR
Manager

i-MATTER

PythiaGun
JLoss

Manager

MATTER LBT

Liquifier2

4

5

6

77

User calls
Framework
with min_t
and max_t

and decides
module list

8

Ot
he

r m
od

ul
es

X-SCAPE
Workflow

Initial
state

1

3

Provide new ISR Manager module, 
inherited from the JetEnergyLossManager, 
but evolves “backward” in time* to 
simulate the initial state radiation and 
allows exchange/interaction with the

InitialState module (3dGlauber for example).

*Remark: For now ISR Manager and backward time evolution is 
utilized for simplicity on a per-event basis (clock and per time-step 
evolution is working, but not utilized as default)

Physical Model
• Hard initial state partons are included in a hot spot
• Hard partons scatter with ISR and FSR.
• Hard energy removed from nucleons, not available for hydro evolution
• Some strings get pulled out by hard processes, fragmented by string breaking
• Strings that don’t get pulled out are liquified into a fluid
• Fluid evolves and produces particles
• Larger jet energy implies more fragmentation hadrons, and less hydro (Cooper-

Frye) hadrons

10

Hard energy removed
from nucleons, not
available for hydro
evolution! 
(Hard Probes 2023)

Joern Putschke, WSU JETSCAPE 2023 Online School 32

Simplified/more flexible data exchange
(iii) To improve our statistical framework by expanding Bayesian emulator-based tools for comparing

results of the event generator and experimental data.
In what follows, we outline a plan to construct such a framework. While our design borrows consid-

erably and is based on the prior JETSCAPE project, it represents a significant enhancement both in the
capability and content of the new modules, as well as in the overall framework that will allow for multiple
modules to be connected in any user-defined data exchange scheme and still provide transparent synchro-
nization between concurrent threads.

Exchange

Exchange

Exchange

In
iti

al
St

at
e

Hard
Scatter

Soft
Stopping

Energy
Deposition

Hadronization

Particalization

Hadronic Transport (concurrent)

+DUG�T��J��4�4��Ȗ��

Pre Equib. Stoch-Visc Fluid

Spectator Excitation

Ha
dr

on
ic

Tr
an

sp
or

t
(fi

na
l s

ta
te

)

decay

Ha
dr

on
ic

Fu
ll E

ve
nt

s

Ex
pe

rim
en

ta
l D

at
a

X-state (e/p/A)

ConstrainX-state (e/p/A)

Optimize

Partially-
corrected
observable

Experimental
SimulationsȖ, e� e–

STATISTICSMODEL CALCULATION

computing module (square) data output (dotted)Legend:

Fully-
corrected
observable

significant considerable moderate

Exchange

Figure 6: The proposed X-SCAPE framework, containing the X-SCAPE event generator, and statistical
toolkit for comparisons with fully/partially corrected observables. Every object in the flowchart is a
modular piece of code that may be modified or replaced. We will continue to enhance the task-based
framework invented for JETSCAPE. Boxes in green are currently completed in JETSCAPE, orange boxes
will have to be considerably enhanced for X-SCAPE, and red boxes are entirely new functionality. Unlike
the case of the JETSCAPE generator 2, there are no arrows representing information flow as the X-SCAPE

framework will allow arbitrary connections between any modules, and exchange of any type of data.

2.3.1 Initial State Fluctuations and Correlations:
Fluctuations occur on many levels and in many stages of X-X collisions. A key development for X-SCAPE

is to correlate the many sources of fluctuations across its many stages. In the JETSCAPE framework in
Fig. 2, once the locations of the nucleons (within the incoming nuclei) were determined, this information
was passed to a module that determined the energy deposition profile (TRENTO). At this point the hard
and soft sector separated (indicated by the two yellow modules at the left of the event generator diagram in
Fig. 2), with minimal crosstalk between the modules. The probability to form a hard jet at a given location
depends on the number of nucleon-nucleon collisions at that point, and this is somewhat correlated with the
density of deposited energy at that point. Thus, while there is a spatial correlation there is no correlation in
energy. In the new X-SCAPE framework an overarching base class that correlates both energy and location
of hard jets and soft energy deposition will be instituted, indicated by the large red box in the left of Fig. 6.

While simple to indicate in a diagram, this correlator module will allow for the correlation between
jets and density fluctuations within the deposited energy. As the system size is reduced, this module will
correlate fluctuations leading to jet production and the production of small droplets of QGP. In the absence
of jets, this module will correlate the initial conditions at lower energy collisions, leading to segments of
the plasma equilibrating with portions of hadronic gas. Once the correlator has completed operation, the
framework will launch several interacting modules which describe the modification of hard jets, photons,
and heavy-bosons with the equilibrating fluid, the equilibrated QGP, and the hadronic medium if present.

2.3.2 Pre-Equilibrium and Equilibrium Stages:
A realistic description of the system’s pre-equilibrium dynamics is essential to extend the new X-SCAPE

framework in the 3 new directions stated above. We will incorporate the newly developed pre-equilibrium
model (KøMPøST) [176] as well as anisotropic hydrodynamics [177]. Because the local energy density fluc-
tuates wildly over the nucleus scale, the hydrodynamization rate is different from point to point in space.

8

“Database” query approach  
using any(variant)  
datatype via QueryHistory  
instance

Jetscape JetScapeModuleBase Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

 JetScapeModuleBase ()

 JetScapeModuleBase (string m_name)

virtual ~JetScapeModuleBase ()

virtual void Init ()

virtual void Exec ()

virtual void Clear ()

virtual void ExecuteTasks () override

virtual void ClearTasks () override

virtual void CalculateTime ()

virtual void CalculateTimeTasks ()

virtual void CalculateTimeTask ()

virtual void ExecTime ()

virtual void ExecTimeTasks ()

virtual void ExecTimeTask ()

virtual void InitPerEvent ()

virtual void InitPerEventTasks ()

virtual void FinishPerEvent ()

virtual void FinishPerEventTasks ()

virtual void CheckExec ()

virtual void CheckExecs ()

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

▶ Droplet

▶ LiquefierBase

▶ MainClock

▶ _Unique_if

▶ _Unique_if< T[]>

▶ _Unique_if< T[N]>

▶ MilneClock

▶ ModuleClock

▶ PartonShower

▶ PartonShowerGenerator

▶ PartonShowerGeneratorDefault

▶ PartonShowerPy8

▶ PreEquilibriumParameterFile

▶ PreequilibriumDynamics

▶ Py8EventGraph

▶ Py8ShowerPSG

▶ QueryHistory

▶ SoftParticlization

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeModuleBase Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void FinishPerEventTasks ()

virtual void CheckExec ()

virtual void CheckExecs ()

virtual any GetHistory ()

void SetXMLMainFileName (string m_name)

string GetXMLMainFileName ()

void SetXMLUserFileName (string m_name)

string GetXMLUserFileName ()

shared_ptr< std::mt19937 > GetMt19937Generator ()

tinyxml2::XMLElement * GetXMLElement (std::initializer_list< const char * > path, bool isRequired=true)

std::string GetXMLElementText (std::initializer_list< const char * > path, bool isRequired=true)

int GetXMLElementInt (std::initializer_list< const char * > path, bool isRequired=true)

double GetXMLElementDouble (std::initializer_list< const char * > path, bool isRequired=true)

bool IsTimeStepped () const
 Returns whether the module evolves in time steps. More...

void SetTimeStepped (bool m_time_stepped)
 Sets whether the module evolves in time steps. More...

 Public Member Functions inherited from Jetscape::JetScapeTask

 Public Member Functions inherited from Jetscape::TimeModule

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

▶ Droplet

▶ LiquefierBase

▶ MainClock

▶ _Unique_if

▶ _Unique_if< T[]>

▶ _Unique_if< T[N]>

▶ MilneClock

▶ ModuleClock

▶ PartonShower

▶ PartonShowerGenerator

▶ PartonShowerGeneratorDefault

▶ PartonShowerPy8

▶ PreEquilibriumParameterFile

▶ PreequilibriumDynamics

▶ Py8EventGraph

▶ Py8ShowerPSG

▶ QueryHistory

▶ SoftParticlization

Main Page Related Pages Namespaces Classes Files Search

Implement GetHistory()in Jetscape  
Module(s). Can hold “any” datatype, 
in particular allows non framework 
datatypes*!

*Caveat: Since an any datatype has to explicitly be casted, this new flexible data exchange might 
break the stringent API and only framework datatype approach of “every module works with every  
other module” of JETSCAPE. Might change in the future, using variant or might be defunct.

Joern Putschke, WSU JETSCAPE 2023 Online School 33

Simplified/more flexible data exchange

…  
vector<any> eLossHistories =  
QueryHistory::Instance()->  
GetHistoryFromModules  
(“JetEnergyLoss”);  
…

Jetscape QueryHistory Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

Public Member Functions | Static Public Member Functions | List of all members

Jetscape::QueryHistory Class Reference

#include <QueryHistory.h>

Public Member Functions
void AddMainTask (std::shared_ptr< JetScapeTask > m_main_task)

void UpdateTaskMap ()

void PrintTasks ()

void PrintTaskMap ()

std::unordered_multimap< std::string, std::weak_ptr< JetScapeTask > > GetTaskMap ()

any GetHistoryFromModule (string mName)

vector< any > GetHistoryFromModules (string mName)

Static Public Member Functions
static QueryHistory * Instance ()

Detailed Description

▶ _Unique_if< T[N]>

▶ MilneClock

▶ ModuleClock

▶ PartonShower

▶ PartonShowerGenerator

▶ PartonShowerGeneratorDefault

▶ PartonShowerPy8

▶ PreEquilibriumParameterFile

▶ PreequilibriumDynamics

▶ Py8EventGraph

▶ Py8ShowerPSG

▶ QueryHistory

▶ SoftParticlization

▶ StringTokenizer

▶ SurfaceCellInfo

▶ SurfaceFinder

▶ TimeModule

▶ HadronPrinter

▶ PartonPrinter

▶ JetScapeReader

▶ EventInfo

▶ TrentoInitial

Main Page Related Pages Namespaces Classes Files Search

QueryHistory Instance queries 
tasks via string identifier and 
retrieves information from  
GetHistory() if implemented.

Joern Putschke, WSU JETSCAPE 2023 Online School 34

Clock(s) in X-SCAPE …(iii) To improve our statistical framework by expanding Bayesian emulator-based tools for comparing
results of the event generator and experimental data.

In what follows, we outline a plan to construct such a framework. While our design borrows consid-
erably and is based on the prior JETSCAPE project, it represents a significant enhancement both in the
capability and content of the new modules, as well as in the overall framework that will allow for multiple
modules to be connected in any user-defined data exchange scheme and still provide transparent synchro-
nization between concurrent threads.

Exchange

Exchange

Exchange
In

iti
al

St
at

e

Hard
Scatter

Soft
Stopping

Energy
Deposition

Hadronization

Particalization

Hadronic Transport (concurrent)

+DUG�T��J��4�4��Ȗ��

Pre Equib. Stoch-Visc Fluid

Spectator Excitation

Ha
dr

on
ic

Tr
an

sp
or

t
(fi

na
l s

ta
te

)

decay

Ha
dr

on
ic

Fu
ll E

ve
nt

s

Ex
pe

rim
en

ta
l D

at
a

X-state (e/p/A)

ConstrainX-state (e/p/A)

Optimize

Partially-
corrected
observable

Experimental
SimulationsȖ, e� e–

STATISTICSMODEL CALCULATION

computing module (square) data output (dotted)Legend:

Fully-
corrected
observable

significant considerable moderate

Exchange

Figure 6: The proposed X-SCAPE framework, containing the X-SCAPE event generator, and statistical
toolkit for comparisons with fully/partially corrected observables. Every object in the flowchart is a
modular piece of code that may be modified or replaced. We will continue to enhance the task-based
framework invented for JETSCAPE. Boxes in green are currently completed in JETSCAPE, orange boxes
will have to be considerably enhanced for X-SCAPE, and red boxes are entirely new functionality. Unlike
the case of the JETSCAPE generator 2, there are no arrows representing information flow as the X-SCAPE

framework will allow arbitrary connections between any modules, and exchange of any type of data.

2.3.1 Initial State Fluctuations and Correlations:
Fluctuations occur on many levels and in many stages of X-X collisions. A key development for X-SCAPE

is to correlate the many sources of fluctuations across its many stages. In the JETSCAPE framework in
Fig. 2, once the locations of the nucleons (within the incoming nuclei) were determined, this information
was passed to a module that determined the energy deposition profile (TRENTO). At this point the hard
and soft sector separated (indicated by the two yellow modules at the left of the event generator diagram in
Fig. 2), with minimal crosstalk between the modules. The probability to form a hard jet at a given location
depends on the number of nucleon-nucleon collisions at that point, and this is somewhat correlated with the
density of deposited energy at that point. Thus, while there is a spatial correlation there is no correlation in
energy. In the new X-SCAPE framework an overarching base class that correlates both energy and location
of hard jets and soft energy deposition will be instituted, indicated by the large red box in the left of Fig. 6.

While simple to indicate in a diagram, this correlator module will allow for the correlation between
jets and density fluctuations within the deposited energy. As the system size is reduced, this module will
correlate fluctuations leading to jet production and the production of small droplets of QGP. In the absence
of jets, this module will correlate the initial conditions at lower energy collisions, leading to segments of
the plasma equilibrating with portions of hadronic gas. Once the correlator has completed operation, the
framework will launch several interacting modules which describe the modification of hard jets, photons,
and heavy-bosons with the equilibrating fluid, the equilibrated QGP, and the hadronic medium if present.

2.3.2 Pre-Equilibrium and Equilibrium Stages:
A realistic description of the system’s pre-equilibrium dynamics is essential to extend the new X-SCAPE

framework in the 3 new directions stated above. We will incorporate the newly developed pre-equilibrium
model (KøMPøST) [176] as well as anisotropic hydrodynamics [177]. Because the local energy density fluc-
tuates wildly over the nucleus scale, the hydrodynamization rate is different from point to point in space.

8

Main Clock attached  
to JetScape main task 
and there “can be only 
one”

Module Clock(s)  
can be attached to  
any JetScape task

They are not independent 
clocks, but rather provide  
the “transformation” wrt 
the main clock time frame

…

JetscapeJetscape MainClockMainClock Generated by 1.8.12

JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

Public Member Functions | List of all members

§ MainClock() [1/2]

§ MainClock() [2/2]

Jetscape::MainClock Class Reference

#include <MainClock.h>

Inheritance diagram for Jetscape::MainClock:

Public Member Functions
 MainClock ()

 MainClock (string m_id, double m_st, double m_et, double m_dt)

virtual ~MainClock ()

void Reset ()
void ResetToTime (double m_resetTime)

virtual MainClock & operator++ ()

virtual bool Next ()
virtual bool Tick ()

void Info ()

void SetStartTime (double m_StartTime)
void SetEndTime (double m_EndTime)

void SetDeltaT (double m_deltaT)

double GetStartTime ()
double GetEndTime ()

double GetDeltaT ()

double GetCurrentTime ()

 Public Member Functions inherited from Jetscape::ClockBase

Detailed Description

Definition at line 31 of file MainClock.h.

Constructor & Destructor Documentation

Jetscape::MainClock::MainClockJetscape::MainClock::MainClock (())

Definition at line 11 of file MainClock.cc.

Jetscape::MainClock::MainClockJetscape::MainClock::MainClock ((string string m_idm_id,,
double double m_stm_st,,
double double m_etm_et,,

▶ HadronizationManager
▶ HadronizationModule
▶ HardProcess
▶ InitialState

 InvalidSpaceTimeRange
 Jet

▶ JetEnergyLoss
▶ JetEnergyLossManager
▶ JetEnergyLossModule
▶ JetScape
▶ JetScapeEvent
▶ JetScapeEventHeader
▶ JetScapeLogger
▶ JetScapeModuleBase
▶ JetScapeModuleFactory
▶ JetScapeModuleMutex
▶ JetScapeParticleBase
▶ JetScapeReader
▶ JetScapeSignalManager
▶ JetScapeTask
▶ JetScapeTaskSupport
▶ JetScapeWriter
▶ JetScapeWriterHepMC
▶ JetScapeWriterStream
▶ JetScapeXML
▶ LiquefierBase
▶ LogStreamer
▶ LogStreamerThread
▶▶ MainClockMainClock
▶ ModuleClock
▶ Parameter
▶ Parton
▶ PartonPrinter
▶ PartonShower
▶ PartonShowerGenerator
▶ Photon
▶ PreequilibriumDynamics
▶ PreEquilibriumParameterFile
▶ QueryHistory
▶ RegisterJetScapeModule
▶ SafeOstream
▶ SoftParticlization
▶ StringTokenizer
▶ SurfaceCellInfo
▶ SurfaceFinder
▶ TimeModule
▶ TrentoInitial
▶ Vertex

▶ AdSCFT
▶ AdSCFTMutex
▶ AdSCFTUserInfo
▶ algorithm
▶ bellman_ford
▶ bfs
▶ biconnectivity
▶ bid_dijkstra

Main PageMain Page Related PagesRelated Pages NamespacesNamespaces ClassesClasses FilesFiles Search

Jetscape JetScapeModuleBase Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

 JetScapeModuleBase ()

 JetScapeModuleBase (string m_name)

virtual ~JetScapeModuleBase ()

virtual void Init ()

virtual void Exec ()

virtual void Clear ()

virtual void ExecuteTasks () override

virtual void ClearTasks () override

virtual void CalculateTime ()

virtual void CalculateTimeTasks ()

virtual void CalculateTimeTask ()

virtual void ExecTime ()

virtual void ExecTimeTasks ()

virtual void ExecTimeTask ()

virtual void InitPerEvent ()

virtual void InitPerEventTasks ()

virtual void FinishPerEvent ()

virtual void FinishPerEventTasks ()

virtual void CheckExec ()

virtual void CheckExecs ()

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

▶ Droplet

▶ LiquefierBase

▶ MainClock

▶ _Unique_if

▶ _Unique_if< T[]>

▶ _Unique_if< T[N]>

▶ MilneClock

▶ ModuleClock

▶ PartonShower

▶ PartonShowerGenerator

▶ PartonShowerGeneratorDefault

▶ PartonShowerPy8

▶ PreEquilibriumParameterFile

▶ PreequilibriumDynamics

▶ Py8EventGraph

▶ Py8ShowerPSG

▶ QueryHistory

▶ SoftParticlization

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeModuleBase Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void FinishPerEventTasks ()

virtual void CheckExec ()

virtual void CheckExecs ()

virtual any GetHistory ()

void SetXMLMainFileName (string m_name)

string GetXMLMainFileName ()

void SetXMLUserFileName (string m_name)

string GetXMLUserFileName ()

shared_ptr< std::mt19937 > GetMt19937Generator ()

tinyxml2::XMLElement * GetXMLElement (std::initializer_list< const char * > path, bool isRequired=true)

std::string GetXMLElementText (std::initializer_list< const char * > path, bool isRequired=true)

int GetXMLElementInt (std::initializer_list< const char * > path, bool isRequired=true)

double GetXMLElementDouble (std::initializer_list< const char * > path, bool isRequired=true)

bool IsTimeStepped () const
 Returns whether the module evolves in time steps. More...

void SetTimeStepped (bool m_time_stepped)
 Sets whether the module evolves in time steps. More...

 Public Member Functions inherited from Jetscape::JetScapeTask

 Public Member Functions inherited from Jetscape::TimeModule

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

▶ Droplet

▶ LiquefierBase

▶ MainClock

▶ _Unique_if

▶ _Unique_if< T[]>

▶ _Unique_if< T[N]>

▶ MilneClock

▶ ModuleClock

▶ PartonShower

▶ PartonShowerGenerator

▶ PartonShowerGeneratorDefault

▶ PartonShowerPy8

▶ PreEquilibriumParameterFile

▶ PreequilibriumDynamics

▶ Py8EventGraph

▶ Py8ShowerPSG

▶ QueryHistory

▶ SoftParticlization

Main Page Related Pages Namespaces Classes Files Search

If a main clock is attached to the 
main task, physics modules can 
be executed (no module clock 
needs to be provided, by default 
main clock will be used) on a per 
time-step basis! In general, one 
can mix per event and per time- 
step, if it makes sense from a  
physics perspective.Remark: Has to be set explicitly to true, default is  

false, so per event “JETSCAPE” like execution.

Joern Putschke, WSU JETSCAPE 2023 Online School 35

Attaching Clock(s) to Modules …

Jetscape JetScapeModuleBase Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

Public Member Functions | Static Public Member Functions | List of all members

Jetscape::JetScapeModuleBase Class Reference

#include <JetScapeModuleBase.h>

Inheritance diagram for Jetscape::JetScapeModuleBase:

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

▶ Droplet

▶ LiquefierBase

▶ MainClock

▶ _Unique_if

▶ _Unique_if< T[]>

▶ _Unique_if< T[N]>

▶ MilneClock

▶ ModuleClock

▶ PartonShower

▶ PartonShowerGenerator

▶ PartonShowerGeneratorDefault

▶ PartonShowerPy8

▶ PreEquilibriumParameterFile

▶ PreequilibriumDynamics

▶ Py8EventGraph

▶ Py8ShowerPSG

▶ QueryHistory

▶ SoftParticlization

Main Page Related Pages Namespaces Classes Files Search

Jetscape TimeModule Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

Public Member Functions
 TimeModule ()

 TimeModule (double t1, double t2)

virtual ~TimeModule ()

void ClockInfo ()

void AddModuleClock (shared_ptr< ModuleClock > m_mClock)

shared_ptr< ModuleClock > GetModuleClock () const

void AddMainClock (shared_ptr< MainClock > m_mainClock)

bool UseModuleClock ()

double GetModuleCurrentTime ()

double GetModuleDeltaT ()

bool IsValidModuleTime ()

void SetTimeRange (double t1, double t2)

const double GetTStart () const

const double GetTEnd () const

Static Public Member Functions

▶ PartonShowerGeneratorDefault

▶ PartonShowerPy8

▶ PreEquilibriumParameterFile

▶ PreequilibriumDynamics

▶ Py8EventGraph

▶ Py8ShowerPSG

▶ QueryHistory

▶ SoftParticlization

▶ StringTokenizer

▶ SurfaceCellInfo

▶ SurfaceFinder

▶ TimeModule

▶ HadronPrinter

▶ PartonPrinter

▶ JetScapeReader

▶ EventInfo

▶ TrentoInitial

▶ AdSCFT

▶ AdSCFTMutex

▶ AdSCFTUserInfo

▶ algorithm

▶ bellman_ford

Main Page Related Pages Namespaces Classes Files Search

…  
auto mClock =
make_shared<MainClock>("SpaceTime",
-0.1,0.1,0.1);  
 
auto mMilneClock =
make_shared<MilneClock>();  
mMilneClock->setEtaMax(5.0);  
…  
auto jetscape =
make_shared<JetScape>();  
jetscape->AddMainClock(mClock);  
…  
auto hydro = make_shared<Brick> ();  
hydro->SetTimeRange(0.6,10);  
hydro->AddModuleClock(mMilneClock);  
 
hydro->SetTimeStepped(true);  
…

Joern Putschke, WSU JETSCAPE 2023 Online School 36

Concurrent running of Modules per time-step …

Jetscape JetScapeModuleBase Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

 JetScapeModuleBase ()

 JetScapeModuleBase (string m_name)

virtual ~JetScapeModuleBase ()

virtual void Init ()

virtual void Exec ()

virtual void Clear ()

virtual void ExecuteTasks () override

virtual void ClearTasks () override

virtual void CalculateTime ()

virtual void CalculateTimeTasks ()

virtual void CalculateTimeTask ()

virtual void ExecTime ()

virtual void ExecTimeTasks ()

virtual void ExecTimeTask ()

virtual void InitPerEvent ()

virtual void InitPerEventTasks ()

virtual void FinishPerEvent ()

virtual void FinishPerEventTasks ()

virtual void CheckExec ()

virtual void CheckExecs ()

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

▶ Droplet

▶ LiquefierBase

▶ MainClock

▶ _Unique_if

▶ _Unique_if< T[]>

▶ _Unique_if< T[N]>

▶ MilneClock

▶ ModuleClock

▶ PartonShower

▶ PartonShowerGenerator

▶ PartonShowerGeneratorDefault

▶ PartonShowerPy8

▶ PreEquilibriumParameterFile

▶ PreequilibriumDynamics

▶ Py8EventGraph

▶ Py8ShowerPSG

▶ QueryHistory

▶ SoftParticlization

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeModuleBase Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

 JetScapeModuleBase ()

 JetScapeModuleBase (string m_name)

virtual ~JetScapeModuleBase ()

virtual void Init ()

virtual void Exec ()

virtual void Clear ()

virtual void ExecuteTasks () override

virtual void ClearTasks () override

virtual void CalculateTime ()

virtual void CalculateTimeTasks ()

virtual void CalculateTimeTask ()

virtual void ExecTime ()

virtual void ExecTimeTasks ()

virtual void ExecTimeTask ()

virtual void InitPerEvent ()

virtual void InitPerEventTasks ()

virtual void FinishPerEvent ()

virtual void FinishPerEventTasks ()

virtual void CheckExec ()

virtual void CheckExecs ()

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

▶ Droplet

▶ LiquefierBase

▶ MainClock

▶ _Unique_if

▶ _Unique_if< T[]>

▶ _Unique_if< T[N]>

▶ MilneClock

▶ ModuleClock

▶ PartonShower

▶ PartonShowerGenerator

▶ PartonShowerGeneratorDefault

▶ PartonShowerPy8

▶ PreEquilibriumParameterFile

▶ PreequilibriumDynamics

▶ Py8EventGraph

▶ Py8ShowerPSG

▶ QueryHistory

▶ SoftParticlization

Main Page Related Pages Namespaces Classes Files Search

Jetscape JetScapeModuleBase Generated by 1.9.1

BY JETSCAPE
Jet Energy-loss Tomography with a Statistically and Computationally Advanced Program Envelope (JETSCAPE)

virtual void FinishPerEventTasks ()

virtual void CheckExec ()

virtual void CheckExecs ()

virtual any GetHistory ()

void SetXMLMainFileName (string m_name)

string GetXMLMainFileName ()

void SetXMLUserFileName (string m_name)

string GetXMLUserFileName ()

shared_ptr< std::mt19937 > GetMt19937Generator ()

tinyxml2::XMLElement * GetXMLElement (std::initializer_list< const char * > path, bool isRequired=true)

std::string GetXMLElementText (std::initializer_list< const char * > path, bool isRequired=true)

int GetXMLElementInt (std::initializer_list< const char * > path, bool isRequired=true)

double GetXMLElementDouble (std::initializer_list< const char * > path, bool isRequired=true)

bool IsTimeStepped () const
 Returns whether the module evolves in time steps. More...

void SetTimeStepped (bool m_time_stepped)
 Sets whether the module evolves in time steps. More...

 Public Member Functions inherited from Jetscape::JetScapeTask

 Public Member Functions inherited from Jetscape::TimeModule

▶ JetScapeWriterHepMC

▶ JetScapeWriterIsrStream

▶ JetScapeWriterStream

▶ JetScapeWriterStreamFilter

▶ JetScapeXML

▶ Droplet

▶ LiquefierBase

▶ MainClock

▶ _Unique_if

▶ _Unique_if< T[]>

▶ _Unique_if< T[N]>

▶ MilneClock

▶ ModuleClock

▶ PartonShower

▶ PartonShowerGenerator

▶ PartonShowerGeneratorDefault

▶ PartonShowerPy8

▶ PreEquilibriumParameterFile

▶ PreequilibriumDynamics

▶ Py8EventGraph

▶ Py8ShowerPSG

▶ QueryHistory

▶ SoftParticlization

Main Page Related Pages Namespaces Classes Files Search

JetScapeModuleBase provides an  
additional per time-step workflow:

1) CalculateTime() phase: 

Module(s) simulate the next time- 
step. No communication between 
modules -> can be trivially multi- 
threaded if needed.

2) ExecTime() phase: 
Communication/data exchange  
etc. between modules needed 
before next time-step

Remark: If you want to develop modules which  
can be executed per time-step you have to  
provide these functions, analogous to InitTask(),  
ExecTask(),… in the JETSCAPE workflow.

Joern Putschke, WSU JETSCAPE 2023 Online School 37

X-SCAPE 2.0: Low energy AA …

M. Kelsey JETSCAPE COMP Meeting

Overview of PR
Bulk dynamics manager (BDM) for milestone 4 (issue #11)

2

BDM: handle communication
between jet energy loss
modules and bulk media

modules; green lines denote
media (hydro) information for
energy loss modules via sigslot

src/framework/BulkDynamicsManager.cc/h

BulkDynamicsManager (BDM):

Organizes/allows concurrent  
running of multiple QCD bulk  
media implementations! 
 
Initially for X-SCAPE 2.0  
(release expected end of this year) 
hydro (MUSIC) and hadron  
cascade (SMASH), focus on  
low beam energy AA collisions!

First proof-of-principle implementation of the BDM and other  
example/test programs utilizing the new X-SCAPE per time-step  
workflow can be found in the custom example directory!

Joern Putschke, WSU JETSCAPE 2023 Online School 38

Summary

JETSCAPE/X-SCAPE is a framework for general-purpose  
e-A, p/d-A and A-A event generators

• Modular, extensible — please contribute modules!

JETSCAPE/X-SCAPE is a tool for the community

• To enable well-controlled event generator comparisons

• As a testbed for theoretical and experimental development

JETSCAPE (X-SCAPE) has been successfully used  
and tested in large scale simulation efforts

Joern Putschke, WSU JETSCAPE 2023 Online School 39

Remarks on large scale simulations

• Containers simplify deployment when running simulations at scale

• Utilize singularity containers (see GitHub installation instructions)

• Most High Performance Computing (HPC) sites will not allow you to use docker containers

• You can directly convert the docker container into a format suitable for singularity

• Make sure you build your container in a reproducible way by explicating  
setting the versions of dependencies

• If you take the most recent version, it may change next time you build the container

• That can change your physics!

• Be aware of HPC facility architecture, capabilities, requirements, and best practices

• Particularly watch out for file I/O limits; for example, reading pre-computed hydro profiles  

for use in jet energy loss calculations can be a high IO activity

• Write output files to the temporary storage of the computing node, and then copy only the files  

you need back to permanent storage; consider calculating observables directly from outputs

• Optimize for the type of simulation that you are running:

• Hydro utilizes multi-core capabilities → Request many cores on a single node

• Jet energy loss uses a core at time (massively parallel) → Cores can be from any node

JETSCAPE has used tens of millions of core-hours running simulations for 
Bayesian analyses (covered next week) which are especially computationally expensive. 
When you run simulations at scale, here are some details to consider:

Joern Putschke, WSU JETSCAPE 2023 Online School 40

Thank you!

Joern Putschke, WSU JETSCAPE 2023 Online School 41

Backup

Joern Putschke, WSU JETSCAPE 2023 Online School 42

OutputFramework Output
• Class JetScapeWriter

• Subclass of JetScapeModuleBase

• Can be attached as a task

• Derived classes so far:

• HepMC writer

• ASCII writer

Each task overrides its
own write method

1501/09/19

Joern Putschke, WSU JETSCAPE 2023 Online School 43

OutputReading Output
• Class JetScapeReader

• Base class for reading JETSCAPE output files

• Not a JETSCAPE task

• To be used after

producing output

• Derived classes so far:

• JetScapeReaderAscii

16

Provides access to
PartonShower for final state
Partons, and Hadrons

01/09/19

